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Abstract

This paper provides a detailed explanation of a texture synthesis method that was developed
in [6], inspired by the so-called Steerable Pyramid. This method is based on multi-resolution
wavelet decompositions. The input image, starting from a white noise, is iteratively projected
onto the statistical constraints set of the reference image in order to have a make it look similar
to the reference image. The main contribution of the article of interest [6] is that it introduces
a new projection operator that enables computations in high dimensional settings. Strictly
speaking, the matching between images is not anymore considered anymore only through the
matching of their histogram matching but it can involve additional statistical constraints such
as second order statistics. In the following, we will first provide a short context of the problem
that is scrutinized. Then, a brief introduction to Optimal Transport in the discrete setting of
image distributions is given to lead to a proper definition of this new projection operator that
will be used to project any image onto the statistical constraints. We will also shortly discuss
the mathematical setting that is usually retained to define properly what is it for two textures
to look similar before providing the whole details of the Steerable Pyramid. Finally, we will go
into the details of the implementations that we have driven and comment our main results.
Keywords: Texture Synthesis, Statistical Method, Sliced Wasserstein distance, Steerable Pyra-
mid, Wavelet decomposition, Multi-resolution analysis, Histogram matching, Optimal Transport

1 Introduction

1.1 Problem studied
Several approaches for texture synthesis have been developed in the last years. These approaches
can be decomposed into three classes : neighborhood-based methods, that reorganize patches from
the reference image to reproduce a similar one, statistical methods that tend to capture statistical
descriptors of the reference image that will become statistical constraints for the image to be synthe-
sized, and example methods that find and copy pixels with the most similar local neighborhood as
the synthetic texture in scan-line order, based on a Markov Field assumption. In the following, we
will consider a statistical approach thus we aim at projecting a random white noise onto the set of
statistical constraints induced by the texture examplars we were given. This objective is the result
of a highly topical discussion in cognitive sciences to define mathematically when two images (that
are two realizations of a random process) can be considered to look similar. In some way, Julesz
ended it in 1962 with his conjecture that we developed further, by considering a set of statistical
constraints as the key point.
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1.2 Related works
The use for texture synthesis of the so-called Steerable Pyramid was introduced in [2]. The idea
is to build a self-inverting pyramid of one reference texture image, for which a multi-scale wavelet
decomposition is performed through multiple oriented filters. This is motivated by the wavelet
analysis theory, stating the wavelet functions form an orthonormal basis of particularly regular
functions (whose energy can be integrated). One can find the formalism and further details in [3].

The authors used this pyramid to decompose the reference image, into a serie of low-resolution
sub-images. Then, starting from a random white noise, the idea to generate new texture samples is
to project this noise onto the statistical constraints set of the reference image, which is done through
histogram matching between all the sub-images of the reference image and all the sub-images of
the white noise (see section 4). It is important to note that with such a projection, only the first
statistics of the reference image is taken into account when generating new texture samples.

In [1], the authors improved this method by correcting some artifacts due to the assumption
of periodicity of the reference image (when using the DFT in the pyramid) thanks to the Moisan
decomposition of an image into its periodic and smooth parts. But their main contribution is that
they introduced a way to treat RGB images. Indeed, performing Principal Component Analysis of
the color space of the reference image enabled them to consider three decorrelated channels, that are
treated as independent. Thus, the previous algorithm is performed on each channel before coming
back to the original color space. Prior to that, a new projector operation is performed, based on a
sliced Wasserstein distance in [6]. It lead to fast computation, even in a high dimensional setting,
which was not possible through histogram matching. Therefore, it enables to take into account
higher order statistics of the reference texture, which is believed to strengthen the similarity of the
generated image.

2 Projection in Wasserstein space
In this section, we will describe a new tool that can be used to project one input image onto
a set of reference images. It is an extension of histogram matching in the sense that histogram
matching corresponds actually to the one dimensional case of this new projection. Let us denote by
X = (Xi)i∈I and Y = (Yi)i∈I , with |I| = N , some discrete density distributions in Rd.

2.1 Wasserstein distance
Definition 2.1. The 2-Wasserstein distance between two point clouds X and Y is defined as :

W2
2 (X,Y ) := min

σ∈ΣN
Wσ(X,Y ) = min

σ∈ΣN

∑
i,j∈I

||Xi − Yσ(i)||2

= min
P∈PN

∑
i,j∈I

Pi,j ||Xi − Yj ||2

where PN denotes the set of bistochastic matrices of order N.

This computation results in finding an optimal ordering, which is easily done in the 1D case with
fast sorting algorithms O(N logN). In the case of images, the dimension d can be large. So, an
alternative is to compute 1D Wasserstein distances of projected point clouds. This way, one could
use fast sorting algorithms to compute this approximate Wasserstein distance. It is called the sliced
Wasserstein distance.

Definition 2.2. The Sliced 2-Wasserstein distance between two point clouds X and Y is defined as
:

W̃2
2 (X,Y ) :=

∫
θ∈Θ

W(Xθ, Yθ)
2dθ where Xθ = {< Xi, θ >}i∈I ⊂ RN

=

∫
θ∈Θ

min
σθ∈ΣN

∑
i,j∈I

| < Xi − Yσθ(i), θ > |2dθ
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where Θ denotes the unit sphere of Rd.

2.2 Wasserstein barycenter
Definition 2.3. The Wasserstein Barycenter between a set of point clouds (Y j)j∈J is defined as :

Bar(ρj , Y j)j∈J ∈ arg min
X
E(X) = arg min

X

∑
j∈J

ρjW2
2 (X,Y j)

where
∑
j∈J

ρj = 1, ρ � 0

The Wasserstein barycenter enables to mix different measures into a single one. It has many
applications, one of them being the synthesis of textures as we will see in the next sections. For now,
there is no closed form known of this barycenter, except in the special case of gaussian distributions.
Carlier and Aguch derived an analysis of the Wasserstein Barycenter through its dual formulation
in the case of continuous distributions. In this paper, an alternative is proposed : to compute the
Sliced Wasserstein Barycenter. Instead of considering the Wasserstein distance in the computation,
one uses the Sliced Wasserstein distance, which is a 1D approximation of it using projections.

Definition 2.4. The Sliced Wasserstein Barycenter between a set of point clouds (Y j)j∈J is defined
as :

B̃ar(ρj , Y j)j∈J ∈ arg min
X
Ẽ(X) = arg min

X

∑
j∈J

ρjW̃2
2 (X,Y j)

= arg min
X

∑
j∈J

ρj

∫
θ∈Θ

W(Xθ, Y
j
θ )2dθ

= arg min
X

∫
θ∈Θ

∑
j∈J

ρjW(Xθ, Y
j
θ )2dθ

where
∑
j∈J

ρj = 1, ρ � 0

To minimize this integral, the authors propose to use stochastic gradient descent algorithm. The
convergence to a local minimum is ensured through the choice of the step size’s decay along the itera-
tions. As the resultX(∞) is dependent on the initializationX(0), the algorithm is proceededM times.
The final solution is the one that minimizes all the results obtained among (X

(∞)
1 , X

(∞)
2 , ..., X

(∞)
M ).

2.3 Wasserstein Projection
Once the Wasserstein distance is computed, many applications require to know the transport plan
that has lead to such minimal distance. It is called the optimal transport plan or optimal permuta-
tion. Let us denote σ∗ such a permutation for two point clouds X and Y :

σ∗ = arg min
σ∈ΣN

W2
σ(X,Y )

It might be interesting in some applications to look at the point cloud Xσ∗ on which we have
applied the optimal permutation to minimize the Wasserstein distance.

Definition 2.5. The Wasserstein Projection of a point cloud X onto another point cloud Y is
defined as :

Xσ∗ = Proj[Y ](X)

where Proj[Y ] denotes the orthogonal projection onto the space [Y ].

Remark 2.1. In the 1D case, the optimal permutation corresponds exactly to what is done when
performing histogram matching between two images. This explains why related works have always
limited themselves to histogram matching when a projection between two images was needed. This is
especially the case in each iteration of the Steerable Pyramid as we will see.
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Note the intractable computation of the optimal permutation minimizing the standard Wasser-
stein distance, compared to the fast one when solving this problem in 1D. It explains why previous
works have until now limited their studies to optimal 1D histograms matching. One key contribution
of this paper is to open up new avenues of solving this problem even in multidimensional cases by
using the Sliced Wasserstein distance instead of the standard one. Indeed, we have seen it comes
with a lower computational cost. Computing this approximation with stochastic gradient descent
ensures convergence into a local minimum only X(∞). Therefore, its associated Sliced Wasserstein
is not necessarily the global minimum one, and thus, the projection leading to such a point cloud is
not guaranteed to be orthogonal. Note in practice, both projections are close.

Definition 2.6. The Sliced Wasserstein Projection of a point cloud X onto another point cloud Y
is defined as :

X∞ = ˜Proj[Y ](X)

where ˜Proj[Y ] denotes the non orthogonal projection onto the space [Y ].

The aim of this paper is to present a method of texture mixing. We recall the principle of texture
mixing which is to generate a new texture based on a collection of examples.

3 Mathematical insights of texture modeling

3.1 Julesz conjecture
In a manner that is consistent with numerical implementations and following the definition of [5] we
will take the following definition of textures :

Definition 3.1. A texture is a real two dimensional homogeneous random field X taking values over
the discrete lattice Z2

Given a reference texture, that is a realization of the random field X, the work presented in [6]
aims at developing numerical methods to synthesize new textures that look like the first one but are
fundamentally different. That said, questions arise :

� What does "look like" mean for a texture ? One needs a referent to tell apart successes from
fails. Since most of applications are human related, one can suppose that this referent is an
human

� What does it mean for human that two textures look like one another ? Is their a fundamental
(possibly numerical) criterion that allows to classify textures in the sense of a generic human.

The visual neuroscientist Béla Julesz interested itself for this second question for formulated his
conjecture as follows :

Theorem 3.1 (Julesz conjecture (1962)). There exists a set of constraint functions {φk}1≤k≤Nc
such that for any two realizations of two random fields that are equal in expectations over these set
of functions are visually indistinguishable for the human brain. In mathematical terms :

Eφk(X) = Eφk(Y ) ∀k ⇒ samples from X and Y are indistinguishable (1)

This in particular implies that the visual stimulus provoked by a texture can be completely determined
by a finite number of statistical features.

Note that Julesz himself disprove this conjecture for 2nd order (variance) and 3rd order (skewness)
statistics, exhibiting counter-examples. Thus one can only hope to characterize textures by their
moments up to at least the 4th order (kurtosis).
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3.2 Statistical projection
Assuming the Julesz conjecture holds for a set of constraints functions {φk}1≤k≤Nc and given a
reference texture realization X, texture modeling aims at sampling from a random field Y that
fulfill condition 1. Since many different random fields may satisfy 1, two factors are to be taken into
account :

� Expressiveness : the method should find an appropriate solution Y for any realization of the
constraints,

� Generalization : among the set of solutions, the method should not pick a random field who
is only supported on a small set around X. A criterion is generally to find the solution that
has maximal entropy.

Of course in practice statistical features can only be computed empirically on the one reference X
and one doesn’t aim at finding an admissible solution but only at sampling from it, producing real-
izations of the numerically modeled texture. In an attempt to fulfill the generalization criteria, one
approach consists in sampling from an initial random field with sufficient entropy (e.g. gaussian) and
perform successive statistical projections onto the set of admissible solutions. Theoretical framework
is described in [5] then used in [2][6] :

1. Consider a set of constraints functions {φk : Ω → Rnk×dk}k where Ω is the domain of image
X and nk, dk are the number of features and their dimensions for each constraint.

2. Suppose furthermore, that their is a way to inverse these projections. That is given a set of
constraints realizations {c̃k}k, there exists a function F whose outputs are images such that :

φk(F ({c̃k}k)) = c̃k ∀0 ≤ k ≤ Nc

3. Let ck = φk(Xk) be the realization of these constraints.

4. Let Y0 be an initial solution. For 1 ≤ k ≤ Nc store :

c̃k = Pk(φk(Y0))

where Pk is a statistical projection onto ck (e.g. histogram matching if dk = 1 or SW projection
if dk > 1)

5. Compute Y1 = F ({c̃k}k). If needed restart at point 4).

Next section is devoted to find the kind of constraints that are suitable in a texture synthesis
framework.

4 Steerable pyramid decomposition
Multiscale decomposition is commonly used in image processing in order to compute translation
invariant transformation at different scales. Its use being originally motivated by the structure
of the neurons dedicated to vision in the human brain [4], its recursive structure also allows for
computational efficiency. At each scale step, linear filter are applied to the image which is then
subsampled. Reconstruction of the image then follows from recursive linear inversion of the filters,
summation and upsampling. The whole process is referred as pyramid decomposition.

Classical approach consists in using a wavelet basis decomposition, taking advantage from fast
algorithm as exposed in [3] to perform state of the art results in various tasks such as image com-
pression (JPEG-2000 standard). However, in the case of image processing and texture synthesis,
wavelet basis decomposition is known to produce aliasing artifact due to the presence of high fre-
quency coefficients that are not filtered. Thus [7] proposed to use an other set of filters which most
interesting properties are to be aliasing-free and self-inverting (it is a tight-frame as defined in
[8]). The obtained filter basis also has the property to be steerable in the sense that :
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Figure 1: Steerable-pyramid decomposition process

� each filters are rotated copies of each other

� a copy of the filter at any orientation may be computed as a linear combination of the basis
filters

To sum-up these ideas we can interpret the steerability property as ensuring the "expressiveness" of
the filter decomposition. The obtained steerable-pyramid decomposition is illustrated by figure 1.
Note that before performing the recursive part itself, the image is separated between a high-frequency
and a low-frequency part thanks to filters H0 and L0.

Constraints on the used set of filters are expressed as follows :

� Bandlimiting, in order to prevent aliasing in the subsampling operation :

L1(ω) = 0, ∀ |ω| > π/2

� Self-inversion at the top of the pyramid :

|H0(ω)|2 + |L0(ω)|2
[
|L1(ω)|2 + |B(ω)|2

]
= 1

� Recursive self-inversion :

|L1(ω/2)|2 = |L1(ω/2)|2
[
|L1(ω)|2 + |B(ω)|2

]
In order to fulfill these constraints, the filters proposed by [5] are expressed in polar coordinates

in the Fourier domain as :

L1(r, θ) =


2cos(π2 log2( 4r

π )) , π4 < r < π
2

2 , r ≤ π
4

0 , r ≥ π
2

(2)

for the low-pass filter. The directional derivative filters are defined as Bk(r, θ) = H(r)Gk(θ) with :

H(r) =


cos(π2 log2( 2r

π )) , π4 < r < π
2

0 , r ≤ π
4

1 , r ≥ π
2

(3)

Gk(θ) =

{
αk cos(π − kπ

K )K−1 , |π − kπ
K | <

π
2

0 , otherwise
(4)

for 0 ≤ k ≤ K − 1 directions with the normalizing constant αK . The initial low-pass and high-pass
filters applied at the top of the pyramid are respectively :

L0(r, θ) =
1

2
L1(

r

2
, θ) (5)

H0(r, θ) = H(
r

2
, θ) (6)
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Note that this decomposition basis indeed posses the steerable property as it consists of (K−1)-order
directional derivatives in K distinct directions. On the other hand aliasing artifacts are prevented
due to the fact that the support of L1 respects the Nyquist sampling criterion, which is not the case
for generic wavelet decomposition.

5 Numerical implementation and results
We present here a few numerical results of texture modeling that we obtained implementing the
method described above and presented in [2][6] and [1]. We used here already implemented routines
available with the packages PyWavelet and Pyrtools. Note that we only try to perform the gener-
ative modeling of one texture (barycenter of 1 reference texture), however, generalization to mixing
(barycenter of several textures) is straightforward.

We assume in the following that we are provided with HistogramMatching and SWprojection
routines that perform histogram matching and Sliced-Wasserstein projection of section 2 onto 2-
dimensional arrays (images).

5.1 Gray-scale images
The case of gray-scale images is straightforward considering the theory of the previous sections.
Image is decomposed using either multi-scale wavelet or steerable-pyramid decomposition. Given
the fact that the dimension of the obtained feature is 1 (scalar image), statistical projection is
performed using histogram matching. Detailed procedure is describe in algorithm 5.1 and numerical
results are presented in figure 2

Algorithm 1 Grayscale texture synthesis
1: - Choose reference texture image X of size (N,N), order and height K, L of the decomposition,

number of iterations Nit, wavelet basis w
2: - Define Decomposition(.) as SteerablePyramid(.,K, L, axis = (0, 1))
3: or WaveletDecomposition(.,K, L,w, axis = (0, 1))
4: X← Decomposition(X)
5: Y ← Gaussian((N,N))
6: for 0 ≤ it < Nit do
7: Y ← Decomposition(Y )
8: for 0 ≤ l < L, 0 ≤ k < K do
9: Y[l, k]← HistogramMatching(Y[l, k],X[k, l])

10: Y ← DecompositionRec(Y)
11: Y ← HistogramMatching(Y,X)

12: Output: Y

Note the last statistical projection step at the end of each iteration. Described in [6], this
corresponds to histogram equalization and ensures that the global grayscale aspect of the output
image is the same as the input.

One sees that a steerable-pyramid decomposition seems to lead to better results. On the other
hand, we performed at each iteration decomposition on several wavelet basis, therefore augmenting
the number of constraints whereas a fair comparison using only one wavelet basis leads to far worse
results. In a general manner, one sees that the algorithm doesn’t manage to produce sharp edges
(e.g. for ’pop-corn’ or ’banana peel’ image).

5.2 Color images
The case of color images is more tricky as dimension of the features is 3 and channels or strongly
correlated as pointed out in [1] and illustrated in figure 3 and 4 Therefore, performing direct SW
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Figure 2: Reference grayscale textures (left) and images generated by algorithm 5.1 using steerable-
pyramid decomposition (center) or multi-scale wavelet decomposition (right). Parameters : L =
4, K = 4, Nit = 10, images are size 256 × 256. Used wavelets are symlet3, daubechies3 and
biorthogonal3.1 (see PyWavelet package documentation) performing decompositions and projections
for each wavelet at each iterations.
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Figure 3: Principal components channel of several textures. One sees that almost all the information
about the image is contained only in the first component, therefore justifying the use of histogram
matching instead of SW projection

projection of totally uncorrelated features (initial image is gaussian random field) onto the original
features of the image only led to poor results.

The idea proposed by [1] to tackle this issue is to start by performing Principal Component Anal-
ysis (PCA) onto the color channels, de-correlating them and re-normalizing them. Thus, gaussian
random field is already a better statistical approximation of the obtained image at start. Multi-scale
wavelet or steerable-pyramid decomposition is then performed on each of the channels independently,
as for gray-scale images.

For the projection step, several possibilities arise. While the whole idea behind [6] is perform a
3D statistical projection using a SW projection, [1] only proposes to perform histogram matching
onto the three channels independently, therefore treating each channel as independent grayscale
images during the whole process and not exploiting at any moment the 3D structure of the data.
Surprisingly, that last approach better results, actually reproducing features from the original texture
while the first one did not perform better than modeling a texture by a gaussian random field in
the PCA space (which producing a white noise image but at the same hue of the original texture).
Corresponding numerical method are exposed in algorithm 5.2 and visual comparison of the results
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Figure 4: Original textures (left), their pixel distributions (center) and the pixel distributions of
the generated texture (right), whose pixels colors are the same as the colors of the corresponding
pixels in the original texture. One sees that color distributions are degenerate. Also the generated
distributions are close to the original ones but colors are permuted, showing that the algorithm
succeed in generating original textures.
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are showed in figure 5

Algorithm 2 Color texture synthesis
- Choose reference texture image X of size (N,N, 3), order and height K, L of the decomposition,
number of iterations Nit, wavelet basis w
- Define Decomposition(.) as SteerablePyramid(.,K, L, axis = (0, 1))
or WaveletDecomposition(.,K, L,w, axis = (0, 1))
- Define Projection(., .) as HistogramMatching(., ., axis = (0, 1)) or SWprojection(., .)
M ← Mean(X, axis = (0, 1))
X ′ ← PCAtransform(X −M), V ar ← PCAvariance(X −M)
X← Decomposition(X ′)
Y ← Gaussian((N,N, 3)) ∗ Sqrt(V ar)
for 0 ≤ it < Nit do

Y ← Decomposition(Y )
for 0 ≤ l < L, 0 ≤ k < K do

Y[l, k]← Projection(Y[l, k],X[k, l])

Y ← DecompositionRec(Y)
Y ← SWprojection(Y,X ′)

Y ← PCAinverse(Y ) +M
Output: Y

We can not provide a rigorous explanation of this phenomena : SW projection allows to recover
histogram matching for 1D data, therefore, it should perform at least as good in 3D as histogram
matching on each of the channels independently. Most probable explanation is that SW projection
(and moreover a stochastic version of it) only performs an approximation of a rigorous optimal
transport projection, which would be the right 3D equivalent of histogram matching. Therefore it is
probable that lots of statistical approximations are made during the SW projection process whereas
histogram matching performs "exact" statistical projection in 1D, which is sufficient because most
(if not almost all) of the information about the texture is contained only in the first PCA channel.

Remark 5.1. To test this hypothesis rigorously, one should modify algorithm 5.2 to replace SWprojection
by a rigorous multidimensional optimal transport assignment obtain by linear programming. How-
ever, computing such an assignment would be very costly given the size of the data (typically of
dimension 128× 128× 3).

5.3 Discussion
Throughout the experiments the reader saw that, at best, our implementations managed to generate
"satisfying" results without achieving the same performances as [6] and [1]. Our method requires to
set some parameters whose importance should be discussed on :

� Number of orientations K : we often set it to K = 4. While using less orientations
could led to a lack of expressiveness, using more orientations does not lead to any significant
improvement. This can be explained by the fact that features of the images are often visually
well enough by their response to 4 different orientations.

� Number of scales L : same as for K. Reducing L to lower than 3 or 4 could led to lack of
expressiveness but using more decomposition scales does not allow to generate better texture
: important features of a textures are most of the time local features.

� Number of iterations Nit : this is probably the most interesting parameter to study. The
method usually produces good results after only a small number of iterations (e.g. Nit = 5)
and the image often don’t evolve much after. Therefore, the question already asked by [1]
is to know whether the iterative decomposition-projection-recomposition process described in
section 3 converges towards a fix point. If it does converge anyway, this is probably not towards
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Figure 5: Reference color textures (left) and images generated by algorithm 5.2 using steerable-
pyramid decomposition and histogram matching on each channel (center) or Sliced-Wasserstein
projection (right). Parameters : L = 4, K = 4, Nit = 5, , images are size 128× 128.
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a minimizer of the projection distance to the reference image. Indeed, computing the projection
distance at each iteration we often observed that this functional attained a minimum after a
small number of iterations (typically Nit = 5 or 10), before increasing.

Finally, we also merely tried to modify our algorithm in order to include projections onto 2nd
order statistical features, as advised in [6]. However it never led to significant improvements of the
results.

6 Conclusion
Finally, we have covered some approaches that are mainly mathematically oriented and interpretable,
based on the wavelet analysis theory. However, when recalling the structure of such a Steerable
Pyramid and the arise of hundreds or thousands of filter parameters that are to be optimized
when increasing the scale, one can find some substantial similarities with neural networks. This
succession of convolutions through parametric filters all along the scale axis needs to bring both
approaches closer. On the other hand, another alternative method was developed in [9]. Instead
of wavelets, the decomposition is performed among a dictionary of sub-images that are learnt from
the reference image. Imposing sparsity constraints in addition to the statistical constraints, an
approximate solution of this problem can be obtained with alternate descent. It looks very similar
to the dictionary learning that is performed on time series when trying to identify a pattern within
the time serie. As a further investigation, it could be interesting to focus on the right choice of the
statistics order that would yield better results and to try to explain why.
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