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Abstract
This work studies the problem of the convergence of gradient descent in the training

of Residual Neural Networks in the infinite depth limit where the model is defined
by the integration of an ODE driven by a parametrized residual term. We present
analytical tools for studying such continuous models in a supervised learning setting.
Thereby, we derive functional inequalities of Polyak-Lojasiewicz type for the associated
loss and recover local convergence results that already exist for Neural Networks with
finite depth.

Observing that the parametrization we use defines a structure of Reproducing Kernel
Hilbert Space (RKHS) on the space of residual transformations, we leverage tools from
the study of groups of Diffeomorphisms in order to redefine our models as the action of
diffeomorphisms on the inputs. This allows us to study a model acting on densities by
push-forward action, for which we derive functional inequalities of Kurdyka-Lojasiewicz
type. Finally, studying the linearization around identity of this model establishes a
connection with a class of dissipative PDEs interpreted as gradient flows on the space
of densities provided with a right-invariant metric.
Keywords: Neural Networks, Residual Networks, Neural ODE, Polyak-Lojasiewicz
inequalities, Overparametrized models, Implicit bias, Right-invariant metric, Flow of
diffeomorphisms

1 Introduction

Residual Networks (ResNet) [30] are Artificial Neural Network architectures for which each
layer consists in the the addition of a skip connection and a residual term. A generic example
for such architecture, with L layers, is:

F (W,x) = W (L)x(L),

x(l+1) = x(l) + f(W (l), x(l)) ∀l ∈ J0, L− 1K,
x(0) = x,

where x ∈ Rd is the input data, W = (Wl)0≤l≤L is the parameter of the model and
f : Rm × Rd → Rd is a transformation called residual term. Those are typically Multi-
Layer Perceptrons (MLP), fully connected layers, convolutional layers or several such layers
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stacked in a row. The addition, at each layer’s output, of the preceding layer’s output is a
skip connection. Note that such skip connections force the dimension of each layer’s output
to stay constant, so that in practice, architectures alternate between residual layers with skip
connections and intermediary layers where the dimension of the outputs can be modified.

ResNets are considered in a supervised learning setting where one is provided with a
training set of input data (xi)1≤i≤N and objective data (yi)1≤i≤N ∈ (Rd)N . Given a loss
function ` : Rd × Rd → R+, “training” the model consists in finding a parameter W mini-
mizing the (regularized) Empirical Risk :

L(W ) :=
N∑
i=1

`(F (W,xi), yi) + λR(W ),

where R(W ) is a regularizing term and λ is a positive constant. In our work, λ will be set
to zero in order to study the implicit regularization induced by the optimization method,
which will be a Gradient Descent or a Gradient Flow on the parameters.

Overparametrization The presence of skip connections in ResNet architectures allows to
deal with the problem of vanishing gradient encountered in other “deep” architectures [52]
and doing so to use models with increasingly more layers and parameters [60]. The per-
formances of residual networks, and more generally the performances of overparametrized
models, have drawn the attention of the Machine learning community as they seem to be
efficiently trained by “vanilla” first order optimization methods such as gradient descent. In
the past years, several works addressed the problem of proving the convergence of gradient
descent in the training of Deep Neural Networks [19, 18, 1, 63, 62, 44], generally concluding
that a polynomial dependency of the width of intermediary layers w.r.t. the number of data
N and the number of layers L is sufficient to ensure convergence.

An important argument is that along the gradient descent, these models can be ap-
proximated by their linearization at initialization, therefore acting as linear models [31, 35].
Following the work of [38, 37], we will analyse our model in the light of functional inequal-
ities of Polyak-Lojasiewicz type (see [10] and references therein), exhibiting conditions on
the loss at initialization to transition towards this “linear regime”.

Continuous models Similarities between ResNet architectures and discrete numerical
schemes motivated the introduction of continuous models [15, 56] as well as a new approaches
inspired from the theory of dynamical systems and optimal control [14, 57, 21]. The models
considered here are continuous models, thought to be the limiting models for ResNet whose
depth L tends to infinity:

F (W,x) = x1, with

{
d
dtxt = f(Wt, xt) ∀t ∈ [0, 1]

x0 = x,

where x ∈ Rd is the input data, W = (Wt)t∈[0,1] is the parameter of the model and
f : Rm → Rd is the residual term.

Studying those continuous models brings the hope of understanding the behavior of
very deep ResNet architectures, something which is for now much misunderstood. Whereas
proofs of convergence of gradient descent in the training of discrete models abound, there
are only few for continuous ones. Moreover, their mathematical analysis has interest on its
own as it is different from the one of discrete models and is in some way more elegant.

2



Research Internship Report September 2021

We considered in this work a simple set of residual terms consisting in the composition of
a fixed non-linearity with a trained linear layer, observing that it amounts to consider vector-
fields belonging to a Reproducing Kernel Hilbert Space (RKHS). This establishes a link with
the theory of Large Deformation Diffeomorphic Metric Matching (LDDMM) where the flow
of such vector fields is used in order to solve Image Registration problems [53, 54, 59]. The
range of the model’s possible outputs corresponding to a set of diffeomorphic deformations
of the inputs, the model thus belongs to the class of “reversible” models [13]. The idea
was for example used in [50] for building models of Normalizing Flows [33] in a generative
modeling perspective.

1.1 Contributions

Our main contribution is to show that the overparametrized setting and the proof scheme
exposed in [38] can be extended to the framework of continuous models [15, 56]. Doing so
we recover for continuous ResNets already existing results for the convergence of gradient
descent in the training of discrete models. In particular, we show that the transition towards
a “linear regime” with constant Neural Tangent Kernel [31] happens for a sufficiently small
initial loss. An important drawback of our results is that they only deal with identity (i.e.
W 0 = 0) initialization whereas most of the literature consider random initializations.

For linear models, the threshold condition for convergence in Theorem 3.1 is numerically
explicit with respect to the parameters of the problem and can be enforced in a way that
is independent to the number of data points N . This is an improvement with respect to
lots of results from the literature [19, 18, 1, 63, 62, 44] but is most likely due to the linear
structure of the considered problem.

For models with non-linear residual terms, assumptions on the regularity and the expres-
sivity of these residual terms allow to recover similar convergence results in Theorem 5.2.
In this case, the condition for convergence should generally depend on the number of data
points. Results already exist in the literature for the convergence of gradient descent in the
training of discrete ResNets with non-linear residual terms [18, 1, 62, 37]. However, unlike
for the linear model, those do not pass to the limit of infinite depth as they assume at least a
polynomial dependence of the intermediary layers’ width w.r.t. the depth L of the network.
In that sense our result brings a new contribution.

Using a parametrization of the residual terms with vector fields belonging to an abstract
RKHS allows us to make an interesting connection with tools from Image Registration [59,
53, 8]. The models we study implement diffeomorphic transformations of the inputs and
belong in particular to the class of “reversible” models such as Normalizing Flows. The use
of such an RKHS parametrization was already suggested in [47] and [50].

Finally, we took interest in the limiting problem whereN tends towards infinity by study-
ing models acting on densities by pushforward action of diffeomorphisms [50]. In this setting
we show convergence results for unregularized density matching in Property 6.4 and Prop-
erty 6.5, with possible applications to generative modeling. Studying the linearization of
this model around identity, we explored a link with the study of a certain class of dissipative
PDEs. Those evolution equations can be interpreted as gradient flows for a right invariant
metric and, unlike gradient flows for the Wasserstein metric, the asymptotic behavior of
their solutions is not well understood yet. We argue that this could be a first step towards a
general proof for the convergence of gradient descent in the training of continuous ResNets.
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2 Convergence of overparametrized models and NTK analysis

A common feature of Residual Networks models is their large number of trainable parameters
compared to the number of data parameters they are trained on, up to 100 times more
in [60]. In a broader picture, they take place in the actual context where machine learning
models have a growing number of parameters, up to trillions of parameters recently [24]. An
intriguing phenomenon which is not fully understood, is the capability of simple, first-order,
optimization methods such as Gradient Descent or Stochastic Gradient Descent to efficiently
train such models so as to achieve zero training loss. We will in this section give an informal
explanation based on [38].

In the next section, our machine learning models will describe the action of a parameter
v ∈ Rm on an input object x, belonging to an input space N , resulting in an output object
y, belonging to a real d-dimensional riemannian manifold M. This action is defined as a
function of (v, x) with value in the output spaceM:

F :

{
Rm ×N → M

(v, x) 7→ F (v, x) =: y.

We will assume F to be differentiable w.r.t. v and will call y the output object.
Those models belong to the class of parametric models. Provided a differentiable loss

function ` :M×M→ R, we will be interested in the optimization task:

Find v∗ ∈ arg min
v∈Rm

L(v) :=
N∑
i=1

`(F (v;xi); yi) (1)

for a family of labeled input data (xi)1≤i≤N ∈ NN and objective data (yi)1≤i≤N ∈MN .
However, we are here only interested in an optimization over the variable v with fixed

input and output data. These can be omitted to rewrite the model as a function of the
parameters with values in the cartesian product of the output space M̃ :=MN :

F̃ :

{
Rm → M̃
v 7→ (F (v;xi))1≤i≤N .

We say that the model is overparametrized whenever m� dN = dim(M̃).
Considering the loss function ˜̀ : ỹ = (ỹi)1≤i≤N ∈ M̃ 7→

∑N
i=1 l(ỹ

i; yi), Equation (1) can
be restated as:

Find v∗ ∈ arg min
v∈Rm

L(v) = ˜̀(F̃ (v)). (2)

Remark 2.1 (Implicit Regularization)
Note that we will not consider here any regularization term on the loss L. Whereas one gen-
erally adds a regularization term to the training loss in order to ensure good generalization
properties once the model is trained, we are here interested in the implicit regularization
that is induced by the optimization method.

In order to minimize the loss L, we will be considering optimization by continuous
gradient flow or by discrete gradient descent which we define below:
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Definition 2.1 (Gradient Flow)
Given v ∈ Rm, the gradient flow of L starting at v is defined as the solution of the ODE:{

d
dτ v

τ = −∇L(vτ )

v0 = v.

Definition 2.2 (Gradient Descent)
Given v ∈ Rm and a step size η > 0, the gradient descent of L starting at v is defined as
the sequence: {

vk+1 = vk − η∇L(vk) for every k ≥ 0

v0 = v.

2.1 Neural Tangent Kernel analysis

In order to study the convergence properties of the gradient descent, [38] outlined the im-
portance of studying the conditioning of the Neural Tangent Kernel (NTK), which repre-
sents the metric implicitly induced by the model’s parametrization on M̃. The concept
of NTK was first introduced by [31] and then broadly studied in the literature of Neural
Networks [18, 35, 37].

Indeed, in the problem of training the (parametric) model F̃ , one optimizes its param-
eters, the variable v ∈ Rm, in order to minimize a loss which is defined on M̃. This raises
the question of whether this optimization method is efficient or not. One can answer this
question by considering a small variation δv of the parameters induced by the gradient flow:

δv = −∇L(v) = −DF̃ (v)>∇˜̀(F̃ (v)).

This induces a variations on the output through the model:

δỹ := DF̃ (v)δv = −DF̃ (v)DF̃ (v)>∇˜̀(ỹ),

with ỹ := F̃ (v).
Therefore, the Neural Tangent Kernel can be defined as this new metric appearing on

the tangent space of M̃:

K(v) := DF̃ (v)DF̃ (v)>.

Thus, if K(v) becomes degenerate then the optimization is not efficient whereas if K(v)
has large eigenvalues the gradient flow is very efficient in order to minimize the loss. In
fact, uniform conditioning of the NTK over the entire parameter space implies the con-
vergence of the gradient flow towards a global minima of the loss [38], which can explain
the efficiency of gradient descent in the training of overparametrized models as whenever
m� dN = dim(M̃), the NTK K(v) = DF̃ (v)DF̃ (v)> is a positive definite form.

However, this definition of the NTK does not provide an efficient way to instantiate
it in practice, in particular for complex models such as Deep Neural Networks, where the
differential DF̃ can be hard to evaluate. For example, for the continuous models we will
consider in the following, the space of parameters will typically be an infinite dimensional
functional space such as an L2 space. Therefore we will not directly evaluate the NTK but
rather rely on functional properties which implicitly express its conditioning.
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3 Linear Residual Networks

Linear Neural Networks are Neural Networks whose layers consist only of matrix vector
products. Even though the class of functions that can be represented by such a model only
consists of linear transformations and is thus very restricted, its mathematical analysis is
interesting to carry out in the first place precisely because the model’s linear structure allows
to rely on well-known linear algebra and simplifies the proofs.

Given a data matrix X ∈ Rd×N and a set of matrix parameter W = (Wl)1≤l≤L respec-
tively of size nl × nl−1, the output of a Linear Neural Network with L layers parametrized
by W is given by:

F (W ) = BWLWL−1...W1AX,

with (optional) fixed dimension scaling matrices A ∈ Rn0×d, B ∈ Rd′×NL .
Analogously, a Linear Residual Network is defined as a ResNet whose residual terms

consist of linear transformations. It can be considered as a Linear Neural Network whose
parameters are defined around the identity matrix Iq:

F (W ) = B

(
Iq +

1

L
WL

)
...

(
Iq +

1

L
W1

)
AX, (3)

where the compatibility condition for intermediary dimensions is n0 = ... = nL = q, and
where the factor 1/L is a rescaling factor.

Our model of interest here is a continuous linear model which corresponds to the infinite
depth limit L→ +∞ of the preceding:

Definition 3.1 (Linear-FlowResNet)
Given a data matrix X ∈ Rd×N and (optional) dimension scaling matrices A ∈ Rq×d,
B ∈ Rd′×q, we define for any W ∈ L2([0, 1] ,Rq×q) the output of the Linear-FlowResNet
model by:

F (W ) := BU1AX

with U the unique absolutely continuous solution to the forward problem:{
U0 = Iq
U̇t = WtUt.

(4)

W will therefore be called control parameter.

Proof. Note that existence and uniqueness of an absolutely continuous solution of Equa-
tion (4) is implied by the Caratheodory existence theorem (cf. Section A).

Remark 3.1
On the space of matrices we consider the Frobenius norm, noted ‖.‖. The norm on the
control parameter space will be the one induced by the Frobenius norm:

‖W‖L2 :=

(∫ 1

0
‖Wt‖2dt

)1/2

.

Spectral norm will be noted ‖.‖2 and singular values σi(.).
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We will study this model in a supervised learning setting where we want to fit data labels
living in Rd′ . That is given an objective data matrix Y ∈ Rd′×N and a control parameter
W , we will consider the quadratic loss:

L(W ) :=
1

2
‖F (W )− Y ‖2F =

1

2
‖BU1AX − Y ‖2F (5)

and the corresponding Empirical Risk Minimization problem:

Find W ∗ ∈ arg min
W∈L2([0,1],Rq×q)

L(W ). (ERM)

3.1 Convergence result for the linear model

Linear convergence properties for the discrete model Equation (3) have already been exten-
sively studied [7, 58, 63, 38]. However, extending the proof to our continuous model requires
a different kind of analysis as our parameters live in the infinite dimensional functional
space L2([0, 1] ,Rq×q). At the end, we recover a result that is equivalent to the one of [63]
for discrete linear models:

Theorem 3.1 (Local convergence of linear FlowResNet)
Let r be the rank of the data matrix X and define L∗ as the square distance between the
data labels and the vector space spanned by achievable outputs:

L∗ := inf
U∈Rq×q

1

2
‖BUAX − Y ‖2 =

1

2
‖BU∗AX − Y ‖2.

Assume that at initialization W 0 := 0 there exists a radius R ≥ 0 such that:

σmax(A)σmax(B)σmax(X)

σmin(A)2σmin(B)2σr(X)2

[
L(W 0)− L∗

]1/2 ≤ Re−3R

4
. (6)

Then for a sufficiently small step size η, gradient descent converges towards a global optimum
of the loss in linear time. For every discrete time step k ≥ 0:[

L(W k)− L∗
]
≤
(
1− ηe−2Rσmin(B)2σmin(A)2σr(X)2

)k [
L(W 0)− L∗

]
.

Moreover, the gradient descent dynamic is bounded by R: ‖W k‖ ≤ R for every k ≥ 0.

Remark 3.2
Be careful not to be misled ! The notation U∗ does not mean that there always exist a control
parameter W ∗ satisfying U1(W ∗) = U∗. Orthogonal projection of the data emphasizes the
fact that we can here benefit from the problem linear structure to have a better a priori
estimate on the range of expectable results. This will not be the case for non-linear models.

Remark 3.3 (Convergence of Stochastic Gradient Descent)
Though it won’t be discussed here, general theory for overparametrized models satisfying
local Polyak-Lojasiewicz inequalities of Property 3.1 also shows a similar convergence result
for a training with Stochastic Gradient Descent [38]. We observed this convergence in
practice in Section 9.
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Theorem 3.1 expresses a behavior of “local” convergence in the sense that the gradient
descent converges at a linear rate towards a global minimum of the loss under the condition
that it has been initialized sufficiently close from such a global minimum. The condition
ensuring this convergence in Equation (6), thus corresponds to a threshold between two
kinds of behavior:

� Equation (6) is not satisfied and one cannot tell anything about convergence,

� the loss at initialization is sufficiently small and there is convergence at a linear rate.

A limiting behavior is when L(W 0) → 0. Then, in Theorem 3.1, implicit regularization
induced by gradient descent allows to bound the dynamic in a ball of radius R→ 0 and, all
along the gradient descent, the model is well approximated by its first order development
at initialization:

F (W k) ' F (W 0) +DF (W k)(W k −W 0)

This “linear regime” or “kernel regime” has been well studied in the literature [31, 37, 35].

Remark 3.4
Note that the condition in Equation (6) can be enforced by embedding the data in a space
of sufficiently high dimension q. Such a method has already been introduced in [20] in order
to remove topological impossibilities, [61] proved its universality. In our case, we show that
such embedding allows to break symmetries and reduces the “geometric complexity” of the
problem.

Introducing for every n ≥ 0 the matricesAn := (Id, . . . , Id)
> ∈ Rnd×d, Bn := (Id, 0, . . . , 0) ∈ Rd×nd

and the subspace of admissible results of the flow En := {(Y > ∗ ...∗)>} ⊂ Rnd×N one can de-
fine the embedded data X̃n = AnX and its orthogonal projection Π⊥EnX̃n = (Y >X>...X>)>.
Then the embedding dimension n as no impact on the euclidean distance:

‖X̃n −Π⊥EnX̃n‖2 = ‖X − Y ‖2 = 2L(W 0).

However, taking the point of view of linear deformations of the space, the “geometric”
distance is lowered. Calculating the unoriented angle:

(
X̃n,Π

⊥
EnX̃n

)
= arccos

(
〈X̃n,Π

⊥
En
X̃n〉

‖X̃n‖‖Π⊥EnX̃n‖

)

= arccos

(
〈X,Y 〉+ (n− 1)‖X‖2

(n‖X‖2)1/2 (‖Y ‖2 + (n− 1)‖X‖2)1/2

)
−−−−−→
n→+∞

0.

Remark 3.5 (“Lazy” or “NTK” regime ?)
The condition in Equation (6) can be read in terms of transition towards a “lazy training”
regime as described in [17]. Indeed, the criterion used by the authors for a generic model F
is:

κ(W 0) := ‖F (W 0)− Y ‖‖D
2F (W 0)‖

‖DF (W 0)‖2
� 1.
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An upper bound for the l.h.s. in our case can precisely be shown to be:

κ(W 0) ≤ σmax(A)σmax(B)σmax(X)

σmin(A)2σmin(B)2σr(X)2

[
L(W 0)− L∗

]1/2
.

Therefore, our result seems to exhibit a threshold between the “lazy regime” where linear
convergence is achieved and a “rich regime” where we can find examples of non-convergence
(see Section 8). However, the model can’t be described by the mechanisms presented in [17]
where transition towards the “lazy regime” is achieved through rescaling of the parameters.
Here, the l.h.s. in Equation (6) is asymptotically invariant by rescaling.

Instead, our model’s training dynamic should be compared to the ones observed in [31,
38, 37] where near constancy of the neural tangent kernel is implied by an important scale
difference between DF and its differential at initialization:

‖D2F (W 0)‖
‖DF (W 0)‖2

≤ σmax(A)σmax(B)σmax(X)

σmin(A)2σmin(B)2σr(X)2
� 1.

However, in contrast to the analysis of [37], for our continuous model the Hessian D2F
does not vanish because of an increase in the dimension of the control parameter (which
is infinite anyway) but because of an increase in the dimension q of the embedding space.
This argues in the sense that, properly rescaled, “depth” plays no role in the benefits of
overparametrization.

Remark 3.6 (Independence w.r.t. the number of data points)
Consider that the input data points are drawn independently from a multivariate gaus-
sian distribution and that the objective data points are all set to 0. Then the condition
in Equation (6) does not depend on the number of data points N .

Indeed, ifXN = (1+xji )
1≤j≤N
1≤i≤d with i.i.d. random variables xji ∼ N (0, 1) and YN = 0 ∈ Rd′×N ,

one has asymptotically almost surely rank(XN ) = d and:

1

1 + d
σmax(XN )2 ∼ σd(XN )2 ∼ 1

d
L(F (W 0) ∼ N.

This independence is an improvement with respect to lots of results ( [19, 18] for example)
but is due to the specific structure of our linear model.

3.2 Local Polyak-Lojasiewicz property

In contrast with classical proofs for the convergence of gradient descent in the optimization
of parametric models, the proof of Theorem 3.1 will here not rely on convexity assumptions
for the loss landscape. In fact, as pointed out in [38], because of overparametrization,
the loss landscape is typically not convex, with a non-discrete infinite set of global minima,
typically a (m−d)-dimensional manifold. Instead, one can rely on a local Polyak-Lojasiewicz
property [39], which is a functional property satisfied by the loss L. This kind of property
is weaker than convexity, but still allows to recover convergence results for the gradient
descent.

Property 3.1 (Local Polyak-Lojasiewicz property)
Consider the loss L : L2([0, 1] ,Rq×q) → R+ defined in Equation (5). Then there exists

9
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strictly positive continuous functionsm,M : R+ → R+ such that for every control parameter
W :

‖∇L(W )‖2 ≥ m(‖W‖L2) [L(W )− L∗] ,
‖∇L(W )‖2 ≤ M(‖W‖L2) [L(W )− L∗] . (7)

We say that L satisfies a local Polyak-Lojasiewicz property.

Note that this property prevents the existence of spurious (bounded) local minima of the
loss function. However it has a local nature as m and M typically become degenerate as the
control parameter W tends towards +∞, which makes this property different from classical
Polyak-Lojasiewicz or Kurdyka-Lojasiewicz type inequalities (see [10]). In particular, in
constrat with strict convexity, it is not sufficient to prove unconditional linear convergence
(see Section 8) of gradient descent.

In the following, considering the Linear-FlowResNet model of Definition 3.1, we show
that Property 3.1 is satisfied by the quadratic loss L defined in Equation (5). We first express
the gradient of the loss with respect to the control parameter W using adjoint sensitivity
method :

Lemma 3.1
The gradient of the loss L defined in Equation (5) w.r.t. the control parameter W is given
by:

∇L(W ) = −PU>, (8)

where the adjoint variable P is given the unique solution of the backward problem:{
P1 = −B>B (U1 − U∗)AXX>A>

Ṗt = −W>t Pt.
(9)

Proof. Introducing the adjoint variable P , the Lagrangian of Problem ERM writes:

L(U,P,W ) =
1

2
‖BU1AX − Y ‖2 +

∫ 1

0
〈Pt, U̇t −WtUt〉dt

= L∗ +
1

2
‖B (U1 − U∗)AX‖2 +

∫ 1

0
〈Pt, U̇t −WtUt〉dt

=
1

2
‖BU1AX − Y ‖2 + [〈Pt, Ut〉]10 −

∫ 1

0

[
〈Ṗt, Ut〉+ 〈PtU>t ,Wt〉

]
dt.

Therefore, adjoint sensitivity theory gives the gradient of the loss w.r.t. W as:

∇L(W ) = ∇WL(U,P,W ) = −PtU>t ,

with P given by extremal condition:

∇PL(U,P,W ) = 0 ⇐⇒

{
P1 = −B>B (U1 − U∗)AXX>A>

Ṗt = −W>t Pt.

The next step consists in exhibiting basic a priori estimates for solutions of the forward
and backward problem of Equations (4) and (9):
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Lemma 3.2
Let U and P be the solutions to the forward and backward problem for the control parameter
W , then for every t ∈ [0, 1]:

√
qe−

∫ t
0 ‖Ws‖ds ≤ ‖Ut‖ ≤

√
qe

∫ 1
t ‖Ws‖ds, (10)

e−
∫ t
0 ‖Ws‖ds ≤ σmin(Ut) ≤ σmax(Ut) ≤ e

∫ t
0 ‖Ws‖ds, (11)

e−
∫ 1
t ‖Ws‖ds‖P1‖ ≤ ‖Pt‖ ≤ e

∫ 1
t ‖Ws‖ds‖P1‖. (12)

Proof. Let us begin with the first inequality. ‖U‖2 is absolutely continuous as is U and
therefore is almost everywhere differentiable with:

d

dt
‖Ut‖2 = 2〈WtUt, Ut〉.

Therefore we have for every t ∈ [0, 1]:

‖Ut‖2 = q + 2

∫ t

0
〈WsUs, Us〉ds

≤ q + 2

∫ t

0
‖Ws‖‖Us‖2ds

≥ q − 2

∫ t

0
‖Ws‖‖Us‖2ds.

Leading to the first line of inequalities using Grönwall lemma both forward and backward
in time. The proof of the third line of inequalities is the same.

For the second line of inequalities, let us consider a vector x ∈ Rq with unit norm. Then
‖Ux‖2 is an absolutely continuous function with derivative :

d

dt
‖Utx‖2 = 2〈WtUtx, Utx〉 ≤ 2‖Wt‖‖Utx‖2.

Therefore using Grönwall lemma leads us to:

‖Utx‖ ≤ e
∫ t
0 ‖Ws‖ds,

which implies the desired upper bound.
For the lower bound, observe that as long as ‖Utx‖2 does not vanish, 1/‖Ux‖2 is abso-

lutely continuous with derivative:

d

dt

[
1

‖Utx‖2

]
= −2〈WtUtx, Utx〉

‖Utx‖4
≤ 2‖Wt‖
‖Utx‖2

.

This leads to:

‖Utx‖−2 ≤ e
∫ t
0 ‖Ws‖ds.

Therefore it never vanishes, giving the result by inverting both terms in the inequality and
taking the infimum over unit vectors x.

Remark 3.7
Note that this second line of inequalities implies that (Ut) is a flow on the space of linear
isomorphisms. This is to be compared with the results of Section 5 where we will consider
a model generating flows of diffeomorphisms of Rd.

11
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We now have enough tools to prove Property 3.1:

Proof of the local PL property. We begin with the upper bound:

‖PtU>t ‖2 ≤ σmax(Ut)
2‖Pt‖2

≤ e2
∫ 1
0 ‖Ws‖ds‖P1‖2

≤ e2‖W‖L2‖P1‖2,

where we used Lemma 3.2 in the second inequality and Cauchy-Schwarz inequality in the
third line.

Then by definition of the backward problem in Equation (9), noting V := B(U1−U∗)AX:

‖P1‖2 = ‖B>V A>X>‖2

≤ σmax(A)2σmax(B)2σmax(X)2‖V ‖2

= 2σmax(A)2σmax(B)2σmax(X)2 [L(W )− L∗] .

Therefore, we proved the desired upper-bound with constant:

M(‖W‖L2) := 2σmax(A)2σmax(B)2σmax(X)2e2‖W‖L2 . (13)

The proof for the lower-bound is the same:

‖PtU>t ‖2 ≥ σmin(Ut)
2‖Pt‖2

≥ e−2‖W‖L2‖P1‖2

≥ e−2‖W‖L2σmin(A)2σmin(B)2σr(X)2 [L(W )− L∗] ,

where in the third inequality we used the fact that if X is of rank r their exists a full rank
matrix X̃ ∈ Rd×r such that XX> = X̃X̃> and σr(X) = σmin(X̃). Therefore, for any matrix
M :

‖MX‖2 = Tr(M>MXX>)

= Tr(M>MX̃X̃>)

= ‖MX̃‖2 ≥ σmin(X)2‖M‖2.

Therefore, we proved the desired lower-bound with constant:

m(‖W‖L2) := 2σmin(A)2σmin(B)2σr(X)2e−2‖W‖L2 . (14)

3.3 Proof of Theorem 3.1

Considering the gradient flow of the loss function L, the lower-bound and the upper-bound
in the local PL property allow the control of both the evolution of the loss and the evolution
of the parameter along the gradient dynamic. Therefore, assuming Property 3.1 is in fact
sufficient to recover the result of Theorem 3.1 for the gradient flow.

However, as it is the way optimization is performed in numerical applications we will
in this section detail the proof of convergence for gradient descent with a discrete step-size
η. In particular, this forces us to show a supplementary smoothness property in order to
ensure that this discrete dynamic is a good approximation of the continuous gradient flow:

12
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Lemma 3.3 (Smoothness)
There exists a positive function C : R+ × R+ → R+, non-decreasing w.r.t. both of its
variables, such that for two control parameters W , W ′ with ‖W‖L2 , ‖W ′‖L2 ≤ R, with a
certain radius R ≥ 0 the following inequality holds:

‖∇L(W )−∇L(W ′)‖L2 ≤ C(R,L(W ))‖W −W ′‖L2 . (15)

Proof. We note U and U ′ the solutions of the forward problem and P, P ′ the solutions
of the backward problem for control parameters W and W ′ respectively. We also note
∆Ut := U ′t − Ut and ∆Pt := P ′t − Pt for every time t ∈ [0, 1].

We have:

d

dt
∆Ut = W ′tU

′
t −WtUt

= W ′t∆Ut + (W ′t −Wt)Ut.

Therefore, as soon as ∆U 6= 0:

d

dt
‖∆Ut‖ =

1

‖∆Ut‖
[
〈W ′t∆Ut,∆Ut〉+ 〈(W ′t −Wt)Ut,∆Ut〉

]
≤ ‖W ′t‖‖∆Ut‖+ σmax(Ut)‖W ′t −Wt‖

≤ ‖W ′t‖‖∆Ut‖+ ‖W ′t −Wt‖e
∫ t
0 ‖W‖.

Then using Grönwall’s inequality:

‖∆Ut‖F ≤ e
∫ t
0 ‖W

′
s‖ds

∫ t

0
‖W ′s −Ws‖e

∫ s
0 (‖Wr‖−‖W ′r‖)drds

≤ e
∫ t
0 (‖Ws‖+‖W ′s‖)ds

∫ t

0
‖W ′s −Ws‖ds

≤ e2R‖W ′ −W‖L2 .

The same idea works for ∆P :

d

dt
∆Pt = −(W ′t)

>∆Pt − (W ′t −Wt)
>Pt.

Therefore:

‖∆Pt‖ ≤ ‖∆P1‖e
∫ 1
t ‖W

′
s‖ds + e

∫ 1
t (‖Ws‖+‖W ′s‖)ds

∫ 1

t
‖W ′s −Ws‖ds.

Then using the initial condition in the backward problem and the bound on ∆U :

‖∆P1‖ = ‖B>B∆U1AXX
>A>‖

≤ σmax(A)2σmax(B)2σmax(X)2‖∆U1‖

≤ σmax(A)2σmax(B)2σmax(X)2e2R

∫ 1

0
‖W ′s −Ws‖ds,

which gives for any time t ∈ [0, 1]:

‖∆Pt‖ ≤ e2R
[
1 + σmax(A)2σmax(B)2σmax(X)2eR

]
‖W ′ −W‖L2 .

13
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Finally recalling the upper-bound on U ′ and P :

σmax(U ′t) ≤ e
∫ t
0 ‖W

′
s‖ds ≤ eR,

‖Pt‖ ≤
√

2σmax(A)σmax(B) [L(W )− L∗]1/2 σmax(X)eR,

one can derive the result as:

‖∇L(W ′)−∇L(W )‖2L2 =

∫ 1

0
‖P ′t(U ′t)> − PtU>t ‖2dt

≤
∫ 1

0
‖Pt(U ′t − Ut)> + (P ′t − Pt)(U ′t)>‖2dt

≤
∫ 1

0
(‖Pt‖‖∆Ut‖+ σmax(Ut)‖∆Pt‖)2 dt

≤ C(R,L(W ))2‖W ′ −W‖2L2 .

Finally, we found found the constant:

C(R,L) :=
√

2e3Rσmax(A)σmax(B)σmax(X) [L− L∗]1/2

+ e3R
(
1 + σmax(A)2σmax(B)2σmax(X)2eR

)
.

As a consequence, ∇L is locally-uniformly Lipshitz, thus the hessian of the loss is defined
almost everywhere and for ‖W‖, ‖W ′‖ ≤ R:

L(W ′)− L(W ) ≤ 〈∇L(W ),W ′ −W 〉L2 +
1

2
C(R,L(W ))‖W ′ −W‖2L2 .

Finally, one can prove Theorem 3.1:

Proof of Theorem 3.1. Consider a gradient descent step size η > 0 whose value is to be
defined. The considered dynamic reads for every discrete time step k ≥ 0:

W k+1 = W k − η∇L(W k)

Assume that the condition of Equation (6) is verified at identity initialization W 0 = 0
for some R ≥ 0. We will prove the result by induction on k ∈ N.

The result trivially holds for k = 0. Then for k ≥ 0, since for every l ≤ k, ‖W l‖L2 ≤ R
and L(W l) ≤ L(W 0):

L(W k+1)− L(W k) ≤ −η‖∇L(W k)‖2L2 +
η2C

2
‖∇L(W k)‖2L2

≤ −η
2
‖∇L(W k)‖2L2

≤ −ηm(R)

2

[
L(W k)− L∗

]
,

where C = C(R,L(W 0)) and we chose η ≤ 1/C. Whence by induction:

L(W k+1)− L∗ ≤ (1− ηm(R)

2
)k+1

[
L(W 0)− L∗

]
14
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which is the desired result considering the form of m(R) in Equation (14).
Moreover:

‖W k+1‖L2 = ‖
k∑
l=0

η∇L(W l)‖L2

≤ η
k∑
l=0

M(R)1/2
[
L(W k)− L∗

]1/2

≤ η
k∑
l=0

M(R)1/2
[
L(W 0)− L∗

]1/2(
1− ηm(R)

2

)l/2
≤ ηM(R)1/2

[
L(W 0)− L∗

]1/2 1

1−
√

1− ηm(R)/2

≤ 4
M(R)1/2

m(R)

[
L(W 0)− L∗

]1/2
,

where we used the inequality 1/(1−
√

1− x) ≤ 2/x for 0 < x ≤ 1.
Then, recalling the form of m(R) and M(R) in Equation (14) and Equation (13), we

recover ‖W k+1‖L2 ≤ R because:

σmax(A)σmax(B)σmax(X)

σmin(A)2σmin(B)2σr(X)2

[
L(W 0)− L∗

]1/2 ≤ Re−3R

4

⇐⇒ 4
M(R)1/2

m(R)

[
L(W 0)− L∗

]1/2 ≤ R,
which is exactly Equation (6), thus concluding the proof.

4 Non-linear Residual Networks

As the network model of the previous section can only generate a linear deformation of the
inputs, it is of limited interest for concrete applications. In this section we will consider
non-linear models, which means that the output is a non-linear transformation of the input.
This is more inline with the way Residual Networks are used in practice. Indeed, in appli-
cations, each layer of a Neural Network includes a non-linear transformation, often applied
component-wise, such as ReLU or Sigmoid. For a L layer ResNet, a generic model writes

F ((W,U);x) = W (L)x(L),

x(l+1) = x(l) +W (l)σ(U (l)x(l)) for l ∈ J0, l − 1K,
x(0) = x,

(16)

where x ∈ Rd is the data input, (W (l))l and (U (l))l is a family of parameters withW (l) ∈ Rd×ml ,
U (l) ∈ Rml×d for 0 ≤ l < L and WL ∈ Rd′×d. σ : R → R is a non-linearity applied
component-wise on vector-valued inputs.

Remark 4.1
The term xl is called a skip connection and the term W lσ(U lxl) is the residual term, which
is here a Multi-Layer Perceptron (MLP) with one hidden layer. Note that in practice, one
can consider a broad variety of transformations as residual terms. Convolutional layers are
for example particularly used for applications in imaging [30].
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We will consider a simplification by only training the second linear layer of each residual
term. This leads us to the following continuous model which corresponds to the infinite
depth limit of the previous one:

Definition 4.1 (Non-linear FlowResNet)
Consider a function ϕ : Rd → Rq. Then for a control parameter W ∈ L2([0, 1] ,Rd×q) and a
data input x ∈ Rd we define the Non-linear FlowResNet model’s output as:

F (W,x) := xt,

where x1 is defined as the time one solution of the forward problem:{
ẋt = Wtϕ(xt)
x0 = x.

(17)

Remark 4.2
One could have defined the continuous model in an other way by choosing to put the matrix-
vector product inside the non-linearity in that manner:

ẋt = ϕ(Wtxt),

or even by using two matrix-vector product placed before and after the non-linearity:

ẋt = Wtϕ(Utxt).

We are aware that this is a considerable restriction of our model as by definition the feature
map ϕ is fixed and non-trainable whereas the addition of a trained hidden layer would have
allowed optimization between a range of different feature maps. However, we motivate our
choice by the fact that in our definition the driving term in the forward ODE Equation (17)
is linear w.r.t. the control parameter which simplifies the analysis. In particular the gradient
of the loss won’t depend on W itself.

As for the linear model we will consider the non-linear model in a supervised learning
setting, trying to solve the following Empirical Risk Minimization problem:

Find W ∗ ∈ arg min
W∈L2([0,1],Rd×q)

L(W ), (ERM)

where the quadratic loss L is defined for a family of input data (xi)1≤i≤N ∈ (Rd)N and a
family of labeled output data (yi)1≤i≤N ∈ (Rd)N as:

L(W ) =
1

2

∑
i

‖F (W,xi)− yi‖2. (18)

4.1 Convergence result for the non-linear model

The problem of convergence of gradient descent towards a global optimizer for a ResNet
model with non-linear residual terms has been addressed by several authors in the literature.
[19, 18] showed convergence of randomly initialized ResNets at a linear rate as long as the
widthm of the intermediary layers is sufficiently big. The same result was also proved by [37]
in a more general setting, relating the proof to the phenomenon of constancy of the Neural
Tangent Kernel [31]. However both works need polynomial or exponential dependency of
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the width m w.r.t. the number of layers (or depth) L suggesting that the result won’t scale
to our continuous model.

Still, we show a convergence result that is similar to the one of the previous section by
considering the following (strong) assumption:

Assumption 4.1 (N -universality)
Let us consider a function ϕ : Rd → Rq. For a family of N data points (xi)1≤i≤N ∈ (Rd)N
we define the kernel matrix K of ϕ at (xi)i by the symmetric block matrix:

K((xi)1≤i≤N ) :=
(
〈ϕ(xi), ϕ(xj)〉Id

)
1≤i,j≤N .

We say that ϕ is N -universal if for every family of N two-by-two disjoint data points
(xi)1≤i≤N their exist constants λ,Λ > 0 such that:

λ ≤ λmin(K) ≤ λmax(K) ≤ Λ,

where λmin and λmax denotes respectively the smallest and the greatest eigenvalue.

Remark 4.3
A necessary condition for ϕ to be N -universal is in particular q ≥ N . Indeed, it needs
(ϕ(xi))1≤i≤N to be independent for every family of two-by-two disjoint points (xi)1≤i≤N .
This shows that, because of the lack of a specific structure on the set of generated defor-
mations such as in the linear case, convergence generally depends on the number of data
points.

On the other hand, Assumption 4.1 can always be ensured by choosing a function ϕ
taking value in a sufficiently high dimensional feature space. More precisely, it can be ensured
by choosing a feature space of dimension q = O(Nd), with N the number of data points and
d their dimension. We recover thereby a result that is similar to the ones already existing
for discrete models [18, 1, 62], a major difference being that because of the continuous form
of our model, the dimension of the feature space does not have to depend one the depth L
of the network.

Indeed, consider the polynomial feature map of degree n:

ϕ :

{
Rd → Rq(d,n)

x 7→ (xα)0≤|α|≤n,

with for every α ∈ Nd, xα = xα1
1 ...xαdd and |α| = α1 + ...+αd. The dimension of the feature

space is therefore given by:

q(d, n) := #{α ∈ Nd | |α| ≤ n} =

n∑
k=0

(
k + d− 1

d− 1

)
= On→+∞(nd).

Then consider a family of N two-by-two disjoint data points (xi)1≤i≤N ∈ (Rd)N . The
positivity of the kernel matrix K is equivalent to the linear independence of the family
(ϕ(xi))1≤i≤N in Rd(α+1). Therefore, consider p1, ..., pN real numbers such that:

p1ϕ(x1) + ...+ pNϕ(xN ) = 0.

Then for every exponent 0 ≤ |α| ≤ n:

p1(x1)α + ...+ pN (xNk )α = 0,
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and by summing linear combinations of this equality, we have that for every multivariate
polynomial P ∈ R [X1, ..., Xd] of degree at most n:

p1P (x1) + ...+ pNP (xN ) = 0.

Because the points are two by disjoints, for each index i ≥ 2 there exists a coordinate ki
such that xiki 6= x1

ki
. Then consider the polynomial of degree N − 1:

P (X1, ...Xd) =
N∏
i=2

(Xki − xiki)
(x1
ki
− xiki)

,

such that P (xi) = 0 for every i ≥ 2, but P (x1) = 1, implying p1 = 0. Choosing n = N − 1
allows to consider such a polynomial and we recover p2 = ... = pN = 0 in the same manner,
i.e. the kernel matrix K is positive definite.

Because it is a corollary of Theorem 5.2 we state the obtained result in an informal
manner:

Theorem 4.1
Suppose that the input data points (xi)1≤i≤N are two-by-two disjoint and that the non-
linear activation function ϕ is N -universal. Then their exist a threshold constant L0 > 0
such that if the loss at identity initialization W 0 := 0 satisfies:

L(W 0) ≤ L0,

then gradient flow (or gradient descent with a sufficiently small step-size) converges towards
0 a zero training loss global optimum with a linear convergence rate.

5 General model : Deep ResNet with RKHS parametrization

In the preceding sections, the forward ODEs Equations (4) and (17) can be viewed as
transport equations driven by a time-dependent vector field which, given the non-linearity
ϕ, belongs to the space V = {v : x ∈ Rd 7→Wϕ(x), W ∈ Rd×q}. Considering the Frobenius
norm on matrices then endows V with a structure of (vector-valued) Reproducing Kernel
Hilbert Space (RKHS) with the scalar-product:

∀v, v′ ∈ V, 〈v, v′〉V = 〈W,W ′〉F .

Note that ϕ is the feature map associate to V and the associated kernel is:

∀x, x′ ∈ Rd K(x, x′) = 〈ϕ(x), ϕ(x′)〉RqId,

which corresponds to V being a RKHS of finite dimension. In that setting, we saw that local
convergence could be ensured as soon as the feature map satisfies Assumption 4.1, requiring
to consider a feature space whose dimension increases (at least linearly) with the number of
data points N . In order to recover a convergence result for arbitrary large N , one therefore
needs to consider as a feature space an infinite dimensional Hilbert space, whose associated
RKHS is then infinite dimensional (see Section 7).

These considerations motivate the introduction of a new (theoretical) model where the
transport vector-field is chosen freely in an abstract, possibly infinite-dimensional, RKHS.
We only imposes for such RKHS to be admissible as defined in Assumption 5.1.
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Definition 5.1 (RKHS-FlowResNet)
Let V be an admissible RKHS of vector-field over Rd. Then for a control parameter
v ∈ L2([0, 1] , V ) and a data input x ∈ Rd, the model RKHS-FlowResNet’s output is defined
as:

F (v, x) := x1,

where x1 is the time-one solution of the following forward problem:{
ẋt = vt(xt)
x0 = x.

(19)

Remark 5.1
In this model, the space of control parameters is L2([0, 1] , V ), the space of squared integrable
time-dependent vector-fields of V , endowed with the hilbertian structure:

∀v, v′ ∈ L2([0, 1] , V ), 〈v, v′〉L2 =

∫ 1

0
〈v, v′〉V dt.

As before we will consider this model in a supervised learning setting. For families of
data inputs (xi)1≤i≤N ∈ (Rd)N and data outputs (yi)1≤i≤N ∈ (Rd)N we will address the
question of convergence of gradient descent (or gradient flow) for the minimization of the
Empirical Risk associated with the quadratic loss:

Find v∗ ∈ arg min
v∈L2([0,1],V )

1

2

N∑
i=1

‖F (v;xi)− yi‖2. (ERM)

Remark 5.2
As for the linear model in Section 3, one could consider to put fixed dimension expansion
matrices A,B at the input and the output of our model, probably leading to similar results
where the condition for convergence can be enforced by embedding the data in sufficiently
high dimension. However, as it does not change the proof and for the sake of simplicity we
chose not to do so.

In the case where A is fixed and B is trained, [44] used a similar inductive proof to
show uniform conditioning of the NTK and convergence at a linear rate for sufficiently wide
networks. Such a proof can be easily adapted to our model with similar results.

5.1 Right invariant metric and flow of diffeomorphisms

Using a parametrization of the residual terms of our model with an abstract RKHS opens
an interesting connection with mathematical tools concerning the study of groups of diffeo-
morphisms and already used for solving Image Registration problems [59, 8].

From now on we will assume that the following regularity assumption is satisfied by the
RKHS V .

Assumption 5.1 (Admissible RKHS)
Let V be an RKHS of vector-field over Rd. We say that V is admissible if it can be
continuously embedded in W 1,∞(Rd,Rd), the space of bounded vector-fields with bounded
differential, i.e. there exist a constant κ > 0 such that:

∀v ∈ V, ‖v‖∞ + ‖dv‖∞ ≤ κ‖v‖V .

We will note the embedding as V ↪→W 1,∞.
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Then the solution (xt)t∈[0,1] of the forward problem in Equation (19) can be interpreted
as the flow of the time-varying vector field v starting from x0 = x. General theory for the
well-posedness of such transport equations has been broadly studied (see [2] for a review).
In our case the admissibility assumption V ↪→ W 1,∞ imposes to only work with “regular
enough” vector-fields:

Property 5.1
Let v ∈ L2([0, 1] , V ). Then there exists a unique flow map Φv : [0, 1]×Rd → Rd so that for
any x ∈ Rd, Φv

t (x) is the unique solution of the ODE:{
d
dtΦ

v
t (x) = vt(Φ

v
t (x))

Φv
0(x) = x.

(20)

Therefore, taking the point of view of the global deformation of the space, we can restate
our model in a new way. Setting the control parameter v ∈ L2([0, 1] , V ) the output of the
RKHS-FlowResNet model F of Definition 5.1 is given, for any input x ∈ Rd, by:

F (v, x) = Φv
1(x),

with Φv provided by Property 5.1. In fact, in this setting, the ODE defining Φv can even
be given a rigorous meaning without taking its evaluation into consideration. We will here
simply note that Φv formally satisfies:{

d
dtΦ

v = vt ◦ Φv
t

Φv
0 = Id.

That is, Φv is the time-one flow of the time-varying vector field v.
Considering the set of time one flows Φv

1 for v ∈ V :

GV = {Φv
1 | ∂tΦv

t = vt ◦ Φv
t , Φv

0 = Id, v ∈ L2([0, 1] , V )},

A. Trouvé showed this is a group of C1-diffeomorphisms for the left-action by composition, V
being its set of infinitesimal generators [53]. Furthermore, the scalar structure of V provides
GV with a local metric for which it is invariant by the right-action by composition:

∀v, v′ ∈ V, ∀Φ ∈ GV , 〈v ◦ Φ, v′ ◦ Φ〉TΦGV = 〈v, v′〉TIdGV = 〈v, v′〉V .

The associated right-invariant metric structure is:

∀Φ1,Φ0 ∈ GV , d(Φ1,Φ0)2 = d(Φ1 ◦ Φ−1
0 , Id)2 = inf{

∫ 1

0
‖vt‖2V dt | Φ1 = Φv

1 ◦ Φ0}.

In particular, GV is proven to be complete for this metric [53, 59].
The work of [11] gives a tighter analysis when the RKHS belongs to the class of Sobolev

spaces Hs. In this case, the admissibility assumption imposes s > d/2 + 1 and the flow map
belongs to the space of Sobolev diffeomorphisms Ds(Rd) defined as:

Ds(Rd) = {Φ ∈ Id+Hs | Φ bijective, Φ−1 ∈ Id+Hs}
= {Φ ∈ Id+Hs | Φ ∈ Diff1(Rd)}
= {Φ ∈ Id+Hs | det(DΦ(x)) > 0, ∀x ∈ Rd}.

(21)
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[11] proves the equivalence of these definitions and proves that the space Ds can be provided
with a structure of Hilbert manifold. This is an improvement w.r.t. the work of Trouvé [53]
as it is shown that Ds is geodesically complete for the right-invariant metric in the sense
that there always exists a minimizing geodesic between two diffeomorphisms in the same
connected component.

Remark 5.3
Recall that the considered manifold Ds is of infinite dimension. Thus the Hopf-Rinow the-
orem does not apply and there is no equivalence between metric and geodesic completeness
(see [23]).

Finally, the following result concerning the regularity of the flow map will be useful:

Theorem 5.1 (Theorem 4.4 of [11])
Let s > d/2 + 1 and v ∈ L2([0, 1] , Hs). Then v has a Ds-valued flow Φv ∈ C([0, 1] ,Ds(Rd)).
Moreover, the flow map:

Fl :

{
L2([0, 1] , Hs) → C([0, 1] ,Ds(Rd))

v 7→ Φv

is continuous.

5.2 Convergence results

We will consider in the following a fixed admissible RKHS V with kernel K. As in the non-
linear case an other universality assumption is needed in order to recover a local-convergence
property:

Assumption 5.2 (Universality of V )
We say that the RKHS V is universal if for every family of two-by-two disjoint points
(xi)1≤i≤N the kernel matrix K defined by block as:

K = (K(xi, xj))i,j

is positive definite. We will further assume that there exists constants λ,Λ > 0, λ non-
increasing w.r.t. mini,j ‖xi − xj‖, such that:

λ( min
1≤i,j≤N

‖xi − xj‖) ≤ λmin(K) ≤ λmax(K) ≤ Λ.

An equivalent definition is that for every family of vector (pi)1≤i≤N there exists some
v ∈ V such that:

∀i ∈ J1, NK, v(xi) = pi.

Remark 5.4
This definition forces V to be infinite dimensional. However a broad class of commonly
used kernels satisfy this assumption, such as Gaussian kernel, Laplacian kernels, Sobolev
kernels, ...

Assuming the universality assumption is satisfied, we prove that a local PL property
is satisfied for the Empirical Risk of Problem ERM with the RKHS-FlowResNet model
of Definition 5.1:
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Property 5.2 (Local Polyak-Lojasiewicz property)
Assume that the RKHS V is admissible and universal. Then there exists positive functions
m,M : R+ → R∗+ such that for every control parameter v ∈ L2([0, 1] , V ) it holds:

‖∇L(v)‖L2 ≤ M(‖v‖L2)L(v),
‖∇L(v)‖L2 ≥ m(‖v‖L2)L(v).

(22)

Using the same technique as in the linear case (c.f. [38]), the local PL property allows
to prove local convergence of the gradient flow starting from identity initialization:

Theorem 5.2 (Local convergence of the gradient flow)
Assume that the RKHS V is admissible and universal. Assume furthermore that there exists
a radius R > 0 satisfying at identity initialization v0 := 0:

√
L(v0) ≤

√
m(R)

M(R)
R, (23)

where m,M are the constants of Property 5.2.
Then the gradient flow starting at v0 converges towards a global optimum of the loss

function with a linear convergence rate. More precisely for every time τ ≥ 0 of the gradient
flow:

L(vτ ) ≤ e−c(R)τL(v0 = 0).

Moreover the control parameter is bounded by R along the flow:

‖vτ‖L2 ≤ R, ∀τ ≥ 0.

Remark 5.5
To prove the same result for a discrete gradient descent requires an improved regularity of
the loss and in particular an upper-bound on the spectral norm of its Hessian. Therefore one
would need a stronger regularity assumption on V , such as for example V ↪→W 2,∞(Rd,Rd).

5.3 Proof of Property 5.2

For x, p ∈ Rd we will use the notation δpx ∈ V ∗ for the linear form consisting of the scalar
product between p and the vector field evaluated at x:

∀v ∈ V, 〈δpx, v〉 = 〈p, v(x)〉.

By abuse of notation, K will denote both the kernel associated to V and the isometry
K : V ∗ → V , such that for every x, p ∈ Rd:

K ∗ δpx = K(., x)p.

The proof of Property 5.2 will be detailed into several lemmas, the first one expresses
the form of the gradient for the quadratic loss associated to Problem ERM.

Lemma 5.1
Consider two input and objective point clouds (xi)1≤i≤N and (yi)1≤i≤N and the square loss
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associated to Problem ERM. Then for a control parameter v ∈ L2([0, 1] , V ) the gradient of
the loss reads:

∇L(v) = −
N∑
i=1

K ∗ δp
i

xi
= −

N∑
i=1

K(., xi)pi, (24)

where the adjoint variables pi are the time-one solutions of the backward problem:{
ṗit = −Dvt(xit)>pit
pi1 = yi − xi1.

(25)

Proof. The proof relies on the adjoint sensitivity method. The Lagrangian of the problem
is given by:

L((xi), (pi), v) =

N∑
i=1

(
1

2
‖xi1 − yi‖2 +

∫ 1

0
〈pit, ẋit − vt(xit)〉dt

)

=
N∑
i=1

(
1

2
‖xi1 − yi‖2 +

[
〈pit, xit〉

]1
0
−
∫ 1

0

[
〈ṗit, xit〉+ 〈pit, vt(xit)〉

]
dt

)
.

Then Equation (25) is obtained by satisfying the first order condition w.r.t. the x
coordinates:

∇xiL = 0,

implying: {
ṗit = −Dvt(xit)>pit
pi1 = yi − xi1.

Finally, Equation (24) is obtained by differentiating w.r.t. v:

∇L = ∇vL = −
N∑
i=1

K ∗ δp
i

xi
.

The second lemma gives a geometric control on the deformations generated by the flow
of a control parameter v:

Lemma 5.2
Let v ∈ L2([0, 1] , V ) and let Φv be the associated flow of diffeomorphisms. Then for every
time 0 ≤ t ≤ 1:

‖DΦv
t ‖∞, ‖(DΦv

t )
−1‖∞ ≤ eκ‖v‖L2 ,

where the norms are operator / spectral norms.
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Proof. By definition of the flow Φv one has for every x ∈ Rd and every time t:

d

dt
Φv
t (x) = vt(Φ

v
t (x)).

Differentiating this inequality with respect to x gives:

d

dt
DΦv

t (x) = Dvt(Φ
v
t (x))DΦv

t (x).

Consider a unit vector z ∈ Sd−1:

d

dt
‖DΦv

t (x)z‖2 = 2〈Dvt(Φv
t (x))DΦv

t (x)z,DΦv
t (x)z〉

≤ 2‖Dvt‖∞‖DΦv
t (x)z‖2

≤ 2κ‖vt‖V ‖DΦv
t (x)z‖2,

where we used the embedding V ↪→W 1,∞ in the last inequality. Using Grönwall inequality
one deduces:

‖DΦv
t (x)z‖2 ≤ ‖DΦv

0(x)z‖2e2κ
∫ t
0 ‖vs‖V ds ≤ e2κ‖v‖L2 .

Taking the supremum w.r.t. z ∈ Sd−1 and then x ∈ Rd gives the desired upper-bound on
‖DΦv

t ‖∞.
For the upper-bound on ‖(DΦv

t )
−1‖∞, one can consider a unit vector z ∈ Sd−1 and write

as long as ‖DΦv
t (x)z‖ > 0:

d

dt
‖DΦv

t (x)z‖−2 = 2‖DΦv
t (x)z‖−4〈Dvt(Φv

t (x))DΦv
t (x)z,DΦv

t (x)z〉

≤ 2κ‖vt‖V ‖DΦv
t (x)z‖−2.

Therefore ‖DΦv
t (x)z‖ > 0 for every t and furthermore taking the infimum w.r.t. z ∈ Sd−1:

σmin(DΦv
t (x)) ≥ e−κ‖v‖L2 ,

which gives the result by inverting DΦv
t and taking the supremum w.r.t. x ∈ Rd.

A consequence is that, for any x1, x2 ∈ Rd and any t ∈ [0, 1], the distance between
Φv
t (x

1) and Φv
t (x

2) is being controlled by:

‖x1 − x2‖e−κ‖v‖L2 ≤ ‖Φv
t (x

1)− Φv
t (x

2)‖ ≤ ‖x1 − x2‖e+κ‖v‖L2 .

For a point cloud (xi)1≤i≤N , introducing, for every t ∈ [0, 1], mt := mini,j ‖Φv
t (x

i)−Φv
t (x

j)‖,
we have:

mt ≥ m0e
−κ‖v‖L2 .

Proof of the local PL property. We will note x, p for any pair of data point and adjoint vari-
able solution of the forward and backward problem respectively.
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First, notice that it is possible to control the evolution of the adjoint variable p. For
t ∈ [0, 1]:

d

dt
‖pt‖2 = −2〈Dvt(xt)>pt, pt〉

≤ 2κ‖vt‖V ‖pt‖2

≥ −2κ‖vt‖V ‖pt‖2,

which gives:

‖p1‖2e−2κ‖v‖L2 ≤ ‖pt‖2 ≤ ‖p1‖2e2κ‖v‖L2 .

Then considering the set of trajectories (xit) we can consider for every time t ∈ [0, 1] the
kernel matrix Kt := (K(xit, x

j
t ))i,j . We already have:

min
1≤i,j≤N

‖xit − x
j
t‖ ≥ e−κ‖v‖L2 min

1≤i,j≤N
‖xi0 − x

j
0‖.

Therefore, because λ is non-increasing and Λ is a constant, along the trajectories it holds:

λ(m0e
−κ‖v‖L2 ) ≤ λmin(Kt) ≤ λmax(Kt) ≤ Λ.

Using properties of the reproducing kernel and considering the form of the gradient
in Equation (24), this gives for every time t ∈ [0, 1]:

‖∇L(v)t‖2V = ‖
N∑
i=1

K(., xit)p
i
t‖2V =

∑
1≤i,j≤N

(pit)
>K(xit, x

j
t )p

j
t

= p>t Ktpt

≤ Λ‖pt‖2

≥ λ(m0e
−κ‖v‖L2 )‖pt‖2,

where we use the notation p := (pi)1≤i≤N ∈ RNd for the stacked vectors. This gives the
result using the control on ‖pt‖2 and the initial condition:

‖p1‖2 =

N∑
i=1

‖pi1‖ = 2L(v).

We found for the constants:

M(‖v‖L2) := 2Λe2κ‖v‖L2 ,

m(‖v‖L2) := 2λ(m0e
−κ‖v‖L2 )e−2κ‖v‖L2 ,

with m0 = mini,j ‖xi − xj‖.

Remark 5.6
Like for the linear model, the bounding function m and M allow to precisely define a
threshold for the transition towards a linear regime.

However, in contrast with the linear model, these functions are here hard to explicit and
should depend both on the chosen kernel K and on the number of data points N .
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6 A generative modeling perspective

We considered in the previous sections a finite dimensional supervised learning setting where
the action of V is defined on a finite number of data points N . We saw that in this setting the
gradient flow could converge towards a global minima of the Empirical Risk L, assuming
a certain condition is satisfied at the initialization. In particular, this condition should
generally depend on the number of data points N , raising the question of the behavior of
our model as N tends towards infinity. In order to address this problem we took interest
in the limiting model where V acts on functional spaces by transporting densities. The
associated supervised learning problem is a density fitting problem which is addressed in
the Machine Learning literature by Normalizing Flows models [33], with applications in
generative modeling.

We will give here rather informal definitions, the precise definitions of the considered
spaces depending on the considered problem.

6.1 Push-forward action and problem setting

Let U be a real differentiable manifold of dimension d andM(U) be a space of measures on
U . Then for a diffeomorphism Φ of U , one defines his push-forward action onM(U) as:

∀µ ∈M(U), ∀f test function, 〈Φ#µ, f〉 = 〈µ, f ◦ Φ〉.

For a control parameter v ∈ L2([0, 1] , V ) such that Φ = Φv
1, the associated infinitesimal

action writes as the continuity equation:{
∂tµt +∇ · (µtvt) = 0

µ0 = µ.
(26)

This is the forward problem for the model defined as F (v, µ) := (Φv
1)#µ.

The corresponding backward problem is a transport equation on the space of test func-
tions: {

∂tIt + 〈vt,∇It〉 = 0
I1 = −∂`(µ1),

(27)

where ` is the loss of interest on the space of measures, classical examples being, among
others, the relative entropy or the squared Wasserstein distance.

We will thus consider the optimization problem associated to the minimization of the
loss L(v) = `(F (v, µ)).

Property 6.1
Consider a loss functional ` on the space of measures. Then the gradient of L w.r.t. v writes:

∀v ∈ L2([0, 1] , V ), ∇L(v) = K ∗ ∂L(v) = −K ∗ (µ∇I), (28)

with I the solution of Equation (27) and K the kernel function associated to the RKHS V .

Proof. The Lagrangian of the problem is defined as:

L(µ, I, v) = `(µ1) +

∫ 1

0
〈∂tµt −∇ · (µtvt), It〉dt

= `(µ1) + [〈µt, It〉]10 −
∫ 1

0

[
〈µt, ∂tIt〉+

∫
U
〈vt,∇It〉dµt

]
dt.
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Then Equation (27) comes from the first order condition ∂µL = 0 and the gradient in Equa-
tion (28) comes from:

∇L = ∇vL = K ∗ (µ∇I),

with the notation µ∇I ∈ V ∗ standing for the linear form on V :

〈µ∇I, v〉 =

∫
U
〈v,∇I〉dµ.

6.2 Well-posedness of the continuity equation and regularity estimates

Equation (26) expresses the transport of the density µ along the flow of the time-varying
vector-field v. There are many works in the literature addressing the problem of well-
posedness of such so-called continuity equations, even with minimal regularity assumptions
on v [2]. However, in the Sobolev setting V = Hs with s > d/2+1, regularity Assumption 5.1
is satisfied and, recalling Property 5.1, we are provided with a flow map Φ which gives simple
representation formulas:

Property 6.2
Let µ0 be an input measure on Rd, then the unique solution of transport Equation (26) with
initial data µ0 is given by:

µt = (Φt)#µ0,

with Φ the flow map corresponding to v and given by Property 5.1.
The same kind of representation formula holds for a sufficiently regular scalar function

I0, for example I0 ∈W 1,∞. The unique solution to Equation (27) is given by:

It = I0 ◦ Φ−1
t .

This property gives in particular an explicit formula in the case where µ0 is absolutely
continuous with respect to the Lebesgue measure L, with density ρ0. Then µt is also
absolutely continuous w.r.t. L for every time t ∈ [0, 1], with density:

ρt =
∣∣D(Φ−1

t )
∣∣ ρ0 ◦ Φ−1

t .

The following lemmas give control over the Hs regularity of the solutions:

Lemma 6.1 (Lemma 2.2 in [11])
Let s > d/2 + 1 and M,C > 0. Then there exists a constant Cs(M,C) such that for every
Φ ∈ Ds(Rd) satisfying:

inf
x∈Rd

det(DΦ(x)) > M and ‖Φ− Id‖Hs < C,

and every f ∈ Hs, we have:

‖f ◦ Φ‖Hs ≤ Cs(M,C)‖f‖Hs .
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Lemma 6.2
Let s > d/2. Then the product map defined as:

Hs ×Hs−1 → Hs−1

(f, g) 7→ (fg : x 7→ f(x)g(x))
,

is a well-defined, bilinear continuous map. That is, for every f ∈ Hs, g ∈ Hs−1:

‖fg‖Hs−1 ≤ C‖f‖Hs‖g‖Hs−1 .

Remark 6.1
In the following, for a Hilbert spaceH we will use the shortcut notation L2(H) = L2([0, 1] ,H).
When the considered Hilbert space is obvious we will not write it.

Also the dependency on ‖v‖L2 will always be written C(‖v‖L2) for upper-bounds and
c(‖v‖L2) for lower-bounds. Therefore, be aware that the precise value of these constants can
change between two equations.

These two lemmas allow to derive a regularity result for the gradient of the loss L in our
optimization problem:

Property 6.3 (Continuity of the gradient)
Let the initial measure µ0 be absolutely continuous w.r.t. the Lebesgue measure with density
ρ0 ∈ Hs, s > d/2 + 1, and assume that the loss functional ` has a continuous differential
∂` : Hs−1 → Hs−1. Then there exists a constant C(‖v‖L2) such that for every control
parameter v ∈ L2([0, 1] , Hs):

‖∂L(v)‖L2(Hs−2) ≤ C(‖v‖L2)‖ρ0‖Hs .

Proof. Because ρ0 is sufficiently regular, one can use the representation formula of Prop-
erty 6.2 to get for every t ∈ [0, 1]:

µt = ρtdL with ρt =
∣∣D(Φ−1

t )
∣∣ ρ0 ◦ ϕ−1

t .

Thus using Lemmas 6.1 and 6.2 one can show that there exists a constant C(Φt) such that:

‖ρt‖Hs−1 ≤ C(Φt)‖ρ0‖Hs .

By using the continuity of the flow in Theorem 5.1 one can choose to express the dependency
over Φt as a dependency over ‖v‖L2 . Thus:

‖ρt‖Hs−1 ≤ C(‖v‖L2)‖ρ0‖Hs .

Using the assumption that ∂` is continuous we have:

‖I1‖Hs−1 ≤ C ′‖ρ1‖Hs−1 ≤ C(‖v‖L2)‖ρ0‖H
s
.

Then using using the representation formula for the solution of the backward equation and
the continuity of the composition gives:

‖It‖Hs−1 ≤ C(‖v‖L2)‖ρ0‖Hs .

Finally, using continuity of the product, we obtain the result:

‖∂L(v)‖L2(Hs−2) = ‖ρ∇I‖Hs−2 ≤ C(‖v‖L2)‖ρ0‖Hs .

28



Research Internship Report September 2021

6.3 L2 distance on the flat-torus

In order to have good equivalence properties between the different considered functional
spaces, we choose to consider densities defined on a compact manifold such as the d-
dimensional flat torus Td = Rd/Zd. We will consider here a L2 distance for the loss func-
tional:

∀ρ ∈ Hs(Td), `(ρ) =
1

2
‖ρ− ρ∗‖2L2(Td),

where ρ∗ ∈ Hs(Td) is the objective density to fit. Note that in particular ` admits a
continuous differential ∂` : ρ 7→ (ρ− ρ∗).

In this setting, local PL properties (of a weaker form) can be obtained under mild
regularity conditions:

Property 6.4 (Local Kurdyka-Lojasiewicz property)
Let s > d/2+1. Assume µ0 admits a density ρ0 ∈ Hs with respect to the Lebesgue measure,
that the objective density ρ∗ is in Hs and that ρ0 is uniformly lower-bounded on Td. Then
there exist parameter depending constants C(‖v‖L2) and c(‖v‖L2) as well as some λ, µ > 0
such that for every control parameter v ∈ L2((0, 1] , Hs):

‖∇L(v)‖2L2 ≤ C(‖v‖L2)L(v)1−µ,

‖∇L(v)‖2L2 ≥ c(‖v‖L2)L(v)1+λ.
(29)

These are called local Kurdyka-Lojasiewicz inequalities [10, 34].

Proof. Part 1 : lower-bound
Using the results of Equation (28) and Property 6.3 we have that for every time τ ≥ 0

along the gradient flow:

∂L(v)t = ρt∇It ∈ Hs−2.

Then thanks to Gagliardo-Nirenberg interpolation inequalities (or using Parseval formula
and Hölder inequality):

‖ρ∇I‖L2 ≤ ‖ρ∇I‖
s−2
2s−2

H−s ‖ρ∇I‖
s

2s−2

Hs−2 .

Thus setting λ = 1 + 2/(s− 2):

‖∂L(v)‖2V ∗ = ‖ρ∇I‖2H−s ≥ ‖ρ∇I‖
2(1+λ)
L2 ‖ρ∇I‖−4(s−1)/s

Hs−2

≥ c(‖v‖L2 , ‖ρ0‖Hs)‖ρ∇I‖2(1+λ)
L2

≥ c(‖v‖L2 , ‖ρ0‖Hs)‖∇I‖2(1+λ)
L2 inf

Td
ρ2+2λ,

where the second inequality comes from the the upper-bound over ‖ρ∇I‖Hs−2 in Prop-
erty 6.3. Thus, because ρ0 is uniformly lower-bounded by m > 0 and thanks to the repre-
sentation formula ρt = |D(Φt)

−1|ρ0 ◦ Φ−1
t , we have for every time t ∈ [0, 1]:

inf
Td
ρt ≥ me−κ‖v‖L2 = c(‖v‖L2).
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Then using Poincaré inequality on Td, there exists a constant c such that:

‖∇I‖2H−s ≥ c‖I‖
2
L2 ,

which gives, by recalling that It = I1 ◦ Φ1 ◦ Φ−1
t and by making a change of variables:

‖It‖L2 ≥ c(‖v‖L2)‖I1‖L2

= c(‖v‖L2)L(v)1/2,

so that finally:

‖∂L(v)‖2V ∗ ≥ c(‖v‖L2)L(v)1+λ.

Part 2 : upper-bound
We do not detail the proof for the upper-bound which uses similar arguments.

Note that the local KL inequalities of Property 6.4 guarantee the absence of spurious
local minima as well as the convergence of the gradient flow towards a global minima for
bounded dynamics. Indeed assume one has uniformly c(‖vτ‖L2) ≥ c > 0 for every τ ≥ 0,
then:

d

dτ
L(vτ ) = −‖∇L(vτ )‖2L2 ≤ −cL(v)1+λ,

so that for every τ ≥ 0:

L(vτ ) ≤
[
L(v0)−λ + λcτ

]−1/λ
−−−−→
τ→+∞

0.

However, an inductive proof can no longer guarantee the local convergence of the gradient
flow. Indeed assume one has uniformly C(‖vτ‖L2) ≤ C < +∞, the control over ‖vτ‖L2

becomes:

‖vτ‖L2 ≤ ‖v0‖L2 +

∫ τ

0
‖vs‖L2ds

≤ ‖v0‖L2 +

∫ τ

0
C1/2

[
L(v0)−λ + λcs

]−(1−µ)/2λ
ds.

Therefore one would need λ < 1/2 in order for the r.h.s. to be bounded, and here
λ = 1 + 2/(s− 2) > 1.

Nevertheless, this is an expected behaviour. Indeed, consider an objective density such
that ρ∗ = 0 on an open set U ⊂ Td with non-empty interior. Then the lower-bound
inf ρ1 ≥ e−K‖v‖L2 inf ρ0 imposes ‖vτ‖L2 → +∞ at convergence: the generated deformation
Φ needs to tear the space in order to make mass disappear on U which behavior can only
be obtained in the limit where Φ is no-longer a diffeomorhism.

This supports the fact that the weakening of the PL property into a KL property is
inherent to the infinite dimensional setting.
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6.4 Relative entropy on the flat torus

We consider as loss functional the relative entropy defined for every ρ ∈ Hs by:

`(ρ) = H(ρ||ρ∗) =

{ ∫
Td

dρ
dρ∗ log( dρdρ∗ )dρ

∗ if dρ << dρ∗

+∞ otherwise,

where ρ∗ is the objective density. Then the functional derivative of ` is given by:

∂`(ρ) = log(
dρ

dρ∗
),

that we will assume to be continuous, at least on {ρ ∈ Hs|dρ << dρ∗}.
We will make the following assumption on the objective density ρ∗:

Assumption 6.1 (Log-Sobolev inequality (see [4]))
We say that ρ∗ satisfies the log-sobolev inequality if for every density ρ:∫

Td
ρ log(ρ/ρ∗)dx ≤ 2

∫
Td

∣∣∣∇√ρ/ρ∗∣∣∣2 ρ∗dx.
Or in terms of relative entropy H and relative information I:

H(ρ||ρ∗) ≤ 1

2
I(ρ||ρ∗).

Remark 6.2
Note that we could consider densities defined on any real finite-dimensional compact mani-
fold where log-sobolev inequality results exist.

As for the L2 loss, one can show the existence of local KL-type inequalities for the relative
entropy loss, ensuring the absence of spurious local minima:

Property 6.5 (Local KL property)
Let s > d/2 + 1. Let ρ0 ∈ Hs be uniformly upper- and lower-bounded on Td and let
ρ∗ ∈ Hs be an objective density satisfying Assumption 6.1. Then, considering the relative
entropy loss `, there exists a positive constant c(‖v‖L2) such that for every control parameter
v ∈ L2([0, 1] , Hs):

‖∇L(v)‖L2 ≥ c(‖v‖L2)L(v)1+λ.

Proof. As in the proof for the L2 loss, Theorem 5.1 of continuity of the flow, Property 6.3
of continuity of the gradient and continuity of ∂` allow to control the following applications:

v ∈ L2([0, 1] , Hs) 7→ (ρt)t ∈ C([0, 1] , Hs),

v ∈ L2([0, 1] , Hs) 7→ (It)t ∈ C([0, 1] , Hs),

v ∈ L2([0, 1] , Hs) 7→ (ρt∇It)t ∈ C([0, 1] , Hs),

That is, there exists a constant C(‖v‖L2) such that for every v ∈ L2([0, 1] , Hs):

‖ρt‖Hs , ‖It‖Hs , ‖ρt∇It‖ ≤ C(‖v‖L2).
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Then by Gagliardo-Nirenberg inequalities:

‖ρ∇I‖H−s ≥ ‖ρ∇I‖
2s−1
s−1

L2 ‖ρ∇I‖
−s
s−1

Hs−1

≥ c(‖v‖L2)‖ρ∇I‖1+λ
L2 ,

with λ = 1 + 1/(s− 1).
Then, as ρ0 is uniformly lower-bounded on Td, one can integrate its lower bound in the

constant c:

‖ρ∇I‖H−s ≥ c(‖v‖L2)‖∇I‖1+λ
L2 .

Then writing It = I1 ◦ ϕ1 ◦ ϕ−1
t , and making a change of variables gives:

‖∇It‖L2 = ‖d(ϕ1 ◦ ϕ−1
t )T∇I1 ◦ ϕ1 ◦ ϕ−1

t ‖L2 ≥ c(‖v‖L2)‖∇I1‖L2 .

Finally, Assumption 6.1 gives the result by using the initial condition for the backward
problem which writes:

1

2
‖∇I1‖2L2 =

1

2

∫
|∇ log(ρ1/ρ

∗)|2 dx

= 2

∫ ∣∣∣∇√ρ1/ρ∗
∣∣∣2 ρ∗dx

≥
∫
ρ1 log(ρ1/ρ

∗)dx

= `(ρ1).

6.5 Linearized dynamic and diffusion phenomenons along the gradient
flow

Taking a step back, we would like to offer here an informal discussion, making a link between
our problem and the study of a certain class of diffusion PDEs.

The results presented in this section as well as the one presented in previous sections are
not really satisfying as they do not allow to show global convergence of the gradient flow.
A phenomenon which is well-observed in practice. This difficulty can be partially explained
by the fact that two distinct dynamics are interacting:

� the model flow dynamic : given by the forward equation, with time t ∈ [0, 1],

� the gradient flow dynamic : given by the optimization method, with time τ ∈ [0,+∞).

A first step towards a proof of convergence would thus be to understand the impact of small
variations of the control parameter v, given by the evolution along the gradient flow, on the
deformed object ρ through the forward equation (recall Section 2).

More precisely, consider our density transport model Equation (26). For flow time t and
gradient step time τ we will note the variations of the control δvt = ∂τv

τ
t = −∇L(vτ )t and

the induced variation of the density δρt = ∂ρτt . Then differentiating Equation (26) w.r.t. τ :{
∂tδρ+∇ · (δρv) +∇ · (ρδv) = 0

δρ0 = 0.
(30)
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Equation (30) is a transport equation with non-zero source term ft := −∇ · (ρtδvt).
Putting aside regularity assumptions, its solution can be expressed for every time t ∈ [0, 1]
as:

|DΦt|δρt ◦ Φt =

∫ t

0
|DΦs|fs ◦ ϕsds, (31)

with Φ = Φv the flow generated by v.
Equation (31) is rather complicated to analyse. However, at initialization τ = 0 we have

v0 = 0, thus Φt = Id, ρt = ρ, It = ∂`(ρ) and the equation simplifies in:

δρ1 = −∇ · (ρ∇L(v)) (32)
= ∇ · (ρK ∗ (ρ∇∂`(ρ))).

A classical technique to analyse the asymptotic behaviour of such equations is to refor-
mulate them in terms of gradient flows for some energy functional in the Wasserstein space
of probability measures [3]. Assuming ρ∗ = 1 on the flat torus and K = δ0 (that is V = L2

which is not a RKHS):

� For the L2 loss `(ρ) = 1
2‖ρ− 1‖2, Equation (32) writes:

∂tρ = ∇ · (ρ2∇ρ) =
1

3
∆(ρ3),

� For the relative-entropy loss `(ρ) = H(ρ||1), Equation (32) becomes:

∂tρ = ∇ · (ρ∇ρ) =
1

2
∆(ρ2),

both of which are known to belong to the class of Porous Medium Equations. Convergence
towards ρ∗ = 1 as been analyzed via optimal transport in the pioneering work of [45] and
numerical approximation properties of the solutions for non-trivial gaussian kernel K = Gσ
as been studied in [36] (see also [55]). The convergence proof relies on functional inequalities
which can be interpreted in terms of convexity of the energy in the Wasserstein space [46,
26, 12], as well as in terms of Polyak-Lojasiewicz type inequalities [9].

Remark 6.3
Note that recently, several works such as [41, 40, 32] but also [16] or more informally [25] show
convergence of the training dynamic of Neural Networks towards the Wasserstein gradient
flow of the loss in the mean field limit. However, in contrast with our model of interest, all
those works are concerned with shallow networks (with few layers) which they study in the
limit of infinite width in order to overcome the lack of convexity.

However, Equation (32) can’t fit in this framework as one has to consider a sufficiently
smooth kernel K in order to satisfy the admissibility Assumption 5.1. That makes it impos-
sible to interpret the term ∇· (ρK ∗ (ρ∇`(ρ))) as the gradient of an energy functional in the
Wasserstein space. Instead, one should directly consider Equation (32) as the gradient of `
for the right invariant metric induced by the action of V . We would like to stress out that,
in contrast with Wasserstein gradient flows, we lack of theoretical results on the asymptotic
behavior of the solutions of such PDEs. Their study could therefore be a first step towards
a better understanding of deep ResNets’ training dynamic.
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7 Scaling to higher dimensions vector field : the problem of
RKHS parametrization

In the preceding sections, our model (Definition 5.1) was described by the action of a control
parameter v belonging to an abstract RKHS V . In numerical applications, such spaces are
described by their kernel function K and with the helps of the representation theorem,
allowing to write:

v =
S∑
s=1

K(., zs)ps,

for some (zs)1≤S≤S , (p
s)1≤s≤S and some finite S. However, in our case, it is impossible to

use such a representation in numerical applications. Indeed, considering the gradient descent
vk+1 = −η∇L(vk) starting at v0 = 0 and using the expression of ∇L in Equation (24) we
have:

v1 = −∇L(0) =

N∑
i=1

K(., xi,0)pi,0,

v2 = v1 −∇L(v1) =
N∑
i=1

K(., xi,0)pi,0 +
N∑
i=1

K(., xi,1)pi,1,

...

vk = vk−1 −∇L(vk−1) =

k−1∑
s=0

N∑
i=1

K(., xi,s)pi,s,

where for each k ∈ N, xi,k and pi,k are the forward and backward trajectories of particle
i for the control parameter vk. Therefore, in order to use a representation with the kernel
function K, one would need to keep track of an increasing number of trajectories along the
gradient descent, which is not numerically feasible.

On the other hand the use of Assumption 5.2 shows that the considered RKHS needs
to be of sufficiently high dimension in order to generate sufficiently rich deformations. For
that purpose we exhibit here a setting in which RKHS of infinite dimension (such as Sobolev
spaces) can be approximated by finite dimensional parametric spaces. We refer to [48] for a
more precise presentation.

7.1 General case : defining RKHS through feature maps

We consider in the following a measurable space Ω as well as the functional spaceH := L2(Ω, µ)
for some positive measure µ on Ω. Then H is a Hilbert space for the scalar product:

〈f, g〉 =

∫
Ω
fḡdµ.

Linear operators W : H → Rd can therefore be associated with families of vectors
W = (wi)

d
i=1 ∈ Hd with for every f ∈ H:

Wf = (〈wi, f〉)i,
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and the associated norm is still an upper-bound for the operator norm:

‖W‖op ≤ ‖W‖2µ :=
∑
i

‖wi‖2µ.

Then any application ϕ : Rd → H defines a unique structure of RKHS for which it is
the feature map. This is the content of the following property:

Property 7.1 (Feature map representation)
Consider an application ϕ : Rd → H. Then there exists a unique structure of (vector-valued)
RKHS V with kernel K defined as:

K(x, y) = 〈ϕ(x), ϕ(y)〉Id.

V is constituted of those vector-fields v of the form:

∀x ∈ Rd, v(x) = Wϕ(x)

for some linear operator W : H → Rd. ϕ is called the feature map associated to V .
Moreover, the associated scalar product on V is:

∀v, v′ ∈ V, 〈v, v′〉V = 〈W,W ′〉µ =
d∑
i=1

〈wi, w′i〉.

In our model of RKHS-FlowResNet, Property 7.1 allows us to parametrize the RKHS
V using only matrices W ∈ Rd×q. Indeed, considering a finite space Ω = {ω1, ...ωq} and a
positive measure µ =

∑q
j=1 µjδωj then linear operatorsW : L2(Ω, µ)→ Rd can be associated

to d× q matrices with the scalar product:

〈W,W ′〉µ :=

d∑
i=1

q∑
j=1

wi,jw
′
i,jµj ,

= 〈W,W ′M〉F

with 〈., .〉F the canonical Frobenius scalar product and M = diag(µ1, ..., µq).
Therefore, one can still use the canonical scalar product between the control parameters

(which for example allows to use automatic differentiation in Section 9), by considering a
change of basis in the definition of the vector-fields. The considered space of vector-field is:

V := {v : x 7→WN−1ϕ(x) | W ∈ Rd×q},

with the scalar product:

∀v, v′ ∈ V, 〈v, v′〉V = 〈W,W ′〉F = 〈WN−1,W ′N−1〉µ,

which defines the same RKHS structure for N =
√
M .
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7.2 The case of the Fourier Transform

We saw that choosing for Ω a finite space allows us to recover a parametrization of an
abstract RKHS that is compatible with automatic differentiation. We will see here that
such a parametrization can be used to approximate infinite dimensional RKHS such as the
ones defined by Gaussian kernels or Sobolev kernels.

A canonical choice for the feature space Ω would be the euclidean space Rd provided
with a finite positive measure µ. Then choosing as a feature map the frequency projection:

ϕ : x ∈ Rd 7→ (ω 7→ ei〈x,ω〉) ∈ L2(Ω, µ).

The vector field associated to a control parameter W then reads in coordinates:

vi(x) =

∫
Rd
wi(ω)ei〈x,ω〉dµ(ω),

where one recognizes that wdµ is the Fourier Transform of v.
The choice of measure µ then defines the RKHS structure. That can be seen by writing

the induced RKHS-norm, assuming µ admits a positive density ρ:

‖v‖2V =

∫
Rd
‖w(ω)‖2ρ(ω)dω

=

∫
Rd
‖Fv(ω)‖2 dω

ρ(ω)
,

where we used Parseval’s formula in the second inequality.
Thus for ρ(ω) = (1 + ‖ω‖2)−s we recover the Sobolev space Hs:

‖v‖2Hs =

∫
Rd
‖Fv(ω)‖2(1 + ‖ω‖2)sdω,

and for ρ(ω) = e−‖ω‖
2/2 we recover the RKHS with gaussian kernel:

K(x, y) = 〈ϕ(x), ϕ(y)〉Id

= Id

∫
Rd
ei〈x−y,ω〉e−‖ω‖

2/2dω

∝ Ide−‖x−y‖
2/2.

More generally for any choice of translation invariant kernel (that isK(x, y) = k(x−y)Id),
Bochner’s theorem (see [49]) indicates that we can chose µ = Fk, then:

K(x, y) = 〈ϕ(x), ϕ(y)〉Id = Id

∫
Rd
ei〈x−y,ω〉dµ(ω) = k(x− y)Id.

Finally, as shown above, approximating µ by any measure supported on a finite number
of atoms will give a way of approximating the corresponding RKHS by a finite dimen-
sional RKHS. For example, assuming µ is of unit total mass and using the approximation
µ̃ = 1

q

∑q
j=1 δωj with independent sampling ωj ∼ µ gives the following rescaling:

v(x) = Wϕ(x), ‖v‖2V =
1

q
‖W‖2F

with ϕ(x) = (ei〈x,ωj〉)1≤j≤q the vector of Random Fourier Features.

36



Research Internship Report September 2021

8 Towards a global convergence result

The results of the preceding sections only ensure convergence of the gradient flow when the
loss at initialization is small enough. They rely on local PL properties combined with an
inductive proof, showing that the gradient dynamic converges as long as it remains bounded.
However it does not ensure that there exists no spurious attractive local minima located “at
infinity” where the bounding constants m and M can become degenerate.

8.1 A case of divergence for the linear model

We give here a counter-example in the linear case where for a particular setting of the
problem, the gradient flow starting from identity initialization does not manage to find a
global optimum of the loss. This counter-example is inspired from [7].

We begin by giving a particular result in the case where the objective transformation is
a linear transformation:

Property 8.1 (Adapted from [7])
Let R be a normal matrix. We recall the setting of Problem ERM in the linear case with
quadratic loss:

L(W ) =
1

2
‖U1 −R‖2F ,

associated with the forward ODE Equation (4) with control parameterW ∈ L2([0, 1] ,Rd×d).
Then for the gradient flow initialized at W 0 = 0, there exists a unitary matrix A and a

family of complex numbers (λi)i such that for every time τ ≥ 0:

W τ = Adiag(zτi )A∗,

with (zi)i solutions of the equation:{
d
dτ z

τ
i = −(ez

τ
i − λi)ez̄

τ
i

z0
i = 0.

(33)

In particular W τ
t is independent of t.

Proof. As R is a normal matrix, there exists A a unitary matrix and a family of complex
eigenvalues (λi)i such that:

R = Adiag(λi)A
∗.

Then if τ ≥ 0 and W is of the form W τ = Adiag(zi)A
∗, ∇L(W ) is given by:

∇L(W ) = Adiag
(
(ezi − λi)ez̄i

)
A∗.

Indeed, solving Equation (4) one finds:

Ut = Adiag(etzi)A∗,

and then solving the associated backward ODE Equation (9):

Pt = Adiag
(

(e(1−t)z̄i
)
A∗P1,

= −Adiag
(

(e(1−t)z̄i(ezi − λi)
)
A∗,
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and finally:

∇L(W ) = −PU∗ = Adiag
(
ez̄i(ezi − λi)

)
A∗,

which gives the desired equation for zi considering the gradient flow d
dτW

τ = −∇L(W τ ).

A consequence is that it is not possible to obtain the transformation R = −Id starting
from identity. Indeed, setting λi = −1, Equation (33) becomes:{

ż = −ez̄(ez + 1)
z0 = 0.

In particular z stays real and setting x = e−z:

ẋ = 1 + 1/x ≥ 1,

so x→ +∞ and:

z = − log(x)→ −∞.

For the associated deformation we have:

U1 = ezId → 0.

More generally, the dynamic on z corresponds to the gradient flow for the loss L(z) = 1
2 |e

z−λ|2
and a local PL property is verified:

|∇L(z)|2 =
∣∣ez̄(ez − λ)

∣∣2 = 2e<(z)L(z).

The only critical points are <(z) = −∞ and L(z) = 0 corresponding respectively to U1 = 0
and U1 = R.

More precisely, writing z = α+iβ, λ = reiθ and making the change of variables α↔ e−α

and β ↔ β − θ + π, we have the following dynamic:{
α̇ = 1/α+ r cos(β)

β̇ = r sinβ/α.

The only critical points are β = 0, α = 1/r, corresponding to L(z) = 0, and β = π, α = +∞,
corresponding to L(z) > 0. The gradient flow converges towards this second critical point
for β0 = 0, however it converges towards the first one as soon as β0 = ε with ε > 0.

8.2 Universality of global convergence

In the preceding counter-example, non-convergence is achieved by taking advantage of the
symmetries of the problem. One could for example exhibit similar counter-examples with
the RKHS model of Definition 5.1 and symmetric kernel K.

However, we also showed that this divergence behavior is very sensitive to the problem
setting. It is in particular not stable in the sense that a small perturbation of the objective
(or equivalently of the data input) leads to a significantly different behavior. This evidence
supports the fact that global convergence of ResNet is a generic phenomenon: even though
one can exhibit counter-examples, one should expect the model to converge for almost every
input and almost every initialization.

We summarize this idea in the following conjecture:
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Conjecture 1 (Generic convergence)
Consider the framework of the Empirical Risk Minimization problem for the RKHS-FlowResNet
model of Definition 5.1. Then there exists a dense subset D ⊂ (Rd)N × (Rd)N such that for
every pair of input-objective point cloud ((xi)i, (y

i)i) ∈ D the gradient flow with identity
initialization v0 = 0 converges towards a 0-training loss global optimum, i.e.:

vτ −−−−→
τ→+∞

v∗, with L(v∗) = 0.

9 Numerical experiments

We show here some numerical examples in order to illustrate the results that were presented
in this report. In order to realise those experiments, the models of Definitions 3.1, 4.1 and 5.1
were implemented in Pytorch and optimization of the parameters was performed thanks to
automatic differentiation.

All experiments were made using the input dimension d = 2 in order to plot the trajec-
tories of the points along the forward problems. We considered optimization with Gradient
Descent or with Stochastic Gradient Descent.

Remark 9.1 (“Batch” loss and “global” loss)
In the case of optimization with SGD and in contrast with GD, the computed losses are
averaged on the number of data points considered. This is done in order to compare the
“batch” loss, computed at each iteration so as to perform back-propagation, and the “global”
loss, computed regularly only in order to estimate the efficiency of the training process.

9.1 Linear models

In the experiment of Figure 1, we aim at observing the way the convergence condition
of Equation (6) can be enforced by increasing the dimension of the matrices A and B in
the linear model of Definition 3.1. We therefore set the inputs to be randomly distributed,
X = (xij)

1≤i≤N
1≤j≤d with xij ∼ N (0, 1) and the objective outputs to be a linear transformation

of the inputs, Y = RθX, with Rθ being the rotation matrix of angle θ, and θ = π − ε with
ε � 1. Note that we are therefore in the setting of Section 8, and that such a problem is
“hard” for the linear model without considering an embedding in a space of higher dimension
q > d.

Two things can be observed in Figure 1:

� The problem is significantly easier when raising the embedding dimension up to q = 2d = 4
(right). Indeed, starting from initialization, the training loss immediately decreases at
a linear rate and only few iterations of gradient descent are needed in order to achieve
convergence towards a zero training loss optimum. This can be explained by the fact
that raising the dimension allows trajectories that are not allowed otherwise. Thereby
generated flows (which are projected in the original input space) look like straight lines
whereas they look much more like rotations for q = d = 2.

� In the case where q = d = 2 (left), starting from initialization, the training loss only
poorly decreases but still, at the end, reaches a global minimum. Indeed we observed
that the point clouds are matched by the flow of the corresponding forward ODE. This
kind of behavior cannot be explained by our local convergence result. In fact it is, to
the best of our knowledge, still an open problem to understand this kind of behavior
in the training dynamic of deep ResNets.
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Figure 1: Evolution of the loss during training with Gradient Descent (top) and generated
flows (bottom) for linear models: circles represent the input data, triangles of the same color
the associated objectives, and plain lines are the trajectories of the forward ODE at the end
of training. The dark grid is deformed onto the blue grid.
Objective data: Y = RθX, with θ = π − ε, N = 20 data points with embedding dimension
q = d = 2 (left) or q = 2d = 4 (right).

Note that we obtained the same kind of plots considering an optimization of the parameters
with Stochastic Gradient Descent in Figure 2.

9.2 RKHS models

In the experiments of Figure 3, we aim at observing the advantages brought by a non-linear
model such as the one of Definition 4.1 in comparison with the linear model of Definition 3.1.
Motivated by the approximation properties presented in Section 7, we consider for a non-
linear feature map ϕ the map of Random Fourier Features with frequencies sampled from
the probability density ρ(ω) ∝ (3 + ‖ω‖2)−5/2. Therefore, the considered space of residual
terms is an approximation of the Sobolev space V = H5/2(R2,R2).

Remark 9.2 (Sampling from a multivariate t-distribution)
In dimension d = 2, the probability distribution with density ρ(ω) ∝ (3 + ‖ω‖2)−5/2 is
the multivariate t-distribution with 3 degrees of freedom, noted t3(0, I2). Considering the
random variable z = y/

√
u/3 with y ∼ N (0, I2) and u ∼ χ2

3, the multivariate chi-squared
distribution with 3 degrees of freedom, then z − E[z] ∼ t3(0, I2).

As shown in Section 8, we observe in Figure 3 that the gradient descent does not converge
in the training of the Linear-FlowResNet model. Because of the symmetries of the problem,
the parameters diverge to infinity and asymptotically the model implements a degenerate
deformation where the whole plane shrinks at the origin.
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Figure 2: Evolution of the loss during training with SGD (top) and generated flows (bottom)
for linear models: circles represent the input data, triangles of the same color the associated
objectives, and plain lines are the trajectories of the forward ODE at the end of training.
The dark grid is deformed onto the blue grid.
Objective data: Y = RθX, with θ = π− ε, N = 200 data points with embedding dimension
q = d = 2 (left) or q = 2d = 4 (right).

On the other hand, because the RKHS-FlowResNet model parametrized on the Sobolev
space V = H5/2 is much more expressive, we see that gradient descent achieves a better
training loss while training this model. Furthermore, the decrease rate of the training loss
increases with the number of features. It is normal as the model is as expressive as the set
of residual terms is “rich”, that is as the number of features is high. However, even though
the model interpolates the training dataset, the implemented deformation of the space is
not smooth, which could be a desirable property, and does not seem to get smoother as the
number of features increases.

10 Conclusion

We presented several Machine Learning models for which we studied the convergence prop-
erties under gradient flow or gradient descent in a supervised learning setting. All of the
models are continuous and represent a rescaled limit of discrete ResNet architectures. We
studied a model of linear deformation in Section 3 and general non-linear models in Sec-
tions 4 and 5, motivating the use of an RKHS parametrization. In each case, relying on
functional inequalities of Polyak-Lojasiewicz type, we showed that, under some assumptions,
the loss landscape admits no spurious local minima and a sufficiently small loss at initial-
ization allows to recover a convergence towards a global optimum at a linear rate. Thereby
we exhibited a numerical threshold in the transition towards a “linear regime”, which can be
reached for example by embedding the data in sufficiently high dimension.

A second aspect of our work is the connection we made between the problem of con-
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Figure 3: Evolution of the loss during training with Gradient Descent (left) and generated
flows (right) for the linear model (top) and for RKHS models with increasing dimension
q_int of the feature space.
The dark grid are deformed onto the blue grids by the model at the end of training.
Objective data: Y = −X, N = 10 data points.
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vergence of these residual models and tools from mathematical image registration by using
an RKHS parametrization of the vector-fields. This allowed us to consider in Section 6
Normalizing Flow models implementing diffeomorphic deformations of the data, with ap-
plications in generative modeling. We proved that there are no spurious local minima in
the loss landscape of our model, but, due to the infinite dimension of the density matching
problem, the functional inequalities of Kurdyka-Lojasiewicz type we obtained are too weak
to conclude to a convergence result.

Open questions and further work Those results are by many aspects unsatisfying
as they do not explain in full generality how first order methods such as gradient descent
manage to optimize complex overparametrized models so as to reach a global minimum of
the training loss. A phenomenon which is yet well observed in practice. We point out two
lines of work which we believe are relevant in order to fulfill this program:

� Leveraging implicit bias : Our results only express a “local” convergence behavior and
rely on conditions at initialization. This does not explain the general behavior of
training dynamics of overparametrized models which, for many instances, include long
phases of slow improvement with important variations of the parameters before enter-
ing in a phase of linear convergence (see Section 9) in the neighborhood of the optimum.
One could explain this phenomenon by studying in depth the Implicit Biases induced
by gradient descent in the optimization of overparametrized models [43, 28, 27, 51, 42].
The general idea is that the functional inequalities in Properties 3.1 and 5.2 describe
global properties of the loss landscape, whereas one should try to derive stronger prop-
erties that are only verified along the gradient descent. Ultimately, an objective would
be to prove Conjecture 1.

� Parametrize residual layers in the Barron space : RKHS parametrization of the dis-
placement vector field was firstly motivated by generalizing the non-linear model
of Definition 4.1. However, such a model is not really representative of the archi-
tectures that are used in practice. In particular, the considered residual layer does not
have the property to be a universal approximator in contrast for example with Mul-
tilayer Perceptrons (MLP) with one hidden layer and a ReLU or Sigmoid activation
function, as introduced in the seminal work of Barron [6]. Therefore, a natural exten-
sion of our work would be to consider models parametrized by deformation vector fields
in a “Barron space”. In practice it amounts to training a supplementary linear hidden
layer for each residual layer, thus further complicating the analysis as the residual
terms will then no longer be linear w.r.t. the control parameter. Such a parametriza-
tion has already been considered but in the mean field limit of infinite width [16, 22]
and [5] gives a comparison of the two (RKHS vs. Barron space) approaches.
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Appendices

A Caratheodory existence and uniqueness theory for ODEs

We are interested in the study of solution of the initial value problem:{
x(0) = x0

ẋ(t) = F (θ(t), x(t)),
(34)

where x0 ∈ Rd, F : Rq × Rd → Rd is a continuous function and θ is a control parameter
living in some control space of function B ⊂ F([0, 1] ,Rq). Cauchy-Lipschitz theorem gives
existence and uniqueness of a solution for problem Equation (34) but makes strong regularity
assumption on control parameter θ such as local lipschitzianity whereas we would like B to
be a space of less regular functions such as Lr([0, 1] ,Rq) for 1 ≤ r < +∞.

In this context ones needs to consider solutions in a weaker sense. Indeed, observe that
for a continuous control parameter θ, Equation (34) is equivalent to:

x(t) = x0 +

∫ t

0
F (θ(s), x(s))ds, (35)

where only integrability of θ is needed if one only needs equality to be true in the sense
of absolutely continuous functions. Existence and uniqueness of a solution is given by the
following theorem (see [29]):

Theorem A.1 (Caratheodory)
Assume that f : [0, 1] × Rd → Rd is such that f is measurable in t for each fixed x and
continuous in x for each fixed t. Further assume that for each compact set U ⊂ Rd there
exist a measurable function kU such that:

‖f(t, x)− f(t, y)‖ ≤ kU (t)‖x− y‖, ∀t ∈ [0, 1] , ∀x, y ∈ U.

Then, for every x0 ∈ Rd, there exist an unique absolutely continuous curve x satisfying:

x(t) = x0 +

∫ t

0
f(s, x(s))ds, ∀t ∈ [0, 1] .

The following corollary applies to our case:

Corollary A.1
Assume that for each compact set U ⊂ Rd there exist a continuous function kU such that:

‖F (θ, x)− F (θ, y)‖ ≤ kU (‖θ‖)‖x− y‖, ∀θ ∈ Rq, ∀x, y ∈ U.

Then, for every integrable control parameter θ there exist an unique absolutely continuous
solution of equation Equation (35).

The assumption is for example satisfied for a single layer perceptron with a non-linear
activation function, i.e. when F (θ, x) = θϕ(x) with θ ∈ Rd×q and ϕ : Rd → Rq is continuous.
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