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Résumé

Les progrès récents des modèles d’apprentissage profond dans de nombreuses applica-
tions ont mis en lumière la nécessité d’une meilleure compréhension de leurs dynamiques
d’entraînement. Dans cette thèse, nous contribuons à l’étude théorique des algorithmes
de descente de gradient pour l’entraînement de réseaux de neurones surparamétrés. Des
travaux récents ont en effet montré que, pour des architectures peu profondes, il est pos-
sible d’obtenir de bonnes garanties de convergence en relaxant le problème d’optimisation
dans l’espace des distributions de paramètres.

Nous prolongeons cette approche au cas des architectures profondes en étudiant des
limites de champ-moyen de réseaux de neurones résiduels (ResNets). Ces modèles sont
paramétrés par des distributions sur le produit de l’espace des couches et d’un espace de
paramètres, avec la contrainte d’une marginale uniforme sur l’espace des couches. Dans
ce cadre, nous proposons de modéliser l’apprentissage comme un Ćot de gradient pour une
distance de Transport Optimal Conditionnel (TOC), une variante du transport optimal
classique incorporant cette contrainte de marginale. En nous appuyant sur la théorie des
Ćots de gradient dans les espaces métriques, nous démontrons l’existence et la cohérence de
ce Ćot avec l’entraînement des ResNets de largeur Ąnie. Ce travail est également l’occasion
d’explorer plus en détail les propriétés du TOC et de sa formulation dynamique.

Nous étudions ensuite le comportement asymptotique des Ćots de gradient en nous
appuyant sur des inégalités de type Polyak-Łojasiewicz locales. Nous montrons que ces
inégalités sont génériquement satisfaites par les ResNets profonds, et établissons des ré-
sultats de convergence pour certains exemples d’architectures et d’initialisations : si le
nombre de neurones est Ąni mais suffisamment grand, et si le risque est suffisamment
faible à l’initialisation, alors le Ćot de gradient converge vers un minimiseur global.

EnĄn, aĄn d’étudier l’émergence de représentations non-linéaires durant l’apprentissage,
nous considérons le cas de réseaux à une seule couche cachée avec une fonction de perte
quadratique. Pour ce problème d’optimisation non convexe et de grande dimension, les
résultats existants sont souvent qualitatifs, ou fondés sur une analyse par le neural tan-
gent kernel, dans laquelle les représentations des données restent Ągées. Exploitant le
fait qu’il s’agit d’un problème quadratique non-linéaire séparable, nous analysons un al-
gorithme de Variable Projection (VarPro) ou d’apprentissage à deux vitesses qui permet
d’éliminer les variables linéaires et de réduire le problème d’apprentissage à l’entraînement
des paramètres non-linéaires. Dans un cadre Şenseignant-élèveŤ, nous montrons que, dans
la limite d’une régularisation nulle, la dynamique de la distribution des représentations
est décrite par une équation de weighted ultra-fast diffusion, permettant ainsi d’établir un
taux de convergence linéaire pour l’échantillonnage de la distribution enseignante.

Le code pour reproduire les résultats numériques présentés est en open source.

Mots clés : Théorie de l’apprentissage, Apprentissage profond, Optimisation, EDOs
neuronales, Flots de gradient Wasserstein
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Abstract

The recent successes of deep learning models across a wide range of applications have un-
derscored the need for a deeper understanding of their training dynamics. This research is
ultimately motivated by the design of more efficient architectures and learning algorithms.

In this PhD work, we contribute to the theoretical understanding of the dynamics
of gradient-based methods for the training of neural networks by studying the case of
overparameterized models. Indeed, a recent line of work has proven that, for shallow ar-
chitectures, good convergence guarantees can be obtained by relaxing the training problem
in the space of parameter distributions.

We extend this analysis to the case of deep architectures by studying mean-Ąeld models
of deep Residual Neural Networks (ResNets). These are parameterized by distributions
over a product set of layers and parameter space, with a uniform marginal condition on the
set of layers. We then propose to model training with a gradient Ćow w.r.t. the Conditional
Optimal Transport distance: a restriction of the classical Optimal Transport distance which
enforces the marginal condition. Relying on the theory of gradient Ćows in metric spaces,
we show the well-posedness of the gradient Ćow equation and its consistency with the
training of ResNets at Ąnite width. In addition, this is an opportunity to study in more
detail the Conditional Optimal Transport distance, particularly its dynamic formulation.

We then study the asymptotic behavior of gradient Ćow curves by relying on local
Polyak-Łojasiewicz inequalities. We show such inequalities are generically satisĄed by
deep ResNets and prove convergence for well-chosen examples of architectures and initial-
izations: if the number of neurons is Ąnite but sufficiently large and the risk is sufficiently
small at initialization, then gradient Ćow converges to a global minimizer of the training
risk at a linear rate.

Finally, to study the learning of nonlinear features during training with gradient descent
we consider the case of shallow single-hidden-layer neural networks with square loss. For
this high-dimensional and non-convex optimization problem, most known convergence
results are either qualitative or rely on a neural tangent kernel analysis where hidden
representations of the data are Ąxed. Using that this problem belongs to the class of
separable nonlinear least squares problems, we consider a Variable Projection (VarPro) or
two-timescale learning algorithm, thereby eliminating the linear variables and reducing the
learning problem to the training of nonlinear features. In a Şteacher-studentŤ scenario, we
show that, in the limit where the regularization strength vanishes, the training dynamic
on the feature distribution corresponds to a weighted ultra-fast diffusion equation. This
provides a linear convergence rate for the sampling of the teacher distribution.

The code for reproducing the numerical results presented in this thesis is open-sourced.

Keywords : Machine learning theory, Deep learning, Optimization, Neural ODEs,
Wasserstein gradient Ćows
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Au cours des dernières années, l’apprentissage profond a connu des succès remarquables
dans un large panel d’applications, allant de la génération d’images et de textes au calcul
scientiĄque, et plus récemment à des tâches de raisonnement telles que la résolution de
problèmes mathématiques complexes. Cependant, bien qu’un nombre croissant de travaux
cherchent à apporter une meilleure compréhension des systèmes d’IA et à améliorer leur
conception, ces succès dépassent souvent notre compréhension des mécanismes mathéma-
tiques sous-jacents.

D’un point de vue mathématique, l’entraînement des réseaux de neurones soulève de
nombreuses questions théoriques. D’une part, les problèmes d’optimisation en jeu sont
généralement non-convexes et en très grande dimension. Pourtant, des algorithmes sim-
ples, tels que la descente de gradient stochastique, obtiennent d’excellentes performances
en pratique. D’autre part, les réseaux de neurones sont capables d’interpoler de larges en-
sembles de données tout en généralisant efficacement. Cela va ainsi à l’encontre de certains
principes statistiques fondamentaux, tels que le compromis biais–variance ou la malédic-
tion de la dimension. Ces phénomènes soulignent donc la nécessité de nouveaux cadres
mathématiques capables de mieux décrire les dynamiques d’entraînement des réseaux de
neurones et leurs interaction avec les architectures et les structures de données. En par-
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ticulier, des travaux récents suggèrent que les outils issus de l’analyse des équations aux
dérivées partielles (ÉDP) et du transport optimal peuvent apporter un éclairage précieux
sur ces dynamiques d’entraînement.

Dans ce manuscrit, nous adoptons un point de vue mathématique sur l’entraînement
des réseaux de neurones, fondé sur des outils d’optimisation et de théorie des équa-
tions aux dérivées partielles. Dans une limite d’architectures larges d’une part, la dy-
namique d’entraînement des réseaux peut être décrite par des modèles champ-moyen
issus des systèmes de particules en interaction, correspondant à des Ćots de gradient
dans des espaces de distributions de probabilité. D’autre part, les architectures résidu-
elles sont étudiées dans leur limite de grande profondeur, laquelle conduit à des paysages
d’optimisation plus réguliers et à des dynamiques d’entraînement plus stables. Ces deux
régimes asymptotiques, grande largeur et grande profondeur, ne sont pas de simples con-
structions théoriques, mais reĆètent la structure des architectures modernes telles que les
ResNets ou les Transformers, qui sont fortement surparamétrées et au cœur des modèles
d’IA les plus performants actuellement.

1 Apprentissage supervisé

Dans l’ensemble de ce manuscrit, nous considérons un cadre d’apprentissage supervisé
englobant un grand nombre de tâches classiques en apprentissage automatique. Nous
commençons par en décrire les principaux éléments constitutifs, avant de détailler plus
précisément les modèles et algorithmes étudiés dans ce manuscrit.

Jeu de données En apprentissage supervisé, la machine dispose d’un jeu de données
D ⊂ X ×Ytarg constitué de paires de données d’entrée x ∈ X et de réponses cibles associées
y ∈ Ytarg. Ces données d’entrée et de sortie peuvent prendre des formes très variées :

• Entrées : En raison de la grande Ćexibilité des méthodes d’apprentissage automa-
tique, les données d’entrée peuvent être de nature diverse : images, sons, vidéos,
textes ou encore séries temporelles Ąnancières. Un exemple d’application que nous
considérerons aux Chapter II et Chapter III est la classiĄcation d’images, où les don-
nées d’entrée sont des images numériques encodées sous forme de tableaux d’entiers
sur 8 bits de taille nc × nw × nh, où nw et nh désignent respectivement le nombre
de pixels en largeur et en hauteur, et nc le nombre de canaux (généralement nc = 1
pour les images en niveaux de gris et nc = 3 pour les images en couleur). Mathé-
matiquement, ces images peuvent être modélisées comme des vecteurs dans l’espace
vectoriel X = R

nc×nw×nh .

• Cibles : On distingue en général deux grandes catégories de tâches d’apprentissage
supervisé : la classiĄcation et la régression. En classiĄcation, l’objectif est d’associer
chaque donnée d’entrée à l’une des classes d’un ensemble Ąni, représenté par des
étiquettes ou labels dans Ytarg = ¶1, . . . , C♢, où C ≥ 1 est le nombre de classes.
Ces étiquettes peuvent également être encodées sous forme de vecteurs one-hot dans
Ytarg = ¶0, 1♢C . À l’inverse, en régression, l’objectif est de prédire un signal vectoriel
dans Ytarg = R

dout .

Dans la suite, les espaces de données d’entrée X et de données cibles Ytarg seront toujours
supposés être des sous-ensembles d’espaces vectoriels réels de dimension Ąnie. Il est alors
standard de voir chaque paire (x, y) ∈ X × Ytarg comme la réalisation d’une variable
aléatoire dont la loi sera également notée D.

2



1. Apprentissage supervisé

Fonction de perte L’objectif de la machine est d’apprendre, à partir des exemples de
D, une fonction de prédiction ou prédicteur F : X → Yout, associant à chaque entrée x ∈ X
une prédiction de la réponse cible ytarg ∈ Ytarg. L’espace des sorties Yout est un espace
vectoriel qui n’est pas nécessairement identique à celui des cibles Ytarg. Pour évaluer la
qualité de ses prédictions, la machine dispose d’une fonction de perte ℓ : Yout ×Ytarg → R.
Nous considérerons deux exemples fondamentaux :

• Régression : Dans un problème de régression, les espaces des sorties et de cibles
coïncident : Yout = Ytarg = R

dout . Cet espace est muni de la géométrie euclidienne
standard, et une mesure naturelle de l’erreur entre une prédiction yout et une cible
ytarg est donnée par la perte quadratique :

ℓ(yout, ytarg) =
1
2

♣yout − ytarg♣2
Rdout

. (1)

• Classification : Dans un problème de classiĄcation à C classes, la machine pro-
duit en général des sorties dans Yout = R

C représentant des estimations des log-
probabilités a posteriori de chaque classe donnée l’entrée. Une prédiction yout ∈ Yout

est alors comparée à une étiquette cible ytarg ∈ Ytarg = ¶1, . . . , C♢ à l’aide de la fonc-
tion d’entropie croisée :

ℓ(yout, ytarg) = − log

(︄

exp(yout[ytarg])
∑︁C

i=1 exp(yout[i])

)︄

. (2)

Le problème de minimisation du risque Étant donné un jeu de données D ⊂ X × Ytarg

et une fonction de perte ℓ : Yout × Ytarg → R, la qualité d’une fonction de prédiction
F : X → Yout peut être évaluée en moyennant la perte sur l’ensemble des exemples
de D. La stratégie de l’apprentissage automatique consiste à rechercher le meilleur pré-
dicteur au sein d’une classe de fonctions paramétriques F = ¶Fθ ♣ θ ∈ Θ♢, où Θ désigne
l’espace des paramètres. Dans le cas des réseaux de neurones, Θ correspond à l’espace
des poids du réseau, généralement un espace vectoriel de grande dimension muni de la
métrique euclidienne. Pour chaque paramètre θ ∈ Θ, on déĄnit le risque d’entraînement
par :

R(θ) :=
1

#D
∑︂

(x,y)∈D

ℓ(Fθ(x), y) . (3)

L’entraînement du modèle paramétrique Fθ consiste alors à résoudre un problème de min-
imisation du risque :

Trouver θ∗ ∈ arg min
θ∈Θ

R(θ) . (4)

En pratique, cette optimisation est souvent réalisée à l’aide d’algorithmes itératifs du
premier ordre, comme la descente de gradient. Partant d’un paramètre initial θ0 ∈ Θ, les
paramètres sont mis à jour selon la règle suivante :

∀k ≥ 0, θk+1 = θk − τ∇θR(θk) ,

où τ > 0 désigne le pas de gradient. En apprentissage profond, pour permettre l’entraînement
sur de grands jeux de données et améliorer la généralisation, le risque est souvent estimé
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à chaque itération k ≥ 0 sur un sous-ensemble Dk ⊂ D de données échantillonnées aléa-
toirement. On obtient ainsi l’algorithme de descente de gradient stochastique :

∀k ≥ 0, θk+1 = θk − τ∇θRk(θk), , où Rk(θ) :=
1

#Dk

∑︂

(x,y)∈Dk

ℓ(Fθ(x), y) .

Dans les deux cas, le choix du modèle paramétrique ainsi que des hyperparamètres (tels
que τ ou la taille des mini-lots) inĆuence fortement la dynamique d’entraînement et les
performances de généralisation du modèle appris. Dans la suite de cette introduction, nous
détaillerons les architectures de réseaux de neurones et les procédures d’entraînement qui
constituent le cœur de cette thèse.

Aspect statistique de l’apprentissage Bien que ce manuscrit adopte une approche
centrée sur l’optimisation, en se concentrant sur la minimisation du risque d’entraînement,
il est important de rappeler que l’objectif Ąnal de l’apprentissage supervisé est de constru-
ire une fonction de prédiction performante sur des exemples nouveaux. Dans le cadre
statistique classique, les points de données (x, y) du jeu d’entraînement D sont supposés
indépendants et identiquement distribués selon une loi inconnue Dtest sur X ×Ytarg. L’objet
central d’intérêt est alors l’erreur de test, déĄnie par

Etest(θ) := E(x,y)∼Dtest [ℓtest(Fθ(x), y)] ,

où la perte de test ℓtest peut différer de la perte d’entraînement ℓ. Le problème de min-
imisation du risque d’entraînement R sert ainsi d’approximation à celui du risque de test
Etest, le principal déĄ résidant dans le fait que la distribution Dtest est inconnue et que
l’apprentissage doit s’effectuer à partir du nombre Ąni d’exemples contenus dans D. Si la
question des capacités de généralisation des modèles entraînés dépasse le cadre principal
de cette thèse, elle motive néanmoins de nombreux choix de modélisation et d’algorithmes
présentés dans ce manuscrit.

Apprentissage auto-supervisé EnĄn, bien que ce manuscrit se concentre sur les
tâches d’apprentissage supervisé, il convient de noter que de nombreux systèmes mod-
ernes d’apprentissage automatique sont entraînés de manière auto-supervisé, c’est à dire
où le signal cible est dérivé directement des données d’entrée. Cette approche peut être
vue comme un cas particulier d’apprentissage supervisé, dans lequel les cibles sont con-
struites à partir de données non-annotées. Les exemples principaux sont les problèmes de
next token prediction en modélisation du langage, ou l’entraînement de modèles de diffu-
sion pour la génération d’images. Ces méthodes se sont révélées particulièrement efficaces
pour exploiter de vastes ensembles de données non-étiquetées et préentraîner des modèles
destinés à des tâches ultérieures.

2 Architectures de réseaux de neurones

La famille de modèles paramétriques que nous considérerons dans ce manuscrit est celle
des réseaux de neurones. Ces modèles consistent en la composition successive de couches,
chacune étant elle-même une transformation paramétrique élémentaire. Un réseau de
neurones de profondeur D ≥ 1 est ainsi un modèle paramétré par θ ∈ Θ =

∏︁D
d=1 Θd qui,

pour une entrée x ∈ X , renvoie :

Fθ(x) = FθD
◦ · · · ◦ Fθ1(x) ,
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où, pour chaque d ∈ 1, . . . , D, la d-ième couche Fθd
est elle-même un (petit) réseau de

neurones paramétré par θd ∈ Θd. Considérant X = R
din et Yout = R

dout pour din, dout ≥ 1,
nous commençons par décrire ici quelques exemples et propriétés d’architectures Fθ : Rdin → R

dout

dites Şpeu profondesŤ. Elles constituent les briques élémentaires des architectures plus pro-
fondes que nous présenterons ultérieurement.

• Couches linéaires :

Les couches linéaires, ou fully-connected, réalisent des multiplications matriceŰvecteur.
Étant donnée une entrée x ∈ R

din , la sortie est donnée par :

FW (x) = W · x ,

où le paramètre W ∈ R
dout×din est une matrice dite de ŞpoidsŤ. Ces transfor-

mations linéaires constituent les blocs de base de la plupart des architectures de
réseaux de neurones. En pratique, les modèles modernes d’apprentissage profond
sont généralement construits en composant ces applications linéaires avec des fonc-
tions non-linéaires simples.

• Couches convolutionnelles :

Les couches convolutionnelles sont un cas particulier de couches linéaires dans lesquelles
la matrice de poids est contrainte à avoir une structure spéciĄque, celle d’une matrice
de convolution. Introduites par LeCun et al. [LeCun, 1989] pour la reconnaissance
de chiffres manuscrits, ces architectures, en raison de leur structure équivariante
par translation, sont devenues omniprésentes dans les applications de traitement
d’images [LeCun, 2015]. Une couche convolutionnelle est paramétrée par un ensem-
ble de Ąltres W et, pour une image d’entrée x, renvoie :

FW (x) = W ⋆ x , (5)

où ⋆ désigne l’opérateur de convolution discrète. Par exemple, si x ∈ R
cin×dw×dh

est une image comportant cin canaux d’entrée et si W ∈ R
cout×cin×k×k est un Ąltre

convolutionnel de taille k×k avec cout canaux de sortie, le résultat de la convolution
discrète s’écrit :

(W ⋆ x)[c, i, j] =
∑︂

1≤k1,k2≤k

∑︂

1≤c′≤cin

W [c, c′, k1, k2], x[c′, i+ k1, j + k2] . (6)

Nous utiliserons les réseaux de neurones convolutionnels aux Chapter II et Chap-
ter III pour résoudre des problèmes de classiĄcation d’images.

• Modèles linéaires dans l’espace des paramètres :

Une classe importante de modèles d’apprentissage est celle des modèles linéaires
en leurs paramètres mais non nécessairement linéaires en leurs entrées. C’est par
exemple le cas des méthodes à noyau [Schölkopf, 2002; Steinwart, 2008] ou des
modèles à Şreprésentations aléatoiresŤ [Rahimi, 2007]. Ces modèles possèdent un
espace de paramètres Θ = Hdout , où H est un espace de Hilbert de ŞreprésentationsŤ,
et calculent, pour un paramètre θ ∈ Θ et une entrée x ∈ R

din :

Fθ(x) =

⎛

ˆ︂
∐︂

⟨θ1, ϕ(x)⟩H
...

⟨θdout, ϕ(x)⟩H

⎞

ˆ︃
ˆ︁ , (7)
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où ϕ : X → H est une application associant à chaque entrée une représentation dans
H. Alors que les réseaux de neurones classiques sont non-linéaires à la fois en leurs
entrées et en leurs paramètres, ces modèles présentent l’avantage d’être linéaires dans
l’espace des paramètres, ce qui facilite leur analyse théorique. Nous étudierons cette
classe de modèles dans la section Section II.4, comme étape préliminaire à l’analyse
d’architectures plus complexes.

• Couches perceptron :

Le perceptron est sans doute l’un des exemples les plus simples d’architecture de
réseau de neurones non-linéaire à la fois en ses entrées et en ses paramètres. Initiale-
ment introduit par Rosenblatt [Rosenblatt, 1958] pour reproduire certaines capacités
visuelles et perceptuelles humaines, il peut être vu comme la composition de deux
couches entièrement connectées séparées par une fonction non-linéaire. Un percep-
tron à deux couches, ou réseau à une seule couche cachée (SHL) de largeur M ≥ 1,
est paramétré par deux matrices de poids U et W de dimensions respectives dout ×M
et din ×M , ainsi qu’un biais b ∈ R

M . Pour une entrée x ∈ R
din , il renvoie :

F(U,W,b)(x) = U σ(W⊤x+ b) , (8)

où σ : R → R est une fonction non-linéaire, appelée Şfonction d’activationŤ, ap-
pliquée composante par composante. Les fonctions d’activation les plus utilisées in-
cluent la tangente hyperbolique tanh et l’ŞUnité Linéaire RectiĄéeŤ (Rectified Linear
Unit ou ReLU ). Nous étudierons cette classe de modèles dans les sections Section II.5
et Chapter III.

• Couches d’attention :

Le mécanisme d’attention [Bahdanau, 2014; Vaswani, 2017] est au cœur des architec-
tures de type Transformers, qui se sont imposées comme modèles de référence en vi-
sion par ordinateur [Dosovitskiy, 2020], en traitement du langage naturel (NLP) [De-
vlin, 2019], ainsi que dans d’autres tâches de traitement ou de génération de séquences.
Une Ştête d’attentionŤ (attention head) est paramétrée par trois matricesQ,K, V ∈ R

din×din

et, pour une séquence d’entrée de ŞjetonsŤ (tokens) x = (xi)1 ≤ i ≤ N ∈ (Rdin)N de
longueur N , renvoie :

AttentionQ,K,V (x) =

⎛

∐︂

N∑︂

j=1

e⟨Qxi,Kxj⟩

∑︁N
j=1 e

⟨Qxi,Kxj⟩
V xj

⎞

ˆ︁

1≤i≤N

∈ (Rdin)N . (9)

Dans le cadre du NLP, ces jetons représentent des plongements de mots ou de syl-
labes, sur lesquels les modèles sont entraînés de manière auto-supervisée à prédire
les prochains jetons. Dans les grands modèles de langage modernes, tels que les
Generative Pretrained Transformers (GPTs) [Radford, 2018], des perceptrons mul-
ticouches sont empilés avec des couches d’attention à plusieurs têtes, où plusieurs
opérations d’attention sont effectuées en parallèle.

• Couches non-paramètrées :

Dans les architectures modernes de réseaux de neurones, les couches paramétriques
sont souvent combinées à diverses opérations non-paramétriques, conçues pour améliorer
l’expressivité et la stabilité de l’entraînement. La composition avec une fonction
d’activation non-linéaire peut par exemple être vue comme une forme simple de
couche sans paramètres. De plus, bien que nous les omettions pour la clarté de la
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présentation, les architectures modernes incluent fréquemment des couches de pool-
ing, qui réduisent les dimensions des représentations, ainsi que des couches de nor-
malisation, connues pour faciliter l’entraînement des réseaux profonds [Ioffe, 2015;
Ba, 2016]. Dans le contexte du NLP, les opérations sans paramètres incluent égale-
ment des Şencodages positionnelsŤ, qui injectent une information d’ordre dans les
représentations de séquences, ainsi que des mécanismes de ŞmasquageŤ (masking),
qui contraignent le Ćux d’information (par exemple pour préserver la causalité dans
les modèles autorégressifs) [Vaswani, 2017].

3 Mise à l’échelle des réseaux de neurones dans le régime

de largeur infinie

La dernière décennie a vu une augmentation exponentielle de la taille des architectures de
réseaux de neurones, les modèles modernes comptant ainsi des milliards, voire des milliers
de milliards de paramètres [Villalobos, 2022]. Cela révèle pourtant un phénomène contre-
intuitif : de nombreux modèles opèrent dans un régime surparamétré, où le nombre de
paramètres entraînables dépasse le nombre de points de données disponibles. En statis-
tique classique, une telle situation conduirait typiquement à un surapprentissage et à une
mauvaise généralisation. Pourtant, en pratique, les réseaux de neurones surparamétrés
généralisent souvent remarquablement bien [Belkin, 2019; Zhang, 2021]. D’importants ef-
forts théoriques ont donc été consacrés à la compréhension du comportement des réseaux
de neurones dans le régime de largeur inĄnie, c’est-à-dire lorsque le nombre de neurones
par couche tend vers l’inĄni. Au-delà de leur intérêt théorique, ces analyses asympto-
tiques présentent également des bénéĄces pratiques, notamment pour le choix et le trans-
fert d’hyperparamètres entre architectures de largeurs différentes [Yang, 2021; Bordelon,
2025], conduisant à d’importantes économies de calcul dans l’entraînement de modèles de
grande taille [OpenAI, 2023].

La plupart des architectures de réseaux de neurones présentées précédemment peuvent
être représentées comme des applications de la forme :

F(θi)1≤i≤M
: x ∈ R

din ↦→ αM

M∑︂

i=1

ψ(θi, x) ∈ R
dout , (10)

où Θ désigne l’espace des paramètres, ψ : Θ × R
din → R

dout est une fonction élémentaire,
et αM ∈ R est un facteur d’échelle dépendant de la largeur du réseau M . Par exemple, un
perceptron à deux couches correspond au cas où Θ = R

dout ×R
din ×R et où ψ est donnée

par :

ψ : ((u,w, b), x) ∈ Θ × R
din ↦→ uσ(w⊤x+ b) , (11)

avec σ : R → R une fonction d’activation.
Les paramètres du modèle sont généralement initialisés aléatoirement et d’ordre 1, et

des travaux récents ont mis en évidence le rôle crucial joué par le choix du facteur d’échelle
αM dans la dynamique d’entraînement des modèles de grande largeur M . Différents choix
de mise à l’échelle conduisent à des comportements asymptotiques distincts lorsque M tend
vers l’inĄni. Deux cadres théoriques principaux ont ainsi émergé : le régime champ-moyen
(mean-field), qui capture l’apprentissage de représentations non-linéaires, et le régime
Neural Tangent Kernel (NTK), qui décrit une dynamique d’entraînement linéarisée autour
de l’initialisation aléatoire.
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3.1 Régime Neural Tangent Kernel

Un premier cadre asymptotique pour l’analyse des réseaux de neurones dans la limite
de largeur inĄnie est celui du Neural Tangent Kernel (NTK) [Jacot, 2018]. Ce régime
correspond à une mise à l’échelle des paramètres de l’ordre αM = 1/

√
M pour un réseau

de largeur M , sous laquelle l’évolution du réseau pendant la descente de gradient peut
être approchée par une linéarisation autour de son initialisation aléatoire θ0 ∈ Θ. Dans ce
régime linéarisé, le modèle est linéaire par rapport à ses paramètres, comme dans Eq. (7).
Le réseau de neurones se ramène alors à une méthode à noyau [Schölkopf, 2002; Steinwart,
2008] dont le noyau associé :

K(x, x′) = DθFθ0(x) · DθFθ0(x′)⊤ , (12)

appelé Neural Tangent Kernel, converge vers une limite déterministe dans la limite de
largeur inĄnie. Ce cadre conduit à des résultats théoriques forts : on peut montrer que la
descente de gradient converge vers un minimum global du risque empirique à une vitesse
linéaire, gouvernée par les propriétés spectrales du NTK [Allen-Zhu, 2019; Du, 2019; Lee,
2019; Zou, 2020]. Nous étudierons plus en détail le conditionnement du NTK associé aux
perceptrons à deux couches dans la Section II.5.

Cependant, le régime NTK présente d’importantes limitations. Notamment, il in-
duit une forme d’Şapprentissage paresseuxŤ (lazy training) [Chizat, 2019], dans lequel
les paramètres du réseau se déplacent très peu par rapport à leur initialisation, et où les
représentations apprises évoluent peu au cours de l’entraînement. En conséquence, le mod-
èle ne parvient pas à extraire de représentations non-linéaires des données et se comporte
essentiellement comme une méthode à noyau. À l’inverse, les réseaux de neurones béné-
Ącient en pratique de capacité d’apprentissage hiérarchiques ou spéciĄques à certaines
tâches, conduisant à de meilleures capacités de généralisation [Bach, 2017a; Ghorbani,
2019; Ghorbani, 2020].

3.2 Modèles champ-moyen de réseaux de neurones

Un autre cadre asymptotique est le régime de champ-moyen (mean-field), correspondant
à un facteur de mise à l’échelle de la sortie du modèle de 1/M pour une largeur M . L’une
des caractéristiques essentielles de ce régime, contrairement au cadre NTK, est sa capacité
à capturer l’apprentissage de représentations non-linéaires [Yang, 2021].

Avec le facteur d’échelle αM = 1/M , le réseau peut être interprété comme une in-
tégrale sur une distribution de paramètres. En effet, pour une famille de paramètres
(θi)1≤i≤M ∈ ΘM , en considérant la mesure empirique µ̂ = 1

M

∑︁M
i=1 δθi

, l’équation Eq. (10)
s’écrit :

∀x ∈ R
din , F(θi)1≤i≤M (x) =

1
M

M∑︂

i=1

ψ(θi, x) =
∫︂

Θ
ψ(θ, x)dµ̂(θ) = Fµ̂(x) ,

où, pour toute mesure de probabilité µ sur l’espace des paramètres Θ, on déĄnit :

Fµ : x ∈ R
din ↦→

∫︂

Θ
ψ(θ, x)dµ(θ) ∈ R

dout . (13)

Cette représentation englobe donc les réseaux de neurones de largeur Ąnie (quand µ est
une mesure empirique), mais décrit aussi, lorsque M → ∞, une limite de champ-moyen où
µ peut être une mesure de probabilité arbitraire [Rotskoff, 2018; Chizat, 2018; Mei, 2019;
Sirignano, 2020].
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D’un point de vue mathématique, au-delà de l’élimination de la dépendance en M , la
représentation champ-moyen de Eq. (13) permet de capturer naturellement l’interchangeabilité
des neurones. En effet, l’invariance par permutation de l’indice i ∈ 1, ...,M dans Eq. (10)
induit des symétries dans le paysage du risque, ce qui complique son analyse. Elle per-
met également de relaxer le problème de minimisation du risque Eq. (4) dans l’espace des
mesures, menant ainsi à un paysage d’optimisation plus simple [Chizat, 2018; Rotskoff,
2019].

EnĄn, la représentation champ-moyen permet d’étudier la dynamique d’entraînement
à travers le prisme des Ćots de gradient dans l’espace P(Θ) des mesures de probabilité
sur Θ [Ambrosio, 2008b; Santambrogio, 2017]. Cela conduit à des équations aux dérivées
partielles non-locales dont la convergence peut être étudiée qualitativement [Chizat, 2018;
Rotskoff, 2019] ou quantitativement, à condition que le risque vériĄe certaines inégalités
fonctionnelles [Mei, 2019; Chizat, 2022; Nitanda, 2022]. Cependant, bien que le régime
champ-moyen permette une approximation plus Ądèle de comportements d’apprentissage
réalistes, les résultats de convergence existants restent principalement qualitatifs : ils ne
fournissent ni taux explicites de convergence, ni caractérisations complètes des perfor-
mances de généralisation. Cela constitue un axe de recherche important, et le cœur de nos
contributions au Chapter III.

3.3 Expressivité et propriétés fonctionnelles des réseaux de neurones

Bien que déĄnis par des structures compositionnelles simples, le succès des réseaux de
neurones reposent sur de puissantes propriétés d’expressivité. Les propriétés fonctionnelles
de l’espace des applications représentables par un réseau de neurones jouent également un
rôle essentiel dans ses performances d’apprentissage et de généralisation. Ces propriétés
dépendent à la fois de l’architecture et de la structure métrique de l’espace des paramètres,
et seront au cœur de notre analyse au Chapter II.

Un exemple important est la famille des perceptrons à deux couches de largeur ar-
bitraire avec des fonctions d’activation non-linéaires. Un résultat fondateur de Cybenko
[Cybenko, 1989] a établi que de tels réseaux sont denses dans l’espace des fonctions con-
tinues pour la topologie uniforme sur les compactes. Plus tard, Barron [Barron, 1993]
a fourni des bornes d’approximation quantitatives en norme L2, montrant qu’une large
classe de fonctions peut être approximée à un taux O(1/

√
M), où M désigne la largeur

de la couche cachée. Fait remarquable, ce taux ne dépend pas de la dimension des don-
nées d’entrée, suggérant que les réseaux de neurones ne sont, en théorie, pas impactés
par la malédiction de la dimension. Cependant, ces résultats sont non constructifs : ils
garantissent l’existence d’approximations précises sans fournir de méthode pratique pour
les obtenir. Cette limitation souligne le rôle central des algorithmes d’optimisation en
pratique, car il faut s’appuyer sur eux pour découvrir de bonnes approximations.

Dans le cas de l’activation ReLU, l’espace des fonctions représentées par des percep-
trons à deux couches est décrit par l’espace de Barron [E, 2021; E, 2022] :

B :=
{︃

F : x ∈ R
din ↦→

∫︂

uReLU(w⊤x+ b)dµ(u,w, b) , µ ∈ P(R × R
din × R)

}︃

.

Lorsque l’ensemble des poids est muni de la métrique euclidienne standard, il est naturelle-
ment associé à une norme d’espace de Banach :

∀f ∈ B , ♣F ♣B := inf
{︃∫︂

♣u♣(♣w♣ + ♣b♣)dµ , µ ∈ P2(R × R
din × R) , f = Fµ

}︃

.
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Cet espace peut être caractérisé comme le plus petit espace de Banach de fonctions ap-
proximables efficacement par des perceptrons à deux couches. Il contient par exemple tous
les espaces de Sobolev de régularité suffisante [E, 2022].

4 Mise à l’échelle des réseaux de neurones dans le régime

de grande profondeur

En dépit de l’expressivité déjà remarquable des architectures peu profondes, les avancées
récentes en apprentissage automatique reposent largement sur la composition de fonctions.
Dans de nombreuses tâches classiques d’apprentissage supervisé, les modèles à l’état de
l’art s’appuient désormais sur des réseaux de neurones ŞprofondsŤ, qui prennent la forme :

Fθ(x) = FθD
◦ · · · ◦ Fθ1(x) ,

où chaque Fθd
désigne un sous-réseau plus simple (par exemple un perceptron, une couche

convolutionnelle, un mécanisme d’attention, une couche de normalisation, etc...), et où la
profondeur D est généralement très grande.

Si cette augmentation de profondeur accroît considérablement l’expressivité de la
classe de modèles [Montufar, 2014], elle introduit également d’importants déĄs en terme
d’optimisation. En particulier, il a été observé que l’erreur d’entraînement des réseaux
convolutionnels profonds tend à se dégrader lorsque la profondeur dépasse un certain
seuil [Srivastava, 2015; He, 2016a]. De plus, l’apprentissage de réseaux très profonds souffre
fréquemment d’instabilités numériques, telles que des problèmes d’evanescence/explosion
des gradients, où les gradients deviennent respectivement trop faibles ou trop grands dans
les premières couches, compromettant ainsi l’efficacité de l’apprentissage [Bengio, 1994;
Glorot, 2010]. Ces difficultés ont motivé le développement d’architectures spéciĄques fa-
cilitant l’entraînement de réseaux très profonds. Parmi celles-ci, les architectures dites
ŞrésiduellesŤ ont rencontré d’importants succès.

4.1 Réseaux de neurones résiduels

Les réseaux de neurones résiduels (ResNets) sont une classe d’architectures de réseaux de
neurones introduite par He et al. [He, 2016a; He, 2016b] pour des applications en classi-
Ącation d’images. L’idée fondamentale des ResNets consiste à paramétrer chaque couche
comme une petite perturbation, appelée ŞrésiduŤ, de l’application identité. Concrètement,
cette idée se traduit par la présence de connexions Şsaute-coucheŤ (skip connections) qui
permettent de réinjecter le signal entre des couches successives.

Un ResNet de profondeur D ≥ 1, recevant une entrée x ∈ X , produit une sortie xD,
où les données sont traitées de manière récursive selon :

∀d ∈ ¶0, . . . , D − 1♢ , xd+1 = xd
⏞⏟⏟⏞

connexion saute-couche

+Fθd
(xd)

⏞ ⏟⏟ ⏞

résidu

, avec x0 = x . (14)

Une illustration d’une architecture ResNet est présentée en Fig. 1. Les applications résidu-
elles Fθd

correspondent à de petites sous-architectures de réseaux de neurones, adaptées
au type des données considérées. Par exemple, on utilise généralement des couches con-
volutionnelles pour le traitement d’images [He, 2016a; He, 2016b] ou des couches à base
d’attention dans les Transformers pour le traitement du langage [Vaswani, 2017]. No-
tons que, bien que l’équation Eq. (14) contraigne les dimensions de sortie de chacune des
couches à être identiques, les architectures ResNet incluent en pratique plusieurs couches
de sous-échantillonnage qui réduisent progressivement la dimension du signal.
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Ćots continus de difféomorphismes en fait également un outil naturel pour la conception
de modèles génératifs [Rezende, 2015; Kobyzev, 2020]. Plus largement, les NODEs ont
inspiré le développement de nouvelles architectures de réseaux de neurones [Sander, 2021]
ainsi que de nouveaux algorithmes d’entraînement [Chen, 2018; Vialard, 2020].

Analyse théorique Sur le plan théorique, les NODEs offrent un cadre mathématique
commode, celui des ÉDO, pour analyser la dynamique d’entraînement et les performances
des réseaux de neurones très profonds. En particulier, leur formulation en temps continu
permet d’exploiter les outils de la théorie du contrôle optimal pour étudier les questions
d’entraînement et de généralisation [E, 2019; E, 2021]. Cette formulation conduit en outre
à un paysage de risque bien conditionné, permettant d’obtenir des garanties de convergence
pour les méthodes d’optimisation par gradient [Sander, 2022b; Marion, 2023b]. Dans ce
manuscrit, nous exploitons le formalisme des NODEs pour étudier, au Chapter I et au
Chapter II, les dynamiques d’entraînement des ResNets à la fois profonds et larges.

5 Apprentissage et algorithmes de descente de gradient

Comme expliqué précédemment, dans le cadre classique de l’apprentissage supervisé, la
phase d’entraînement consiste généralement à minimiser une fonction de risque. L’objectif
est de trouver une paramétrisation θ∗ ∈ arg minθ∈Θ R(θ), où R désigne le risque d’entraînement
déĄni en Eq. (3). Ce problème d’optimisation est en pratique résolu à l’aide de méthodes
d’optimisation du premier ordre, dont le cas le plus simple est l’algorithme de Şdescente
de gradientŤ, déĄni par :

∀k ≥ 0 , θk+1 = θk − τ∇θR(θk) , (17)

où θ0 ∈ Θ est une initialisation et τ > 0 un Şpas d’apprentissageŤ (learning rate). Dans
la limite où le pas τ tend vers zéro, cette dynamique discrète peut être modélisée par une
dynamique en temps continu. Ce ŞĆot de gradientŤ s’écrit :

∀t ≥ 0 ,
d
dt
θt = −∇θR(θt) . (18)

Dans ce manuscrit, nous analyserons les propriétés de convergence de ces dynamiques pour
l’apprentissage de plusieurs architectures de réseaux de neurones : les réseaux résiduels
profonds au Chapter I et au Chapter II, et les modèles à une couche cachée au Chap-
ter III. Une telle analyse, tout en contribuant à la compréhension des performances des
modèles modernes d’apprentissage automatique, présente des déĄs mathématiques impor-
tants, le risque R étant une fonction non-convexe d’un nombre généralement très élevé de
paramètres.

Algorithme de rétropropagation En pratique, le gradient du risque par rapport aux
paramètres est calculé à l’aide de l’algorithme de Şrétropropagation des gradientsŤ (back-
propagation), correspondant à une différentiation automatique par accumulation inverse
(reverse mode automatic differentiation) [Baydin, 2018]. En appliquant systématique-
ment la règle de la chaîne à travers le réseau, la rétropropagation propage les dérivées de
la couche de sortie vers les couches internes, avec un coût de calcul comparable à celui de
l’évaluation du modèle.

La capacité de passage à l’échelle de cette approche a été un facteur clé des per-
cées récentes de l’apprentissage profond. Les implémentations efficaces de la différenti-
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ation automatique par accumulation inverse, combinées aux capacités de calcul paral-
lèle du matériel informatique moderne (GPU, TPU), ont permis l’entraînement de mod-
èles fortement surparamétrés sur de grands ensembles de données. Ces implémentations
sont notamment disponibles dans les bibliothèques d’apprentissage profond telles que Py-
Torch [Paszke, 2017], que nous utilisons pour valider nos résultats en Section II.7 et
en Section III.6.

5.1 Descente de gradient stochastique et variantes

Bien que nous concentrions notre analyse sur la dynamique de la descente de gradient
classique (Eq. (17)), il convient de rappeler qu’en pratique, l’apprentissage sur de grands
ensembles de données repose sur une approximation du risque, calculée sur de petits sous-
ensembles (mini-batch) de données. Cela conduit à l’algorithme de Şdescente de gradient
stochastiqueŤ (SGD) :

∀k ≥ 0 , θk+1 = θk − τ∇θRk(θk) , (19)

où, à l’itération k, le risque approché Rk s’écrit :

Rk(θ) =
1

#Dk

∑︂

(x,y)∈Dk

ℓ(Fθ(x), y) ,

avec Dk ⊂ D un sous-ensemble de données échantillonné à partir du jeu de données D.
Outre la réduction du coût de calcul par itération, la SGD introduit une stochasticité dans
le processus d’optimisation, qui agit comme un régularisateur implicite et permet souvent
d’éviter le surapprentissage, conduisant ainsi à une meilleure généralisation [Hardt, 2016b].

En complément, un terme de ŞmomentŤ est souvent ajouté, ce qui conduit à la formule
suivante :

∀k ≥ 0 ,

∮︂

bk+1 = mbk + (1 − m)∇θRk(θk) ,
θk+1 = θk − τbk+1 ,

(20)

où m ∈ [0, 1] est le paramètre de moment. Introduites initialement par Polyak [Polyak,
1964], les méthodes à moments sont connues pour accélérer la convergence de la descente de
gradient dans le cas d’objectifs lisses et fortement convexes. Des raffinements ultérieurs,
tels que la méthode du gradient accéléré de Nesterov [Nesterov, 1983], atteignent des
vitesses de convergence optimales dans le cas convexe. En apprentissage profond, l’ajout
d’un terme de moment améliore également la stabilité de l’entraînement [Sutskever, 2013].

EnĄn, de nombreuses autres techniques ont été développées pour faciliter l’apprentissage
à grande échelle, notamment le dropout, le weight decay, ainsi que des méthodes d’optimisation
adaptatives telles que Adam [Kingma, 2014] ou RMSprop [Hinton, 2012]. Ces méthodes
jouent un rôle crucial dans l’amélioration de la stabilité, de la vitesse de convergence et
des performances de généralisation [Bottou, 2018].

5.2 Apprentissage à deux échelles de temps et projection de la variable

Le choix des hyperparamètres, en particulier du pas d’apprentissage τ , joue un rôle essen-
tiel dans le comportement asymptotique de la dynamique d’apprentissage. En pratique,
les pas d’apprentissage peuvent différer selon les paramètres [Yang, 2021]. Dans le Chap-
ter III, nous distinguerons deux types de paramètres :
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• Paramètres linéaires : il s’agit généralement des poids de la dernière couche
du réseau, pour lesquels la sortie dépend linéairement des paramètres. Lorsque les
autres paramètres sont Ąxés, l’apprentissage de ces paramètres revient à la résolution
d’un problème d’optimisation convexe.

• Paramètres non-linéaires : ils correspondent aux paramètres des couches internes
du réseau, liés de manière non-linéaire à la sortie. Ils permettent l’extraction de
représentations non-linéaires des données et jouent un rôle central dans la capacité
de généralisation des réseaux de neurones. Leur apprentissage constitue toutefois un
problème d’optimisation non-convexe.

L’espace des paramètres se décompose ainsi en Θ = Θl × Θnl, où Θl et Θnl désignent
respectivement les sous-espaces des paramètres linéaires et non-linéaires. Attribuer des
taux d’apprentissage distincts à ces deux sous-ensembles conduit à une descente de gradient
à deux échelles de temps :

∀k ≥ 0,

∏︂

⨄︂

⋃︂

θl
k+1 = θl

k − ητ∇θlR(θl
k, θ

nl
k ) ,

θnl
k+1 = θnl

k − τ∇θnlR(θl
k, θ

nl
k ) ,

(21)

où τ > 0 est un pas d’apprentissage et η > 0 un hyperparamètre contrôlant la vitesse
relative des mises à jour. Lorsque η < 1, les paramètres linéaires θl sont appris plus
lentement que les paramètres non-linéaires θnl, et inversement lorsque η > 1.

La limite asymptotique de grandes échelles de temps correspond à une optimisation
partielle des paramètres linéaires : c’est l’algorithme de Şprojection de la variableŤ (Vari-
able Projection ou VarPro), introduit initialement par Golub and Pereyra [Golub, 1973]
pour la minimisation de problèmes non-linéaires séparables. En effet, lorsque η → +∞,
à chaque étape on a θl

k ∈ arg minθl∈Θl R(θl, θnl
k ). D’après le théorème de l’enveloppe, la

dynamique sur les paramètres non-linéaires s’écrit alors :

∀k ≥ 0 , θnl
k+1 = θnl

k − τ∇θnlR(θl
k, θ

nl
k ) = θnl

k − τ∇θnlL(θnl
k ) , (22)

où, pour tout θnl ∈ Θnl, le Şrisque réduitŤ L(θnl) est déĄni par :

L(θnl) := inf
θl∈Θl

R(θl, θnl) . (23)

En pratique, dans le cas de la régression avec fonction de perte quadratique, cette étape
d’optimisation partielle peut être effectuée numériquement en résolvant un système linéaire.

Ainsi, en séparant l’apprentissage des représentations (paramètres non-linéaires, lents)
de celui de l’ajustement prédictif (paramètres linéaires, rapides), l’apprentissage à deux
échelles de temps et la projection de variables fournissent un cadre conceptuel solide pour
comprendre l’apprentissage des représentations dans les réseaux de neurones. De telles
approches ont récemment suscité un intérêt croissant dans la communauté de la théorie
de l’apprentissage automatique [Marion, 2023a; Berthier, 2024; Bietti, 2023; Takakura,
2024]. Nous étudierons dans le Chapter III les propriétés de convergence de VarPro pour
l’entraînement de modèles champ-moyen de réseaux de neurones.

5.3 Flots de gradient de Wasserstein et transport optimal

Nous nous intéressons dans ce manuscrit à l’apprentissage d’architectures de réseaux de
neurones surparamétrés, décrits par une distribution de paramètres sur un espace de
paramètres Θ (Eq. (13)). Pour de tels modèles champ-moyen, le risque d’entraînement
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déĄni en Eq. (3) devient une fonctionnelle R : P(Θ) → R déĄnie sur l’espace P(Θ) des
mesures de probabilité sur Θ. En particulier, pour un réseau de largeur Ąnie M , la distri-
bution des paramètres est donnée par la mesure empirique µ = 1

M

∑︁M
i=1 δθi . Lorsque les

paramètres (θi
t)1≤i≤M suivent la dynamique de Ćot de gradient Eq. (18), la distribution

associée µt = 1
M

∑︁
i = 1Mδθi

t
évolue selon l’équation de continuité :

∂tµt − div
⎤

µt∇
δR
δµ

[µt]
⎣

= 0 , sur [0,+∞) × Θ. (24)

Ici, pour une mesure µ ∈ P(Θ), le champ de potentiel δR
δµ [µ] désigne la première variation

(ou différentielle de Fréchet) de R. Dans le cas général où µt n’est pas nécessairement une
mesure empirique, cette ÉDP peut être interprétée comme un Ćot de gradient métrique
pour la distance de Wasserstein sur P(Θ) [Ambrosio, 2008b; Santambrogio, 2015].

La distance de Wasserstein découle du problème de transport optimal entre mesures
de probabilité [Villani, 2009; Santambrogio, 2015]. En supposant que Θ est un espace
de Hilbert, la p-distance de Wasserstein Wp, pour p ≥ 1, est déĄnie entre deux mesures
boréliennes µ, µ′ ∈ P(Θ) par :

Wp(µ, µ′) :=

(︄

inf
γ∈Γ(µ,µ′)

∫︂

Θ×Θ

\︄
\︄θ − θ′

\︄
\︄p dγ(θ, θ′)

)︄1/p

, (25)

où Γ(µ, µ′) désigne l’ensemble des couplages entre µ et µ′, c’est-à-dire l’ensemble des
mesures de probabilité sur Θ × Θ dont les marginales sont respectivement µ et µ′ :

Γ(µ, µ′) :=
{︂

γ ∈ P(Θ × Θ) : π1
#γ = µ , π2

#γ = µ′
}︂

. (26)

Ainsi, Wp muni Pp(Θ), l’espace des mesures de probabilité à p-moment Ąni, d’une struc-
ture d’espace métrique complet et séparable. Il est notamment connu depuis les travaux
de Jordan, Kinderlehrer, and Otto [Jordan, 1998] que plusieurs ÉDP linéaires ou non-
linéaires, telles que les équations de FokkerŰPlanck ou les équations des milieu poreux,
peuvent être interprétées comme des Ćots de gradient pour cette métrique. De même que
le Ćot de gradient Eq. (18) s’obtient comme la limite τ → 0+ de la descente de gradient
discrète Eq. (17), le Ćot de gradient de Wasserstein Eq. (24) peut être approché par un
Şschéma JKOŤ correspondant à une discrétisation implicite :

∀k ≥ 0 , µk+1 ∈ arg min
µ∈P(Θ)

R(µ) +
1
2τ

W2(µ, µk)2 .

En apprentissage automatique, des ÉDP de la forme Eq. (24) ont été utilisées dans
de nombreux travaux pour étudier la dynamique d’entraînement des réseaux de neurones
peu profonds [Chizat, 2018; Rotskoff, 2019; Mei, 2019; Chizat, 2022; Nitanda, 2022] ou
profonds [Lu, 2020; Ding, 2021; Isobe, 2023]. Outre l’élégance de ce formalisme pour
décrire l’apprentissage dans un régime de grande largeur, la relaxation du risque dans
l’espace des mesures permet également de simpliĄer le paysage d’optimisation, notamment
en éliminant les points critiques qui ne sont pas des minimiseurs.
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1 Supervised learning: algorithms, architectures and math-

ematical models

In recent years, deep learning has achieved remarkable empirical successes across a wide
range of applications Ů from image and text generation to scientiĄc computing, and more
recently in reasoning tasks such as the resolution of complex mathematical problems.
However, while a rapidly growing body of research has emerged to interpret the behavior
of AI systems and guide their design, these successes often outpace our understanding of
the underlying mathematical mechanisms.

From a mathematical perspective, the training of neural networks presents a num-
ber of challenging questions. On the one hand, the optimization problems involved are
typically high-dimensional and non-convex, yet simple algorithms like stochastic gradient
descent often perform surprisingly well in practice. On the other hand, neural networks
are capable of interpolating large datasets while still generalizing effectively, seemingly
defying foundational statistical intuitions such as the biasŰvariance trade-off or the curse
of dimensionality. These phenomena point to a need for new mathematical frameworks
capable of capturing the dynamical behavior of neural network training and its interaction
with model architecture and data structure. In particular, a recent line of work suggests
that tools from the analysis of partial differential equations and optimal transport can
offer valuable insights into these dynamics.

In this manuscript, we adopt a mathematical perspective on neural network training
based on tools from optimization and the theory of partial differential equations. In the
limit of large width, the training dynamic of neural networks can be described as mean-
Ąeld models of interacting particle systems and corresponds to gradient Ćows in spaces
of probability measures. On the other hand, residual architectures are studied for their
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inĄnite-depth limit, which gives rise to smoother optimization landscapes and more stable
training dynamics. These two asymptotic regimes Ů large width and large depth Ů are
not merely theoretical constructs, but reĆect the structure of modern architectures such
as ResNets or Transformers, which are highly overparameterized and central to current
state-of-the-art models.

1.1 The supervised learning framework

We will consider throughout this manuscript a supervised learning framework encompass-
ing a large number of classical machine learning tasks. We start by describing the main
ingredients of this framework, before turning in more details to the description of the
models and algorithms.

Dataset In supervised learning the machine is provided with a dataset D ⊂ X × Ytarg

constituted of pairs of input data x ∈ X and associated target response y ∈ Ytarg. These
input and target data can have various forms:

• Inputs: Due to the versatile nature of machine learning methods, these can be
virtually anything ranging from images, sounds, videos to text or Ąnancial time
series. An example of application we will consider in Chapters II and III is image
classiĄcation, where the input data are numerical images encoded as 8-bit arrays of
shape nc×nw×nh where nw and nh are respectively the number of pixels in the width
and height of the image and nc is the number of channels used to encode the image,
usually nc = 1 for gray-scale images and nc = 3 for color images. Mathematically,
these images can then be modeled by vectors in X = R

nc×nw×nh .

• Targets: One can generally distinguish between two categories of supervised learn-
ing tasks that are classification and regression. In classiĄcation, the objective is to
classify data into a Ąnite set of classes which are usually represented by labels in
Ytarg = ¶1, ..., C♢, with C ≥ 1 the number of classes. These labels can also be en-
coded as one-hot vectors in Ytarg = ¶0, 1♢C . In contrast, in regression, the objective
is usually to predict a vector-valued signal in Ytarg = R

dout .

In the following, the spaces of inputs X and targets Ytarg will always be subsets of real
Ąnite dimensional vector spaces. It is then standard to see (x, y) ∈ X × Ytarg as random
variables whose distribution we will also denote by D.

Loss The objective for the machine is to learn from the examples in D a prediction
function or predictor F : X → Yout, giving for inputs x ∈ X predictions of the target
response ytarg ∈ Ytarg. The space of outputs Yout is a vector space which is not necessarily
the same as the space of targets Ytarg and, to evaluate the quality of its predictions, the
machine is provided with a loss function ℓ : Yout × Ytarg → R. We will consider two
fundamental examples:

• Regression: Usually in regression, the space of outputs and response is the same
vector space Yout = Ytarg = R

dout . This space is equipped with the standard Eu-
clidean geometry and a natural notion of error between a prediction yout and a target
signal ytarg is the square loss:

ℓ(yout, ytarg) =
1
2

∥yout − ytarg∥2
Rdout

. (27)

18



1. Supervised learning: algorithms, architectures and mathematical models

• Classification: In a classiĄcation problem with C classes, the machine usually out-
puts predictions in Yout = R

C representing estimates of the posterior log-probabilities
of each classes given the input. A prediction yout ∈ Yout is then compared to a target
label ytarg ∈ Ytarg = ¶1, ..., C♢ by forming the cross-entropy:

ℓ(yout, ytarg) = − log

(︄

exp(yout[ytarg])
∑︁C

i=1 exp(yout[i])

)︄

. (28)

Risk minimization Given a dataset D ⊂ X ×Ytarg and a loss function ℓ : Yout × Ytarg → R,
the quality of a prediction function F : X → Yout can be assessed by averaging the loss
incurred over the dataset. The strategy developed in machine learning is to search for the
best predictor in a class of parametric function F = ¶Fθ : θ ∈ Θ♢, where Θ denotes a
parameter space. For instance, in the case of neural networks, Θ corresponds to the space
of the network’s weights, which is usually a high-dimensional vector space equipped with
the Euclidean metric. For each parameter θ ∈ Θ, the training risk is then deĄned by:

R(θ) :=
1

#D
∑︂

(x,y)∈D

ℓ(Fθ(x), y) . (29)

Training the parametric model Fθ then consists in solving the risk minimization problem:

Find θ∗ ∈ arg min
θ∈Θ

R(θ) . (30)

In practice, this optimization is often performed using Ąrst-order iterative algorithms, with
gradient descent being a canonical example. Starting from an initial parameter θ0 ∈ Θ,
the parameters are updated according to:

∀k ≥ 0 , θk+1 = θk − τ∇θR(θ) ,

where τ > 0 denotes the step size or learning rate. In deep learning, to allow for training
on large datasets and improve generalization, the risk is usually computed at each step
k ≥ 0 on a smaller batch Dk ⊂ D of freshly sampled data. This results in the stochastic
gradient descent algorithm:

∀k ≥ 0 , θk+1 = θk − τ∇θRk(θ) , where Rk(θ) :=
1

#Dk

∑︂

(x,y)∈Dk

ℓ(Fθ(x), y) .

For both gradient descent and stochastic gradient descent, the choice of parametric
model, as well as the selection of hyperparameters (such as τ or the batch size) has a
signiĄcant impact on both the training dynamics and the generalization performance of
the learned model. In the remainder of this introduction, we describe in more detail the
neural network architectures and training procedures that will be the focus of this thesis.

Statistical learning perspective While this manuscript adopts an optimization-oriented
viewpoint Ů focusing on the minimization of the training risk Ů it is important to recall
that the ultimate goal of supervised learning is to construct a prediction function that per-
forms well on unseen examples. In a standard statistical learning paradigm, data points
(x, y) in the training dataset D are assumed to be independent and identically distributed
according to an unknown distribution Dtest over X × Ytarg. The central object of interest
is then the test error, deĄned as

Etest(θ) := E(x,y)∼Dtest
[ℓtest(Fθ(x), y)] ,
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where the test loss ℓtest can also differ from the training loss ℓ. Minimizing the training
risk R thus serves as a proxy for minimizing Etest, the fundamental challenge lying in the
fact that Dtest is unknown, and learning must proceed solely from the Ąnite number of
examples in D. While the question of the generalization abilities of the trained models lie
beyond the primary scope of this thesis, it motivates and justiĄes many of the modeling
and algorithmic choices made in the following chapters.

Self-supervised learning Finally, while this manuscript focuses on supervised learning
tasks, it is worth noting that many modern machine learning systems are trained under
the self-supervised learning paradigm, where the target signal is derived from the input
data itself. This approach can be seen as a special case of supervised learning in which
the targets are constructed from unlabeled data using pretext tasks. Prominent examples
include next-token prediction in language modeling or score-based training in generative
modeling. These methods have proven effective in leveraging large amounts of unlabeled
data to pretrain models for downstream tasks.

1.2 Neural network architectures

The family of parametric models we will consider in this manuscript is the one of neural
networks. These consist in the successive composition of layers which are themselves
smaller parametric transformations. A neural network of depth D ≥ 1, is thus a model
parameterized by θ ∈ Θ =

∏︁D
d=1 Θd which on input x ∈ X returns:

Fθ(x) = FθD
◦ · · · ◦ Fθ1(x)

where, for each d ∈ ¶1, ..., D♢, the d-th layer Fθd
is a (smaller) neural network param-

eterized by θd ∈ Θd. Considering X = R
din and Yout = R

dout for some din, dout ≥ 1,
we start here by describing examples and properties of common shallow architectures
Fθ : Rdin → R

dout . These constitute the building blocks of deeper architectures we will
describe later-on.

• Linear layers: Linear fully-connected layers compute matrix-vector multiplications.
Given an input x ∈ R

din the output is:

FW (x) = W · x ,

where the parameter W ∈ R
dout×din is some weight matrix. Such linear transforma-

tions are the basic building blocks of most neural network architectures. In practice,
modern deep learning models are typically constructed by composing these linear
maps with simple nonlinear functions.

• Convolutional layers: Convolutional layers are a particular instance of linear
layers where, in contrast with fully-connected layers, the weight matrices are con-
strained to have particular shape, namely to be convolution matrices. This kind
of architecture was introduced by LeCun et al. [LeCun, 1989] for digit recognition
and, owing to their translation-equivariant structure, has since become ubiquitous in
image processing applications [LeCun, 2015]. A convolutional layer is parameterized
by Ąlters W and, for an input image x, computes:

FW (x) = W ⋆ x , (31)
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where ⋆ denotes the discrete convolution operator. For example, if x ∈ R
cin×dw×dh

is an image with cin input channels and W ∈ R
cout×cin×k×k is a convolutional Ąlter

of size k × k with cout output channels the result of the discrete convolution reads:

(W ⋆ x)[c, i, j] =
∑︂

1≤k1,k2≤k

∑︂

1≤c′≤c

W [c, c′, k1, k2]x[c′, i+ k1, j + k2] . (32)

We will consider convolutional neural networks in Chapters II and III for solving
image classiĄcation problems.

• Linear models in parameter space: An important class of machine learning
models is the one of models that are linear in their parameters but not necessarily
in their inputs. This is for example the case of kernel methods [Schölkopf, 2002;
Steinwart, 2008] or of random feature models [Rahimi, 2007]. These models have a
parameter space Θ = Hdout where H is some Hilbert space of features, and compute
for a parameter θ ∈ Θ and an input x ∈ R

din :

Fθ(x) =

⎛

ˆ︂
∐︂

⟨θ1, ϕ(x)⟩H
...

⟨θdout
, ϕ(x)⟩H

⎞

ˆ︃
ˆ︁ , (33)

where ϕ : X → H is a map associating to each input a feature representation in
H. While standard neural networks are nonlinear in both their inputs and their pa-
rameters, such models offer the advantage of being linear in parameter space, which
facilitates theoretical analysis. We will study this class of models in Section II.4, as
a preliminary step towards understanding more complex architectures.

• Perceptron layers: The perceptron is arguably one the simplest instance of a
neural network architecture that is nonlinear in both its input and its parameters.
It was originally introduced by Rosenblatt [Rosenblatt, 1958] to emulate human
visual and perceptual capacities and can actually be seen as the composition of two
fully-connected layers with a nonlinear function. A 2-layer or single-hidden-layer
(SHL) perceptron of width M ≥ 1 is parameterized by two weight matrices U , W
of respective shape dout × M and din × M and a bias term b ∈ R

M . For an input
x ∈ R

din it computes:

F(U,W,b)(x) = Uσ(W⊤x+ b) , (34)

where the σ : R → R is a nonlinear function, called activation, applied component
wise. Popular examples of activations are for example the hyperbolic tangent tanh
or the Rectified Linear Unit (ReLU) activation. We will study this class of models
in Section II.5 and in Chapter III.

• Attention layers: Attention mechanisms [Bahdanau, 2014; Vaswani, 2017] is at the
heart of Transformers architectures which have emerged as state of the art models
in computer vision [Dosovitskiy, 2020], Natural Language Processing (NLP) [Devlin,
2019] as well as other sequence processing or generation tasks. An attention head is
parameterized by matrices Q,K, V ∈ R

din×din and, for an input sequence of tokens
x = (xi)1≤i≤N ∈ (Rdin)N of length N , returns:

AttentionQ,K,V (x) =

⎛

∐︂

N∑︂

j=1

e⟨Qxi,Kxj⟩

∑︁N
j=1 e

⟨Qxi,Kxj⟩
V xj

⎞

ˆ︁

1≤i≤N

∈ (Rdin)N . (35)
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In the context of NLP, these tokens represent embeddings of words or syllables on
which models are trained in a self-supervised manner to perform a next-token pre-
diction task. In modern large-scale language models, such as Generative Pretrained
Transformers (GPTs) [Radford, 2018], multi-layer perceptrons are actually stacked
with multi-head attention layers where several attention operations are computed in
parallel.

• Parameter-free layers: In modern neural network architectures, parametric lay-
ers are composed with several other parameter-free operations engineered to enhance
the expressivity and trainability of the models. Composition with a non-linear ac-
tivation can for example be seen as a simple form of parameter-free layer. Also,
while for the sake of simplicity we omit them in the rest of this manuscript, com-
mon parameter-free layers usually include pooling layers, which reduce the spatial
or temporal dimensions of feature maps, or normalization layers, which have been
shown to facilitate the training of deep neural networks [Ioffe, 2015; Ba, 2016]. In the
context of NLP, parameter-free operations include positional encodings, which inject
order information into sequence representations, and attention masking mechanisms,
which constrain the Ćow of information (e.g., to preserve causality in autoregressive
models) [Vaswani, 2017].

1.3 Scaling neural networks in the infinite width regime

The past decade has witnessed an exponential increase in the scale of neural network ar-
chitectures, with modern models comprising billions, and in some cases even trillions, of
parameters [Villalobos, 2022]. However, a striking and somewhat counterintuitive phe-
nomenon has emerged: many of these models operate in an overparameterized regime,
where the number of trainable parameters exceeds the number of available data points.
In classical statistics, such settings would typically lead to overĄtting and poor general-
ization. Yet, in practice, overparameterized neural networks often generalize remarkably
well [Belkin, 2019; Zhang, 2021]. SigniĄcant theoretical efforts have thus been devoted
to understanding neural networks in the inĄnite-width regime Ů that is, when the num-
ber of neurons (or channels) per layer tends to inĄnity. Beyond their theoretical value,
these asymptotic analyses also offer practical beneĄts, particularly in guiding hyperpa-
rameter selection and enabling hyperparameter transfer across architectures of different
widths [Yang, 2021; Bordelon, 2025] leading to important computational savings in the
training of large models [OpenAI, 2023].

Many of the above presented neural network architectures can be represented as map-
pings of the form

F(θi)1≤i≤M
: x ∈ R

din ↦→ αM

M∑︂

i=1

ψ(θi, x) ∈ R
dout , (36)

where Θ denotes a parameter space, ψ : Θ×R
din → R

dout is a basis function, and αM ∈ R is
a scaling factor that depends on the network width M . For example, the 2-layer perceptron
model corresponds to the case where Θ = R

dout × R
din × R and ψ is given by:

ψ : ((u,w, b), x) ∈ Θ × R
din ↦→ uσ(w⊤x+ b) , (37)

where σ : R → R is the activation function.
Parameters of the model are usually initialized randomly of order 1 and recent re-

search has then highlighted the crucial role played by the choice of scaling αM in shaping
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the training dynamics for models of large width M . Different scalings lead to different
asymptotic behaviors when M tends to inĄnity. Two main theoretical frameworks have
emerged: the mean-Ąeld regime, which captures nonlinear feature learning, and the neural
tangent kernel regime, which describes a linearized training dynamic around the random
initialization.

1.3.1 Neural Tangent Kernel regime

A Ąrst asymptotic framework for analyzing neural networks in the inĄnite-width limit is
the Neural Tangent Kernel (NTK) regime [Jacot, 2018]. This regime corresponds to a
scaling of the network parameters of order αM = 1/

√
M for a network of width M , under

which the evolution of the network during gradient descent can be closely approximated
by a linearization around its random initialization θ0 ∈ Θ. In this linearized regime, the
model is linear in its parameters, as in Eq. (33). The neural network thus reduces to a
kernel method [Schölkopf, 2002; Steinwart, 2008] whose associated kernel:

K(x, x′) = DθFθ0(x) · DθFθ0(x′)⊤ , (38)

called NTK, becomes deterministic in the inĄnite-width limit. This leads to powerful
theoretical results: it can be shown that gradient descent converges to a global minimizer
of the empirical risk at a linear rate, governed by the spectral properties of the NTK [Allen-
Zhu, 2019; Du, 2019; Lee, 2019; Zou, 2020]. We will study in more detail conditioning of
the NTK associated to 2-layer perceptrons in Section II.5.

However, the NTK regime comes with intrinsic limitations. Most notably, it induces
a form of Şlazy trainingŤ [Chizat, 2019], in which the network parameters barely move
from their initialization, and the feature representations do not evolve signiĄcantly over
the course of training. As a result, the model fails to capture nonlinear data-dependent
features in a meaningful way, instead behaving like a kernel method. In contrast, neural
networks beneĄt from hierarchical or task-speciĄc feature learning behaviors, leading to
improved generalization [Bach, 2017a; Ghorbani, 2019; Ghorbani, 2020].

1.3.2 Mean-field models of neural networks

An alternative asymptotic framework is the mean-Ąeld regime, corresponding to a scaling
of the output of order 1/M for width M . One of the key features of this regime Ů in
contrast with the NTK setting Ů is its ability to capture nonlinear feature learning [Yang,
2021].

Under the αM = 1/M scaling, the network can be interpreted as the integration over a
distribution of parameter. Indeed, for a family of parameters (θi)1≤i≤M ∈ ΘM , considering
the empirical measure µ̂ = 1

M

∑︁M
i=1 δθi

, Eq. (36) can be written:

∀x ∈ R
din , F(θi)1≤i≤M

(x) =
1
M

M∑︂

i=1

ψ(θi, x) =
∫︂

Θ
ψ(θ, x)dµ̂(θ) = Fµ̂(x) ,

where for every probability measure µ on the parameter space Θ we deĄne:

Fµ : x ∈ R
din ↦→

∫︂

Θ
ψ(θ, x)dµ(θ) ∈ R

dout . (39)

This representation thus encompasses neural networks of arbitrary Ąnite width when µ is
an empirical measure but also describes, when the width M tends to inĄnity, a mean-Ąeld
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limit in which µ can be any probability measure [Rotskoff, 2018; Chizat, 2018; Mei, 2019;
Sirignano, 2020].

From a mathematical perspective, beyond eliminating the dependence on the width
M , the mean-Ąeld limit representation in Eq. (39) conveniently captures the interchange-
ability of neurons. Indeed, the invariance under permutations of the index i ∈ ¶1, ...,M♢
in Eq. (36) induces symmetries in the risk landscape, which can complicate its analysis. It
also enables relaxation of the risk minimization problem Eq. (30) in the space of measures,
which has proven to lead to a simpliĄed optimization landscape [Chizat, 2018; Rotskoff,
2019].

Finally, the mean-Ąeld representation allows one to study the training dynamics through
the lens of gradient Ćows in the space P(Θ) of probability measures over Θ [Ambrosio,
2008b; Santambrogio, 2017]. This results in non-local evolution PDEs whose convergence
can be analyzed qualitatively [Chizat, 2018; Rotskoff, 2019] or quantitatively at the con-
dition that the risk satisĄes appropriate functional inequalities [Mei, 2019; Chizat, 2022;
Nitanda, 2022]. However, while the mean-Ąeld scaling enables a more faithful approxi-
mation of realistic and desirable training behaviors, existing convergence results are pre-
dominantly qualitative: they do not provide explicit convergence rates, nor do they fully
characterize the generalization performance of the learned models. Addressing this gap is
an active area of research, and constitutes the focus of our contributions in Chapter III.

Remark 1.1. Note that, while the mean-field representation Eq. (39) has encountered
significant interest, it is not the only way to represent the infinite width limit of neural
networks with the αM = 1/M scaling. Several other representations have for example
been proposed by E and Wojtowytsch [E, 2022], among which representations with signed
measures (also proposed in [Bach, 2017a]) or with indexed particle systems.

1.3.3 Expressivity and functional properties of neural networks

Though deĄned by simple compositional structures, the success and the versatility of
neural networks owes to powerful expressivity properties. Functional properties of the
set of maps that can be represented by a neural network also play an important role
for the training and generalization performances. Such properties are determined by the
architecture as well as the metric structure of the set of parameters and will be at the core
of our analysis in Chapter II.

An important example is the class of 2-layer perceptrons of arbitrary width with non-
linear activation functions. A seminal result by Cybenko [Cybenko, 1989] established that
such networks are dense in the space of continuous functions with respect to the compact-
open topology. Later, Barron [Barron, 1993] provided quantitative approximation bounds
in the L2 norm, showing that a large class of functions can be approximated at a rate of
O(1/

√
M), where M denotes the width of the hidden layer. Remarkably, this rate does

not depend on the input dimension, suggesting that neural networks can, in principle,
overcome the curse of dimensionality. However, these results are non-constructive: they
state the existence of accurate approximations without providing a practical method to
Ąnd them with computational guarantees. This limitation highlights the central role of
training algorithms in practice, as one must rely on optimization procedures to discover
good approximations.

In the case of the ReLU activation, the space of function represented by 2-layer per-
ceptrons is described by the Barron space [E, 2021; E, 2022]:

B :=
{︃

F : x ∈ R
din ↦→

∫︂

uReLU(w⊤x+ b)dµ(u,w, b) , µ ∈ P(R × R
din × R)

}︃

.
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When the set of weights is equipped with the standard Euclidean metric, it is naturally
provided with a Banach space norm:

∀f ∈ B , ∥F∥B := inf
{︃∫︂

♣u♣(∥w∥ + ♣b♣)dµ , µ ∈ P2(R × R
din × R) , f = Fµ

}︃

.

This space can be characterized as the smallest Banach space of function efficiently ap-
proximable by 2-layer perceptrons and for example contains all Sobolev spaces of sufficient
regularity [E, 2022].

Note that similar results hold for shallow convolutional architectures which are dense
in the class of translation equivariant functions [Petersen, 2020; Yarotsky, 2022]. Also,
attention-based architectures Ů and particularly Transformer models Ů are dense in the
space of permutation equivariant sequence-to-sequence functions [Yun, 2020].

1.4 Scaling neural networks in the infinite depth regime

Despite the already high expressivity of shallow architectures, recent breakthroughs in
machine learning have relied on the power of function composition. In numerous classical
supervised learning tasks, state-of-the-art models are now based on deep neural networks,
which take the general form:

Fθ(x) = FθD
◦ · · · ◦ Fθ1(x) ,

where each Fθd
denotes a simpler neural network (e.g., a perceptron, convolutional layer,

attention mechanism, normalization layer, etc.), and the depth D is typically very large.
While this increased depth greatly enhances the expressivity of the model class [Montu-
far, 2014], it also introduces signiĄcant optimization challenges. In particular, it has been
observed that the training error of deep convolutional networks can degrade as depth
increases beyond a certain point [Srivastava, 2015; He, 2016a]. Moreover, training deep
networks often suffers from numerical instabilities such as the vanishing and exploding
gradient problems, where gradients become too small or too large in early layers, impair-
ing effective learning [Bengio, 1994; Glorot, 2010]. These difficulties have motivated the
development of specialized architectures that ease the training of very deep networks. A
particularly successful design is the class of residual neural networks.

1.4.1 Residual Neural Networks

Residual Neural Networks (ResNets) is a class of neural network architectures introduced
by He et al. [He, 2016a; He, 2016b] for application in image classiĄcation. The idea
behind ResNets is to parameterize each layer as a small perturbation, called residual, of
the identity mapping. In practice, this idea materializes by the presence of skip connections
whose function is to reinject the signal in-between successive layers. A ResNet of depth
D ≥ 1, with input x ∈ X , outputs xD where the data is processed recursively according
to:

∀d ∈ ¶0, ..., D − 1♢ , xd+1 = xd
⏞⏟⏟⏞

skip connection

+Fθd
(xd)

⏞ ⏟⏟ ⏞

residual

, with x0 = x . (40)

An illustration of a ResNet architecture is depicted in Fig. 2. The residual mappings Fθd

are smaller neural network architectures which can be tailored to the application, typical
examples are convolutional layers for image processing tasks [He, 2016a; He, 2016b] or
attention-based layers in Transformers for natural language processing [Vaswani, 2017].
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Theoretical analysis From a theoretical standpoint, NODEs offer a convenient math-
ematical framework Ů namely, that of ordinary differential equations Ů for analyzing
the training dynamics and performance of very deep neural networks. In particular, their
continuous-time formulation enables the use of tools from optimal control theory to study
questions of training and generalization [E, 2019; E, 2021]. Moreover, this formulation
leads to a well-behaved loss landscape, which allows for convergence guarantees when
training with gradient-based methods [Sander, 2022b; Marion, 2023b]. In this manuscript,
we leveraged the NODE formalism to study in Chapters I and II the training dynamics of
both deep and wide ResNets.

Different scalings of residual branches The choice of the scaling factor βD for resid-
ual branches Ů together with the initialization scheme Ů plays a crucial role in shaping
the training dynamics of ResNets. As in the case of width-dependent scaling in wide neu-
ral networks, an appropriate depth scaling can improve convergence behavior and enable
signiĄcant computational savings, for instance by allowing the transfer of hyperparameters
across architectures of varying depth [Yang, 2023; Bordelon, 2025; OpenAI, 2023].

Several scaling regimes have been proposed and studied. The NODE scaling βD =
1/D, when paired with smooth (e.g., zero) initialization, leads to stable training and
ensures a Ąnite contribution from residuals in the inĄnite-depth limit. In contrast, under
a more standard random initialization of weights, a larger scaling of order βD = 1/

√
D

is required to obtain a non-trivial limiting behavior as depth increases [Cohen, 2021;
Marion, 2025]. This latter regime has also been associated with improved feature learning
properties [Yang, 2023], although its optimization landscape remains less well understood,
and theoretical guarantees for convergence under gradient descent are still lacking.

1.5 Training and gradient descent algorithms

As explained above, in a classical supervised learning framework, the training phase usually
consists in the minimization of a risk functional. The objective is to Ąnd a parameterization
θ∗ ∈ arg minθ∈Θ R(θ) , where R is the training risk deĄned in Eq. (29). This optimization
problem is usually solved using Ąrst order optimization methods whose simplest example
is the gradient descent algorithm which reads:

∀k ≥ 0 , θk+1 = θk − τ∇θR(θk) , (43)

where θ0 ∈ Θ is some initialization and τ > 0 is some step-size or learning rate. In
the limit where the step-size τ > 0 vanishes, this discrete dynamic can be modeled by a
continuous-time dynamic. Such a gradient flow reads:

∀t ≥ 0 ,
d
dt
θt = −∇θR(θt) . (44)

In this manuscript we will analyze the convergence properties of the above dynamics
for the training of several neural network architectures, for deep ResNets in Chapters I
and II and for single-hidden-layer perceptrons models in Chapter III. While contributing
to the understanding of the performances of modern machine learning models, such an
analysis presents signiĄcant mathematical challenges, the training risk R being a non-
convex function of a usually high number of parameters.

Backpropagation algorithm In practice, the gradient of the risk with respect to the
parameter is computed using the backpropagation algorithm, corresponding to reverse-
mode automatic differentiation [Baydin, 2018]. By systematically applying the chain rule
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through the computational graph, backpropagation propagates derivatives from the output
layer back to the inner layers with a computational cost comparable to that of evaluating
the function itself.

The scalability of this approach has been a key enabler of modern deep learning break-
throughs. Efficient implementations of reverse-mode automatic differentiation Ů com-
bined with the parallel processing capabilities of modern hardware such as GPUs and
TPUs Ů has made it possible to train highly overparameterized models on large datasets.
These implementations are made available in popular deep learning libraries such as Py-
torch [Paszke, 2017], which we used to validate our result in Section II.7 and Section III.6.

1.5.1 Stochastic gradient descent and variants

While we will focus in this manuscript on the analysis of the simple gradient descent
dynamic (Eq. (43)), one should keep in mind that, in practice, training on large datasets
is made possible by replacing the full training risk with an approximation computed on a
small subset (or mini-batch) of data. This leads to the Stochastic Gradient Descent (SGD)
algorithm, deĄned by

∀k ≥ 0 , θk+1 = θk − τ∇θRk(θk) , (45)

where, at iteration k, Rk is given by:

Rk(θ) =
1

#Dk

∑︂

(x,y)∈Dk

ℓ(Fθ(x), y) ,

with Dk ⊂ D a mini-batch of data sampled independently from the dataset D. Besides
reducing the computational cost per iteration, SGD introduces stochasticity into the opti-
mization process, which can act as an implicit regularizer and help avoid overĄtting, often
leading to improved generalization [Hardt, 2016b].

In conjunction with stochastic gradients, a momentum term is often incorporated into
the gradient updates, resulting in the update rule:

∀k ≥ 0 ,

∮︂

bk+1 = mbk + (1 − m)∇θRk(θk) ,
θk+1 = θk − τbk+1 ,

(46)

where m ∈ [0, 1] is the momentum parameter. Originally introduced by Polyak [Polyak,
1964], momentum methods are known to accelerate convergence of gradient descent in the
case of smooth and strongly convex objectives. Subsequent reĄnements, such as Nesterov’s
accelerated gradient method [Nesterov, 1983], achieve optimal convergence rates in the
convex setting. In deep learning, incorporating momentum has been shown to lead to
improves stability during training [Sutskever, 2013].

Finally, numerous additional techniques have been developed to facilitate the train-
ing of large-scale machine learning models, including dropout, weight decay, learning rate
scheduling, and adaptive gradient methods such as Adam [Kingma, 2014] or RMSprop [Hin-
ton, 2012]. These methods play a crucial role in improving training stability, convergence
speed, and generalization performance [Bottou, 2018].

1.5.2 Two-timescale learning and variable projection

The choice of hyperparameters, and typically of the learning-rate τ for gradient descent,
plays a crucial role in the asymptotic behavior of the training dynamic. In particular, the
learning rates need not be the same for all of the parameters [Yang, 2021]. In Chapter III,
we will distinguish between two types of parameters:
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• Linear parameters: these are usually the weights of the last layer of the network
and are parameters w.r.t. which the output is linear. Everything else being Ąxed,
training these parameters is equivalent to the training of a linear model, i.e. a convex
optimization problem for which convergence properties are well-known.

• Nonlinear parameters: these are the parameters of the inner layers of the network,
which are in a nonlinear relation with the output. These allow extraction of nonlinear
representations of the data and play a key role in the generalization abilities of neural
networks. However, training these parameters constitutes a non-convex optimization
problem.

The parameter space thus decomposes as Θ = Θl × Θnl, where Θl and Θnl denote the
subspaces of linear and nonlinear parameters, respectively. Assigning different learning
rates for linear and nonlinear parameters thus leads to the two-timescale gradient descent:

∀k ≥ 0,

∏︂

⨄︂

⋃︂

θl
k+1 = θl

k − ητ∇θlR(θl
k, θ

nl
k ) ,

θnl
k+1 = θnl

k − τ∇θnlR(θl
k, θ

nl
k ) ,

(47)

where τ > 0 is some step-size and η > 0 a timescale hyperparameter controlling the
relative speed of updates. When η < 1 the linear parameters θl are learned more ŞslowlyŤ
than the nonlinear parameters θnl and conversely, when η > 1 the linear parameters are
learned more ŞquicklyŤ than the nonlinear ones.

The asymptotic limit of large timescales corresponds to a partial optimization of the lin-
ear parameters, a Variable Projection (VarPro) algorithm originally introduced by Golub
and Pereyra [Golub, 1973] for the minimization of separable nonlinear least square prob-
lems. Indeed, as η → +∞, we have at each step θl

k ∈ arg minθl∈Θl R(θl, θnl
k ). Then, by

the envelope theorem, the dynamic on the nonlinear parameters reads:

∀k ≥ 0, θnl
k+1 = θnl

k − τ∇θnlR(θl
k, θ

nl
k ) = θnl

k − τ∇θnlL(θnl
k ) , (48)

where for θnl ∈ Θnl, the reduced risk L(θnl) is obtained by:

L(θnl) := inf
θl∈Θl

R(θl, θnl) . (49)

In practice, in the case of regression with square loss, such a partial optimization step can
be efficiently performed for a moderate number of neurons by solving a linear system.

Thus, isolating feature learning (slow, nonlinear parameters) from prediction reĄne-
ment (fast, linear parameters), two-timescale learning and variable projection provide a
principled framework for understanding feature learning in neural networks. For this rea-
son, such approaches have recently attracted the interest of the machine learning theory
community [Marion, 2023a; Berthier, 2024; Bietti, 2023; Takakura, 2024]. In turn, we will
study in Chapter III the convergence properties of VarPro for the training of mean-Ąeld
models of neural networks.

1.5.3 Wasserstein gradient flows and optimal transport

We focus in this manuscript on the training of overparameterized neural network archi-
tectures, which Ů as in Eq. (39) Ů are described by a distribution of parameters on a
parameter space Θ. For such Şmean-ĄeldŤ models, the training risk of Eq. (29) is a func-
tional R : P(Θ) → R deĄned on the space P(Θ) of probability distributions on Θ. In
particular, for neural networks of Ąnite width M , the distribution of parameters is the
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empirical measure µ = 1
M

∑︁M
i=1 δθi . Then, when the parameters (θi

t)1≤i≤M follow the gra-
dient Ćow dynamic Eq. (44), the associated distribution of parameters µt = 1

M

∑︁M
i=1 δθi

t

evolves according to the continuity equation:

∂tµt − div
⎤

µt∇
δR
δµ

[µt]
⎣

= 0 , on [0,+∞) × Θ, (50)

where for a distribution µ ∈ P(Θ) the potential Ąeld δR
δµ [µ] is the first variation or Fréchet

differential of R. In the general case where µt is not necessarily an empirical probabil-
ity measure, this PDE can be understood as a metric gradient Ćow with respect to the
Wasserstein metric on P(Θ) [Ambrosio, 2008b; Santambrogio, 2015].

The Wasserstein distance arises from the problem of optimal transportation of prob-
ability measures [Villani, 2009; Santambrogio, 2015]. Assuming Θ is some Hilbert space,
the Wasserstein distance Wp, for p ≥ 1, is deĄned between two Borel probability measures
µ, µ′ ∈ P(Θ) by:

Wp(µ, µ′) :=

(︄

inf
γ∈Γ(µ,µ′)

∫︂

Θ×Θ

/︂
/︂θ − θ′

/︂
/︂p dγ(θ, θ′)

)︄1/p

, (51)

where Γ(µ, µ′) is the set of couplings between µ and µ′, i.e. the set of probability measures
on Θ × Θ whose marginals are respectively µ and µ′:

Γ(µ, µ′) :=
{︂

γ ∈ P(Θ × Θ) : π1
#γ = µ , π2

#γ = µ′
}︂

. (52)

Then, Wp provides Pp(Θ) Ů the space of probability measure with Ąnite p-th moment
Ů with a structure of complete separable metric space. In particular, it is known since
the work of Jordan, Kinderlehrer, and Otto [Jordan, 1998] that several linear or nonlinear
evolution PDEs such as Fokker-Planck or porous medium equations, can be interpreted
as metric gradient Ćows for this metric. Indeed, in a similar manner than the gradient
Ćow Eq. (44) can be obtained as the limit when τ → 0+ of gradient descent Eq. (43), the
Wasserstein gradient Ćow Eq. (50) can be obtained as the limit when τ → 0+ of a ŞJKO
schemeŤ corresponding to its implicit discretization. For an initialization µ0 ∈ P(Θ) and
a step-size τ > 0, such a JKO scheme reads:

∀k ≥ 0 , µk+1 ∈ arg min
µ∈P(Θ)

R(µ) +
1
2τ

W2(µ, µk)2 .

In machine learning, evolution PDEs of the form Eq. (50) have been used by several
authors to study the training dynamics of shallow [Chizat, 2018; Rotskoff, 2019; Mei,
2019; Chizat, 2022; Nitanda, 2022] or deep neural networks [Lu, 2020; Ding, 2021; Isobe,
2023]. Indeed, in addition to providing an elegant formalism for studying the training of
neural networks at large width, the relaxation of the risk in the space of measures also
beneĄts from a simpliĄed optimization landscape, for example by eliminating spurious
critical points.
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2 Contributions

We are now in position to detail the contributions of this work. These contributions are
based on three papers that have been written in the context of this PhD and are listed in
the list of publications. In all these works, the code for reproducing numerical results is
freely available at: https://github.com/rbarboni.

I Training of infinitely deep and wide residual architectures

We saw that important effort has been put in developing a mathematical theory for study-
ing the training of overparameterized neural network models. Convergence properties of
gradient descent are now partially understood in some linearization regimes Ů such as
the Neural Tangent Kernel regime [Jacot, 2018] Ů or for some architectures Ů such as
shallow perceptrons with a mean-Ąeld scaling [Chizat, 2018]. Yet in applications, recent
breakthrough have been made by very deep architectures such as ResNets [He, 2016a] or
Transformers [Vaswani, 2017] whose training is permitted by the use of skip-connections.

Our Ąrst contribution in Chapter I, is thus to propose a mathematical framework
for studying the training of ResNets of both inĄnite depth and arbitrary width. In this
purpose we consider a mean-field NODE model, that is a NODE of the form Eq. (42) whose
residuals are mean-Ąeld models of neural networks of the form Eq. (39). We consider the
input space and output space are the same Euclidean space X = Yout = R

d, for some
d ≥ 1, and the basis function in Eq. (39) is of the form ψ : Θ ×R

d → R
d. DeĄnition I.1 is

as follows:

Definition (Mean-Ąeld NODE). For a family of probability measures µ = ¶µ(.♣s)♢s∈[0,1] ∈
P(Θ)[0,1] and input x, we define the output of the NODE model as NODEµ(x) := xµ(1)
where (xµ(s))s∈[0,1] satisfies the forward ODE:

∀s ∈ [0, 1] ,
d
ds
xµ(s) = Fµ(.♣s)(xµ(s)) , with xµ(0) = x . (53)

We propose to parameterize this model over the set of probability measures on [0, 1] × Θ
whose marginal is the Lebesgue measure on [0, 1]. The family of probability measure
¶µ(.♣s)♢s∈[0,1] ∈ P(Θ)[0,1] is then obtained by disintegration. This space of parameteriza-
tions is deĄned by:

PLeb
2 ([0, 1] × Θ) :=

{︂

µ ∈ P2([0, 1] × Θ) : π1
#µ = Leb([0, 1])

}︂

.

Conditional optimal transport

When training ResNets, gradient of the risk is computed with respect to the Euclidean
metric on the space of parameters at each layer. For our mean-Ąeld model of NODE,
this corresponds to a layer-wise Wasserstein-2 distance, which we interpret as a Condi-
tional Optimal Transport (COT) distance, i.e. a restriction of the classical OT distance
which preserves the marginal condition. We deĄne and study properties of the COT
distance in Section I.2. In this purpose, we assume Θ is some Euclidean space R

p for
p ≥ 1. Note that similar topologies on the set of probability measure on product spaces
have found other applications, for examples in the study of evolution PDEs with hetero-
geneities [Peszek, 2023], of Bayesian inverse problems [Hosseini, 2025] or of Bayesian Ćow
matching [Chemseddine, 2024].
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The COT or Conditional Wasserstein distance WCOT
2 corresponds to a L2-Wasserstein

distance and is deĄned for µ, µ′ ∈ PLeb
2 ([0, 1] × Θ) by:

WCOT
2 (µ, µ′) :=

⎤∫︂ 1

0
W2

(︁
µ(.♣s), µ′(.♣s)[︄2 ds

⎣1/2

.

In particular, the space PLeb
2 ([0, 1] × Θ) equipped with the distance WCOT

2 is a com-
plete metric space (Propositions I.2.1 and I.2.3). As for the classical Wasserstein distance
in Eq. (51), we show in Proposition I.2.2 that the distance WCOT

2 can be obtained as the
optimal value of a convex minimization problem over the space of couplings. However, in
contrast with Eq. (51), this problem has to be restricted to a set of ŞconditionalŤ couplings.
Namely for µ, µ′ ∈ PLeb

2 ([0, 1] × Θ) we have:

WCOT
2 (µ, µ′)2 = min

γ∈ΓLeb(µ,µ′)

∫︂

([0,1]×Θ)2
∥θ − θ′∥2dγ(s, θ, s′, θ′) ,

where ΓLeb(µ, µ′) is the set of probability measures γ on [0, 1]×Θ×Θ s.t. its Ąrst marginal
is the Lebesgue measure on [0, 1] and s.t. γ(.♣s) ∈ Γ(µ(.♣s), µ′(.♣s)) for ds-a.e. s ∈ [0, 1].
As a consequence, the Conditional Wasserstein topology is stronger (and in fact strictly
stronger, cf. Remark I.2.1) than the Wasserstein topology.

In the case of the Wasserstein distance, it is a well-established result that absolutely
continuous curves in the Wasserstein topology are characterized as solution to linear con-
tinuity equations [Ambrosio, 2008b, Thm. 8.3.1]. Generalizing on this result, we show
in Theorem I.1 that absolutely continuous curves for the Conditional Wasserstein topol-
ogy admit a similar dynamic characterization. Precisely, for an interval I ⊂ R, a curve
(µt)t∈I in PLeb

2 ([0, 1] × Θ) is absolutely continuous if and only if it is solution (in the weak
sense) to the continuity equation:

∂tµt + div((0, vt)µt) = 0 on I × [0, 1] × Θ, (54)

for some Borel velocity Ąeld v : I × [0, 1] × Θ → Θ such that ∥vt∥L2(µt) ∈ L1(I) .

Training NODEs with Conditional Wasserstein gradient flow

We then study the training of the mean-Ąeld NODE model. We assume the space of
targets is some Euclidean space Ytarg = R

d′
for some d′ ≥ 1. Provided with a Ąnite

training dataset D ⊂ R
d × R

d′
and a loss function ℓ : Rd × R

d′ → R the training risk is
then deĄned for a parameterization µ ∈ PLeb

2 ([0, 1] × Θ) as:

R(µ) :=
1

#D
∑︂

(x,y)∈D

ℓ(NODEµ(1), y) .

In the case of NODEs of Ąnite width, the original method proposed by [Chen, 2018] to
compute the gradient is to rely on an adjoint sensitivity analysis. In addition to solving the
forward equation Eq. (53), the gradient is obtained by solving a backward ODE, modeling
the computations made by the backpropagation algorithm. For data (x, y) ∈ D and
parameterization µ ∈ PLeb

2 ([0, 1] × Θ), the adjoint variable (pµ,x,y(s))s∈[0,1] is solution to:

∀s ∈ [0, 1],
d
ds
pµ,x,y(s) = −DxFµ(.♣r)(xµ(s))⊤pµ,x,y(s) , (55)
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with pµ,x,y(1) = ∇xℓ(xµ(1), y). The gradient velocity Ąeld ∇R[µ] : [0, 1] × Θ → Θ is then
deĄned as:

∇R[µ](s, θ) :=
1

#D
∑︂

(x,y)∈D

Dθψ(θ, xµ(s))⊤pµ,x,y(s).

This gives rise to the following DeĄnition I.3, deĄning gradient Ćow curves for the training
risk R as solution to a continuity equation of the form Eq. (54) with the gradient Ąeld ∇R.
In particular, it has been proven that, in the case of residuals of Ąxed Ąnite width, the
parameter distribution of a ResNet trained with gradient Ćow converges locally-uniformly
in time to a solution of this PDE when the depth of the ResNet tends to inĄnity [Marion,
2023b]. Eq. (56) generalizes here this gradient Ćow dynamics to inĄnitely deep ResNets
of arbitrary (Ąnite or inĄnite) width.

Definition (Gradient Ćow). Let I ⊂ R be an interval. A locally absolutely continuous
curve t ∈ I ↦→ µt ∈ PLeb

2 ([0, 1] × Θ) is a gradient Ćow for R if it is solution to the
continuity equation:

∂tµt − div ((0,∇R[µt])µt) = 0 on I × [0, 1] × Θ. (56)

In contrast with Eq. (56), gradient Ćow curves in metric spaces are usually deĄned
as solution to variational problems. We retain in DeĄnition I.5, the notion of curve of
maximal slope [Ambrosio, 2008b, Def.1.3.2].

Definition (Curve of maximal slope). Let I ∈ R be an interval. Then a locally absolutely
continuous curve (µt)t∈I in PLeb

2 ([0, 1]×Θ) is a curve of maximal slope for the risk R if the
map t ↦→ R(µt) is non-increasing and for dt-a.e. t ∈ I the following Energy Dissipation
Inequality (EDI) holds:

d
dt

R(µt) ≤ −1
2

(︄\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄

2

+ ♣∇R♣2 (µt)

)︄

,

where
\︄
\︄
\︄

d
dtµt

\︄
\︄
\︄ is the metric derivative and ♣∇R♣ is an upper gradient for R (Definition I.4).

Relying on our characterization of absolutely continuous curves for the WCOT
2 -topology on

PLeb
2 ([0, 1] × Θ), we show the two above deĄnitions of gradient flow and curve of maximal

slope of the risk R coincide. This is the content of Theorem I.2:

Theorem. Let I ⊂ R be an open interval. Then a curve (µt)t∈I in PLeb
2 ([0, 1] × Θ) is a

gradient Ćow for the risk R if and only if it is a curve of maximal slope for R.

In turn, this identiĄcation allows us to use results on the existence and uniqueness of curves
of maximal slope to deduce corresponding statements for gradient Ćow curves. These
results, presented in Section I.3.4 hold under mild regularity and growth assumptions on
the basis function ψ and the special case of shallow perceptrons is treated in Section I.A.
Our existence and uniqueness result is the following:

Theorem. Let µ0 ∈ PLeb
2 ([0, 1] × Θ) be some parameter initialization. Then there exists

a unique curve of maximal slope / gradient flow (µt)t∈[0,+∞) for the risk R starting from
µ0. In particular, such a gradient flow curve is defined for every time t ≥ 0.
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II Convergence in the training of residual architectures

Relying on the mathematical framework developed in Chapter I, we focus in Chapter II
on the asymptotic analysis of the gradient Ćow dynamic Eq. (56) for the training of
deep ResNets or NODEs. Considering standard examples of residual architectures such
as random feature models [Rahimi, 2007] or single-hidden-layer perceptrons, we show a
convergence result: for proper initializations of the parameters, the gradient Ćow converges
at a linear rate to a parameterization that is a global minimizer of the training risk.
In contrast, other convergence results for the training of deep and wide ResNets either
state optimality of the parameterization under a convergence assumption [Lu, 2020; Ding,
2022], or convergence towards a Ąrst order critical point which is not necessarily a global
optimizer [Isobe, 2023]. In the end, our theoretical results are supported by numerical
experiments on image classiĄcation datasets. The code is available at: https://github.

com/rbarboni/FlowResNets.

ResNets and Polyak-Łojasiewicz property

Our proof strategy to obtain convergence of gradient Ćow is to show that the training
risk R satisĄes a Polyak-Łojasiewicz (P-Ł) inequality around appropriate initializations.
Initially introduced by Polyak [Polyak, 1963] for studying the convergence of gradient
based optimization algorithms, such an inequality has been observed by several authors to
hold for the risk associated to the training of neural networks [Oymak, 2019; Chatterjee,
2022; Marion, 2023b]. We review in Section II.2 the local versions of the P-č inequality we
will use as well as the local convergence results it implies for gradient descent and gradient
Ćow.

For the risk R associated to the training of our mean-Ąeld NODE model, the local P-č
inequality here takes the form:

∥∇R[µ]∥2
L2(µ) ≥ mR(µ) , (57)

where m > 0 is the P-Ł constant and µ is any parameterization in the neighbourhood of
some initialization µ0 ∈ PLeb

2 ([0, 1] × Θ). In particular, Eq. (57) implies that every critical
point of R in a neighbourhood of µ0 is actually a global minimizer. Also, applying results
from [Dello Schiavo, 2024], it allows to conclude to the convergence of gradient Ćow curves
to an optimal parameterization at a linear rate when the risk at initialization is already
sufficiently small.

In the context of deep ResNets, we show in Lemma II.3.1 that a P-č property is
generically satisĄed by our mean-Ąeld NODE model and detail in Section II.3.2 how the
P-č constant depends on the residuals architecture and on the approximation properties
of the associated functional space. Precisely, Eq. (II.15) shows that the P-č constant
can be expressed in terms of the conditioning of the residuals Neural Tangent Kernel
(NTK). In the case of mean-Ąeld residuals of the form Eq. (39), the NTK depends on the
parameterization µ ∈ P(Θ) at each layer and is given by:

K[µ](x, x′) :=
∫︂

Θ
Dθψ(θ, x)Dθψ(θ, x′)⊤dµ(θ) . (58)

The NTK in particular evolves with the parameterization during training but, assuming
it stays well-conditioned, one can show convergence of gradient Ćow to a global minimizer
of the training risk (Corollary II.3.1). In turn, we show this assumption can be satisĄed
for standard architectures in Sections II.4 and II.5.
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Convergence for RKHS residuals

We Ąrst investigate in Section II.4 the case of a linear parameterization of the residuals.
For a Hilbert space of features H and a parameter θ ∈ Θ = Hd, these are residuals of the
form:

Fθ(x) =

⎛

ˆ︂
∐︂

⟨θ1, ϕ(x)⟩H
...

⟨θd, ϕ(x)⟩H

⎞

ˆ︃
ˆ︁ ,

where ϕ = R
d → H is some feature map. This for example encompasses the case of linear

layers or of 2-layer perceptrons of arbitrary width with Ąxed hidden layer such as random
feature models [Rahimi, 2007]. Our interest in this architecture is motivated by the fact
that the space of residuals F := ¶Fθ : θ ∈ Θ♢ can then be provided with a structure of
Reproducing Kernel Hilbert Space (RKHS). This has two main interests:

• Equipped with this RKHS metric, the space of residual maps is isometric to the space
of parameters Θ = Hd equipped with its standard Hilbert metric. This allows seeing
the NODE as a nonparametric RKHS-NODE model deĄned in DeĄnition II.4 by the
integration of an ODE with nonparametric time-dependent residuals. Moreover, the
gradient Ćow dynamic Eq. (44) can be projected onto a gradient Ćow on the space
of residuals (Proposition II.4.3).

• For this architecture, the NTK is the kernel naturally associated with the RKHS
structure. In particular, it does not depend on the parameterization and stays con-
stant during training. Choosing functional spaces with good approximation prop-
erties, we then obtain a convergence result for gradient Ćow in Theorem II.4 and
for gradient descent in Theorem II.5. Moreover these functional spaces can be ap-
proximated by random feature models of sufficiently large width. As a consequence,
we also obtain in Theorem II.6 convergence result for deep ResNets whose width is
polynomial in the number of data samples.

Convergence for SHL residuals

We then turn in Section II.5 to the more realistic case of residuals which are two-layer
perceptrons of arbitrary width with trained hidden layers. These are mean-Ąeld models
of the form Eq. (39) with a parameter space Θ = R

d × R
d × R and a basis function

ψ : Θ × R
d → R

d of the form:

∀(u,w, b) ∈ Θ , ∀x ∈ R
d , ψ((u,w, b), x) = uσ(w⊤x+ b) ,

where σ is some nonlinear activation function such as any smooth approximation of ReLU.
In this case, leveraging the partial linearity of ψ with respect to its parameters, the NTK
in Eq. (58) decomposes as a sum of two positive kernels:

∀x, x′ ∈ R
d , K[µ](x, x′) = k1[µ](x, x′)Id +K2[µ](x, x′) ,

where k1[µ] is a scalar kernel corresponding to gradients w.r.t. the linear parameter u
and depending only on the marginal of µ w.r.t. (w, b), or feature distribution, and K2[µ]
corresponds to gradients w.r.t. the nonlinear parameters (w, b).

In case the feature distribution is Ąxed, that is ψ only has linear parameters, k1 is the
kernel associate to the random feature model previously studied in Section II.4. Spectral
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properties of this type of kernel have been studied for different type of activations [Bach,
2017a; Cho, 2009] but, generically, strict positivity of the NTK is ensured as soon as the
feature distribution has a dense support (Proposition II.5.1). Moreover, in the special
case of a trigonometric activation and a uniform bias distribution, a lower bound on the
conditioning of the NTK can be obtained by leveraging results from the theory of radial
basis function interpolation [Schaback, 1995].

However, in contrast with Section II.4, the kernel k1 may evolve during training. Still,
using that the conditioning of k1 is a Lipschitz continuous function of the parameter
distribution (Lemma II.5.1), we are able to obtain a convergence result in Theorem II.7.
Moreover, our convergence assumptions are precisely quantiĄed with respect to the number
of data samples in Corollary II.5.1, for special cases of activations and of initializations.

III Feature learning in shallow architectures

In Chapter II, we have shown convergence of gradient descent and gradient Ćow for the
training of deep ResNets with different choices of residual architectures. In case residuals
are single-hidden-layer (SHL) perceptrons of the form Eq. (34), convergence requires a
sufficiently spread distribution of features, i.e. weights in the inner layer. However, while
this assumption can be ensured at initialization, our analysis in Chapter II is unable to
track the evolution of the feature distribution during training. This restriction is arguably
the pitfall of many convergence results for the training of neural networks which are
unable to describe the evolution of nonlinear parameters, even though feature learning
is expected to be at the core of approximation and generalization capabilities of neural
networks [Chizat, 2018; Rotskoff, 2019; Allen-Zhu, 2019; Du, 2019; Lee, 2019; Zou, 2020].

To tackle this problem, we study in Chapter III the training of a mean-Ąeld model
of neural network for solving a univariate regression task in a teacher-student scenario
where the target signal is given by a neural network. In this setting, we consider the
Variable Projection (VarPro) algorithm described in Eq. (48) and show convergence of the
student feature distribution to the teacher feature distribution. In addition, in a certain
regime of small regularization, we are able to establish a linear convergence rate for the
feature distribution by comparing the training dynamic to the solution of a weighted ultra-
fast diffusion equation [Iacobelli, 2019b]. Our result are to be compared with the results
of Chizat and Bach [Chizat, 2018] and Rotskoff et al. [Rotskoff, 2019], which establish
qualitative convergence results for the learning of the feature distribution in the training
of shallow neural networks with gradient descent. In contrast we study a two-timescale
variant of gradient descent and establish a linear convergence rate.

In the end, these theoretical results are supported by numerical experiments. We
show on low-dimensional problems with synthetic data that, for a suitable choice of hy-
perparameters, the evolution of the feature distribution during training can indeed be
faithfully modeled by an ultra-fast diffusion equation. Moreover, we also show with ex-
periments on the CIFAR10 dataset [Krizhevsky, 2009] that the VarPro algorithm can
be adapted for solving large-scale machine learning problems. The code is available at:
https://github.com/rbarboni/VarPro.

Variable Projection and reduced risk

We Ąrst study properties of the VarPro algorithm. In Chapter III, we consider mean-Ąeld
models of neural networks of the form Eq. (39), with a basis function ψ that is partially
linear with respect to its parameters. Precisely, we consider that the parameter set is of

36

https://github.com/rbarboni/VarPro


2. Contributions

the form Θ = R × Ω, where Ω is some space of features, and ψ is given by:

ψ : ((u, ω), x) ∈ Θ × R
d ↦→ uϕ(ω, x) ∈ R ,

where ϕ : Ω × R
d → R is some feature map. This setting for example encompasses

the case of SHL perceptron models of Eq. (34) where the feature map is of the form
ϕ : ((w, b), x) ↦→ σ(w⊤x + b). Then, given a feature distribution µ ∈ P(Ω), the linear
parameters can be considered as a function u ∈ L1(µ) and the neural network’s output
reads:

∀x ∈ R
d, Fµ,u(x) =

∫︂

Ω
u(ω)ϕ(ω, x)dµ(ω) . (59)

We consider a univariate regression problem with square loss. For a regularization strength
λ, the training risk for a feature distribution µ ∈ P(Ω) and outer weights u ∈ L2(µ) reads:

Rλ(µ, u) =
1

#D
∑︂

(x,y)∈D

1
2

♣Fµ,u(x) − y♣2 + λ

∫︂

Ω
∥u∥2dµ .

Leveraging the partial linearity of ψ, one can distinguish in Eq. (59) between nonlinear
parameters, which are encoded in the feature distribution µ ∈ P(Ω), and linear param-
eters, which are encoded in u ∈ L2(µ). In particular, for a Ąxed feature distribution µ,
minimization of Rλ with respect to u is a ridge regression problem which can be solved
analytically in closed form and performed efficiently by numerically solving a linear sys-
tem. As described in Eq. (48), the VarPro algorithm Ů or two-timescale limit of gradient
descent Ů then consists in performing partial optimization over u before taking a gradient
step on the non linear parameters. Equivalently, it can be seen as a gradient descent over
a reduced risk deĄned for every feature distribution µ ∈ P(Ω) by:

Lλ(µ) = inf
u∈L2(µ)

1
λ

Rλ(µ, u) = inf
u∈L2(µ)

1
#D

∑︂

(x,y)∈D

1
2λ

♣Fµ,u(x) − y♣2 +
∫︂

Ω
∥u∥2dµ .

In the case λ = 0, this reduced risk is the value of a constrained optimization problem:

L0(µ) = inf
u∈L2(µ)
Fµ,u=Y

∫︂

Ω
∥u∥2dµ .

We consider a Şteacher-studentŤ scenario described by Assumption III.1 in which the
target signal is represented by a teacher network with some teacher feature distribution
µ̄ ∈ P(Ω). In this scenario, we show in Section III.2 that, for λ > 0, the reduced risk Lλ

can be interpreted as an inĄmal convolution between two types of statistical distances:
a Maximum Mean Discrepancy (MMD) distance, which arises from the convolution with
the feature map ϕ, and a χ2-divergence, which arises from the regularization term. In
particular, in the limit where λ → 0+, L0 corresponds to the χ2-divergence between
the teacher feature distribution µ̄ and the student feature distribution µ. We then show
in Lemma III.3.3 that the functional Lλ Γ-converges on P(Ω) to this χ2-divergence, imply-
ing for example convergence of sequences of minimizers of Lλ to the teacher distribution
(Proposition III.3.1).
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Convergence and ultra-fast diffusion regime

We show in Section III.4 that, in the limit of small learning rates, the evolution of the
feature distribution µ under the VarPro algorithm corresponds to a Wasserstein gradient
Ćow for the reduced risk Lλ. Following Eq. (50), this evolution takes the form:

∂tµt − div

(︄

µt∇
δLλ

δµ
[µt]

)︄

= 0 , on [0,∞) × Ω, (60)

where the potential δLλ

δµ [µ] is the Ąrst variation of Lλ. We show in Theorem III.1, that
the above equation is well-posed in the case λ > 0. Moreover, we show in Theorem III.4
that, provided solutions stay sufficiently smooth (e.g., with bounded log-density) the re-
duced risk Lλ converges to 0 with a convergence rate of order O(1/t). This in particular
implies that, in the limit where t → +∞, the student feature distribution converges to the
teacher’s.

In the case λ = 0, we explain in Section III.4 how the wasserstein gradient Ćow of the
reduced risk L0 can be interpreted as a weighted ultra-fast diffusion equation of form:

∂tµ− div

(︄

µ̄∇
⎤
µ

µ̄

⎣−1
)︄

= 0 , on [0,∞) × Ω, (61)

where µ̄ ∈ P(Ω) is the teacher feature distribution. In particular, well-posedness of such
a weighted ultra-fast diffusion has been shown in the case where Ω is the n-dimensional
Ćat torus, or a bounded convex domain of R

n and Neumann boundary conditions are
imposed [Iacobelli, 2019b]. Moreover, in this case, the solutions converge in L2 to the
teacher feature distribution µ̄ at a linear rate, i.e. a convergence rate of order O(e−Ct) for
some constant C > 0. In turn, taking the limit λ → 0+, we show in Theorem III.5 that
(sufficiently regular) solutions of Eq. (60) converge locally-uniformly in time to solutions
of the weighted ultra-fast diffusion Eq. (61).

In Section III.6, we show these theoretical predictions are supported by numerical
experiments on simple settings reproducing our assumptions. We observe that, for a suffi-
ciently low regulariation strength λ > 0, single-hidden-layer neural networks trained with
VarPro indeed enter an ultra-fast diffusion regime where the teacher feature distribution
is recovered with a linear convergence rate.
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I.1 Introduction

Understanding the training dynamics of neural networks is an important problem in Ma-
chine Learning as it brings the hope of understanding the good performances of these
models. This training is however an involved optimization problem, usually solved by
performing (stochastic) gradient descent for the training risk, an optimization procedure
which, though simple, often manages to Ąnd a global minimum of the risk despite its non-
convexity. This phenomenon is now correctly understood in some simple cases such as the
one of linear networks [Hardt, 2016a; Bartlett, 2018; Zou, 2019; Bah, 2022]. In the more
realistic case of non-linear architectures, most works have focused on Multi-Layer Per-
ceptrons (MLP) [Li, 2017; Du, 2019; Allen-Zhu, 2019; Zou, 2020; Lee, 2019; Chen, 2020;
Nguyen, 2021] and convergence towards a minimizer of the risk can be obtained with great
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probability over a random initialization provided that the network is sufficiently wide, a
regime referred to as ŞoverparameterizationŤ. Taking the limit of inĄnite width, many
works have also studied the convergence of gradient descent for the training of neural
networks in the limit of an inĄnite number of parameters [Chizat, 2018; Mei, 2018; Ja-
vanmard, 2020; Wojtowytsch, 2020; Nguyen, 2023]. In those works, the neural network
is trained by modeling the parameters as a probability measure over the parameter space
and performing a Wasserstein gradient Ćow over the set of probability measures. Notably,
Chizat and Bach [Chizat, 2018] establish a result of optimality at convergence: if the
gradient Ćow converges then its limit is a global minimizer of the training risk.

We will focus in the Ąrst two chapters of the thesis on the case of the Residual Neural
Network (ResNet) architecture which we presented in Section 1.4. ResNets were Ąrst in-
troduced by He et al. [He, 2016a] for applications in computer vision but the architecture
has since distinguished itself by obtaining state-of-the-art results in several other machine-
learning applications. A key feature of ResNets is the extensive use of skip connections
(Eq. (40)): each layer consists of the addition of a perturbation (called residual) to the
output of the previous layer. The presence of skip connections has indeed been identiĄed to
ease the training of deeper neural networks [Raiko, 2012; Szegedy, 2017] by mitigating the
vanishing / exploding gradient phenomena, a common problem encountered when training
deep neural networks [Bengio, 1994; Glorot, 2010]. The ResNet architecture has thus per-
mitted the training of neural networks of almost arbitrary depth [He, 2016b]. Considering
the limit where the depth tends to inĄnity Chen et al. [Chen, 2018] introduced the Neural
Ordinary Differential Equation (NODE) architecture we presented in Section 1.4.2: with
a 1/D scaling of residual branches, passing to the limit of inĄnite depth leads to a model
performing the integration of the ODE Eq. (42), with a parametric velocity Ąeld.

An important contribution of NODEs is to provide a theoretical framework upon which
many other works have been based to study very deep neural network architectures. Chen
et al. [Chen, 2018] proposed a method based on adjoint sensitivity analysis to compute the
gradient of NODEs efficiently without automatic differentiation. Sander et al. [Sander,
2021] proposed a new architecture based on a second-order ODE which can be trained with
reduced computational complexity. Inspired by methods from medical imaging and shape
analysis, Vialard et al. [Vialard, 2020] proposed a new algorithm for the training of deep
ResNets. E, Han, and Li [E, 2019] and E, Ma, and Wu [E, 2021] studied the training and
generalization properties of deep ResNets borrowing tools from the mathematical theory
of Optimal Control.

Notations For a metric space X, P(X) is the set of Borel probability measures over
X. This set is endowed with the narrow topology, which is the topology of convergence
against the set Cb(X) of bounded continuous functions. For x ∈ X, we note δx ∈ P(X)
the Dirac measure at x. For p ≥ 1, Pp(X) is the subset of P(X) of probability mea-
sures with Ąnite p-order moment, endowed with the Wasserstein distance Wp deĄned
in Eq. (51) [Villani, 2009; Santambrogio, 2015]. When X is a Hilbert space we deĄne on
Pp(X) the p-Energy Ep(µ) :=

∫︁

X ♣x♣pdµ(x). If µ ∈ P(X) and f : X ↦→ Y is a measurable
map between topological spaces we denote by f#µ ∈ P(Y ) the pushforward of µ by f . If
¶fi : Xi → Yi♢1≤i≤n is a family of mappings then (f1, ..., fn) designates the product map
(f1, ..., fn) : (x1, ..., xn) ↦→ (f1(x1), ..., fn(xn)) and if X = X1 × ...×Xn is a product space
we designate by πi the projection πi : (x1, ..., xn) ∈ X ↦→ xi ∈ Xi.
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I.1.1 Mean-field models of neural networks

We consider in this chapter Neural ODEs (NODEs) modeling ResNets whose depth tends
to inĄnity with a proper rescaling of the residuals layers [Chen, 2018]. We also consider
residuals of the form Eq. (39). Such Şmean-Ąeld modelsŤ can be thought of as neural
networks of arbitrary width and were studied before by Chizat and Bach [Chizat, 2018],
Mei, Montanari, and Nguyen [Mei, 2018], Rotskoff and Vanden-Eijnden [Rotskoff, 2018],
Wojtowytsch [Wojtowytsch, 2020], and Nguyen and Pham [Nguyen, 2023]. Provided with
the parameter space Θ ⊂ R

p, the input space R
d and with a Borel map ψ : Θ × R

d → R
d

(the basis function), we consider mappings Fµ : R
d → R

d parameterized by measures
µ ∈ P(Θ) and deĄned by:

Fµ : x ∈ R
d ↦→

∫︂

Θ
ψ(θ, x)dµ(θ) . (I.1)

Single-hidden-layer perceptrons The above deĄnition encompasses as a particular
case standard neural network architectures. For example, for Θ = R

d × R
d × R and

ψ : ((u,w, b), x) ↦→ uσ(w⊤x+ b) with a real-valued function σ : R → R (called activation),
considering the atomic measure µ = 1

M

∑︁M
i=1 δ(ui,wi,bi) one recovers the classical model of

a single-hidden-layer (SHL) perceptron of width M ≥ 1 deĄned in Eq. (34):

Fµ : x ↦→ 1
M

M∑︂

i=1

uiσ(w⊤
i x+ bi) . (I.2)

We will study this type of architecture in more detail in Chapters II and III.

Convolutional layers Closer to applications, Eq. (I.1) also encompasses the residuals
originally used by He et al. [He, 2016a]. These consists of two of the convolutional layers
deĄned in Eq. (31), composed with a nonlinear activation. Consider integers n, c, k ≥ 0
and Θ = R

c×1×k×k ×R
1×c×k×k ×R

1×n×n, the set of parameters of the form (u,w, b) where
u and w are convolutional Ąlters of size c× 1 × k× k and 1 × c× k× k respectively and b
is a bias term of size 1 × n× n. Then for an image input x ∈ R

c×n×n of size n× n with c
channels, and (u,w, b) ∈ Θ consider the basis function ψ : ((u,w, b), x) ↦→ u⋆σ(w⋆x+b) ∈
R

c×n×n where the activation σ is applied component-wise. Then for an empirical measure
µ = 1

M

∑︁M
i=1 δ(ui,wi,bi), Eq. (I.1) gives on input x:

Fµ(x) =
1
M

M∑︂

i=1

ui ⋆ σ(wi ⋆ x+ bi) , (I.3)

which is the output of a ResNet residual with M intermediary channels in [He, 2016a].
However, the deĄnition in Eq. (I.1) does not model some popular architectures such as
normalization or pooling layers which play an important role in the success of ResNets.

Attention layers Finally, Eq. (I.1) also models attention layers at the heart of Trans-
formers architectures [Vaswani, 2017]. Consider as parameter space Θ = R

c×d × R
c×d × R

d×d,
the set of triplets (K,Q, V ) where K ∈ R

c×d is the key matrix, Q ∈ R
c×d is the query

matrix and V ∈ R
d×d is the value matrix. For parameters (K,Q, V ) ∈ Θ and an input

sequence of tokens x = (xi)1≤i≤N ∈ (Rd)N of length N ≥ 0, the attention head deĄned
in Eq. (35) is:

ψ((K,Q, V ),x) = Attention((K,Q, V ),x) :=

⎛

∐︂

N∑︂

j=1

e⟨Kxi,Qxj⟩
∑︁N

j=1 e
⟨Kxi,Qxj⟩

V xj

⎞

ˆ︁

1≤i≤N

∈ (Rd)N .
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Then for an empirical measure µ = 1
M

∑︁M
k=1 δ(Kk,Qk,Vk), Eq. (I.1) deĄnes a multi-head

attention layer with M heads:

Fµ(x) =
1
M

M∑︂

k=1

Attention((Kk, Qk, Vk),x) . (I.4)

Note that with this deĄnition, we are only able to describe Transformer architectures
taking as input sequences of tokens of Ąxed length N . However, our setting could be
adapted to model Transformer architecture taking as inputs sequences of tokens of various
Ąnite lengths by considering different basis functions depending on the length of the input
sequence.

I.1.2 Mean-field NODEs

We proceed then to the deĄnition of Neural ODEs (NODEs) modeling ResNets whose
depth tends to inĄnity with a proper rescaling of the residual layers [Chen, 2018]. Our
NODE model is then an ODE whose velocity Ąeld (or residual) belongs to the class of
mappings parameterized by measure deĄned in Eq. (I.1). Similar models of Şmean-Ąeld
NODEsŤ or Şmean-Ąeld limit of ResNetsŤ were studied by Lu et al. [Lu, 2020], Ding et al.
[Ding, 2022], and Isobe [Isobe, 2023].

Definition I.1 (Mean-Ąeld NODE). For a family of probability measures µ = ¶µ(.♣s)♢s∈[0,1] ∈
P(Θ)[0,1] and input x ∈ R

d, we define the NODE model output as NODEµ(x) := xµ(1)
where (xµ(s))s∈[0,1] satisfies the Forward ODE:

d
ds
xµ(s) = Fµ(.♣s)(xµ(s)) , xµ(0) = x . (I.5)

When there is no ambiguity, we simply write x(s).

The parameter set PLeb
2 ([0, 1] × Θ) To justify the well-posedness of Eq. (I.5) it is Ąrst

necessary to deĄne the adequate set of parameters we will consider. Given a topological
space Z, we deĄne PLeb

2 ([0, 1] × Z) as the set of probability measures µ ∈ P2([0, 1] × Z)
whose marginal w.r.t. [0, 1] is the Lebesgue measure Leb([0, 1]):

PLeb
2 ([0, 1] × Z) :=

{︂

µ ∈ P2([0, 1] × Z) : π1
#µ = Leb([0, 1])

}︂

.

Given µ ∈ PLeb
2 ([0, 1] × Θ), using a disintegration result [Attouch, 2014, Thm.4.2.4], there

exists a ds-a.e. uniquely determined family of probability measures µ(.♣s) ∈ P2(Z) such
that for every measurable f : [0, 1] × Z → R the mapping:

s ∈ [0, 1] ↦→
∫︂

Z
f(s, z)dµ(z♣s)

is measurable and
∫︂

[0,1]×Z
f(s, z)dµ(s, z) =

∫︂ 1

0

∫︂

Z
f(s, z)dµ(z♣s)ds .

In the following, we will consider as parameters probability measures µ ∈ PLeb
2 ([0, 1] × Θ).

Therefore, every parameter µ ∈ PLeb
2 ([0, 1] × Θ) is naturally associated with a (almost

everywhere uniquely deĄned) family of probability measures ¶µ(.♣s)♢s∈[0,1]. We will provide
this set of parameters with a modiĄcation of the Wasserstein-2 distance [Villani, 2009;
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Santambrogio, 2015] that takes into account the marginal constraint by considering a
restriction of Kantorovitch’s original optimal coupling problem to the set of couplings
that are the identity on the Ąrst variable s ∈ [0, 1]. The solution of this new optimization
problem induces the Conditional Optimal Transport (COT) distance on the parameter
set [Hosseini, 2025].

Well-posedness of NODEs The following assumption on ψ will be sufficient to show
the well-posedness of Eq. (I.5) for any parameter µ ∈ PLeb

2 ([0, 1] × Θ). This is the content
of Proposition I.1.1.

Assumption I.1. Assume ψ : Θ × R
d → R

d is measurable and

(i) (quadratic growth) grows at most quadratically w.r.t. θ and linearly w.r.t. x: there
exists a constant C s.t.

∀x ∈ R
d , ∀θ ∈ Θ , ∥ψ(θ, x)∥ ≤ C(1 + ∥x∥)(1 + ∥θ∥2) .

(ii) (local Lipschitz continuity) is locally Lipschitz w.r.t. x, with a Lipschitz constant that
grows at most quadratically with θ: for every R ≥ 0, there exists a constant C(R) s.t.

∀x, x′ ∈ B(0, R) , ∀θ ∈ Θ , ∥ψ(θ, x) − ψ(θ, x′)∥ ≤ C(R)(1 + ∥θ∥2)∥x− x′∥ .

Proposition I.1.1 (Well-posedness of the Ćow). Assume µ ∈ PLeb
2 ([0, 1] × Θ) and ψ

satisfies Assumption I.1. Then for every x ∈ R
d there exists a unique weak solution

to Eq. (I.5), that is an absolutely continuous path (x(s))s∈[0,1] such that for every s ∈ [0, 1]:

x(s) = x+
∫︂ s

0
Fµ(.♣r)(x(r))dr . (I.6)

Proof. The result follows Caratheodory’s theorem for the existence and uniqueness of
absolutely continuous solutions [Hale, 2009, Sec.I.5]. Indeed, given µ ∈ PLeb

2 ([0, 1] × Θ)
the map (s, x) ↦→ Fµ(.♣s)(x) is measurable w.r.t. s and, thanks to Assumption I.1 (local
Lipschitz continuity), locally Lipschitz w.r.t. x with a local Lipschitz constant that is
integrable w.r.t. s. Moreover, the solutions of Eq. (I.6) are deĄned up to time s = 1
thanks to the growth assumption in Assumption I.1, and if C is the growth constant we
get the following bound on the solution:

∀s ∈ [0, 1] , ∥x(s)∥ ≤ exp(C(1 + E2(µ)))(∥x(0)∥ + C(1 + E2(µ))) . (I.7)

Supervised learning We consider the supervised learning framework presented in Sec-
tion 1.1 with input and output space X = Yout = R

d and space of targets Ytarg = R
d′

for
d, d′ ≥ 1. Given a data distribution R

d × R
d′ ∋ (x, y) ∼ D and loss ℓ : Rd × R

d′ → R+, we
associate to a parameterization µ ∈ PLeb

2 ([0, 1] × Θ) the training risk:

R(µ) := Ex,yℓ(NODEµ(x), y) = Ex,yℓ(xµ(1), y) . (I.8)

In the following, we assume the data distribution D has compact support and ℓ is a smooth
loss. The risk minimization problem Eq. (30) for the training of the mean-Ąeld NODE
model thus reads:

Find µ∗ ∈ arg min
µ∈PLeb

2 ([0,1]×Θ)

R(µ) .

In practice, such an optimization problem is often solved using Ąrst order optimization
algorithms such a gradient descent or stochastic gradient descent. In this chapter, we show
such training dynamics can be modeled by a gradient Ćow w.r.t. an appropriate metric
structure on the space of parameterizations.
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I.1.3 Related works and contributions

Due to the popularity and performance of the ResNet architecture, many works have
studied its training dynamics and their convergence properties.

Mean-field models of NODEs Some works have proposed models for ResNets of
inĄnite depth similar to DeĄnition I.1. E, Ma, and Wu [E, 2021] study properties of the
functional space induced by considering the Ćow of functions of the form Eq. (I.1) and
deĄne a notion of norm which they use to provide bounds on the Rademacher complexity
of this class of function. Chen et al. [Chen, 2023] also provide bounds on this Rademacher
complexity which they use to prove an upper bound on the generalization error of trained
ResNets.

Closer to our work are the works of Lu et al. [Lu, 2020] and Ding et al. [Ding, 2021;
Ding, 2022] studying gradient Ćow dynamics for the minimization of the risk R for the
ResNet model of DeĄnition I.1. Lu et al. [Lu, 2020] consider gradient Ćows w.r.t. the true
Wasserstein distance on the space of measures. While this point of view motivates a new
training strategy, it is not consistent with the way ResNets are trained in practice, that
is with a layer-wise-L2 metric. Ding et al. [Ding, 2021; Ding, 2022] show existence and
uniqueness of solutions for gradient Ćow equation similar to DeĄnition I.3.

As a comparison, a key contribution of our work is to provide the parameter set
with the appropriate metric structure allowing us to identify the gradient Ćow equation,
derived formally by adjoint sensitivity analysis with a curve of maximal slope of the risk.
Similarly, Isobe [Isobe, 2023] considers NODEs parameterized on the space of P2(Θ)-
valued functions equipped with a "L2-Wasserstein" metric and trained with gradient Ćow.
A notable difference is that [Isobe, 2023] considers adding a regularization term to the
risk. This ensures the risk is a coercive function, which is not the case in our setting.

ResNets as a discretization of NODEs While it is not addressed in the present
chapter, an interesting question is the one of the consistency of the NODE model with
ResNets of Ąnite depth. Marion et al. [Marion, 2023b] shows the convergence of ResNets of
Ąnite width towards NODEs, at initialization and during training, when the depth tends
to inĄnity. This convergence is uniform over Ąnite training time intervals but can be made
uniform over the whole training dynamic under a convergence condition. For ResNets of
arbitrary width, with layers of the form Eq. (I.1), Ding et al. [Ding, 2021; Ding, 2022] give
a result of uniform convergence over Ąnite training time intervals. Adding a regularization
term, Thorpe and Gennip [Thorpe, 2023] show the Γ-convergence of the risk associated
with ResNets to the one associated with NODEs.

Conditional Optimal transport In this chapter, we rely on the properties of the
Conditional OT metric (Section I.2) to deĄne a notion of gradient Ćow for the training
of ResNets in the mean-Ąeld limit. Similar metrics have been used in recent works for
other applications, for example Peszek and Poyato [Peszek, 2023] use gradient Ćow in
the Conditional OT topology to study evolution PDEs with heterogeneities, Hosseini,
Hsu, and Taghvaei [Hosseini, 2025] apply Conditional OT to the study of solutions to
Bayesian Inverse Problems, Chemseddine et al. [Chemseddine, 2024] consider applications
to Bayesian Flow Matching and Kerrigan, Migliorini, and Smyth [Kerrigan, 2024] consider
applications to conditional generative modeling. Important for studying the gradient
Ćow dynamics are the dynamical properties of the Conditional OT metric. Analogously
to the Wasserstein case [Ambrosio, 2008b], we show that absolutely continuous curves
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are solutions to certain continuity equations (Theorem I.1). Similar results were shown
in [Peszek, 2023].

Contributions Our main contribution is to propose a model for ResNets of inĄnite
depth and arbitrary width together with a metric space structure that is consistent with
the layer-wise-L2-metric used in practice when training ResNets with gradient descent
and automatic differentiation. Our model thus allows a rigorous analysis of the training
of ResNets at inĄnite depth and arbitrary width.

In detail, the ResNet model of DeĄnition I.1 is parameterized over PLeb
2 ([0, 1] × Θ) Ů

the set of probability measures on [0, 1] × Θ whose Ąrst marginal is the Lebesgue measure
on [0, 1] Ů which we equip in Section I.2 with a L2-Wasserstein (or Conditional Optimal
Transport) distance WCOT

2 (Proposition I.2.1). In Section I.3 we leverage results from the
theory of gradient Ćows in metric spaces [Ambrosio, 2008b; Santambrogio, 2017] to deĄne
the gradient Ćow of the risk R. This gradient Ćow equation corresponds to both notions
of curve of maximal slope of the risk and the usual gradient Ćow of ResNets obtained by
adjoint sensitivity analysis [Chen, 2018]. We conclude this part by showing well-posedness
results for the gradient Ćow equation, that is existence in arbitrary time (Theorem I.3),
uniqueness (Theorem I.4) and stability w.r.t. initialization (Theorem I.5). The study of
the asymptotic behavior of such gradient Ćow curves will be the subject of Chapter II.

In addition to this, we study in Section I.2 properties of the space PLeb
2 ([0, 1] × Θ)

equipped with the Conditional OT distance WCOT
2 . The literature on this subject being

sparse, some of our results might be of their own interest. In particular, we provide
in Theorem I.1 a characterization of absolutely continuous curves analogous to the one in
the Wasserstein space [Ambrosio, 2008b, Thm.8.3.1].

I.2 Metric structure of the parameter set PLeb
2 ([0, 1] × Θ)

We deĄne here a notion of distance WCOT
2 over the parameter set PLeb

2 ([0, 1] × Θ) and
study its properties. Importantly, the characterization of absolutely continuous curves in
the metric space (PLeb

2 ([0, 1] × Θ),WCOT
2 ) will be used in Section I.3 to deĄne the notion

of gradient Ćow for the risk R.
In the rest of this chapter as well as in Chapter II, we will assume for simplicity that Θ

is the Euclidean space R
p for some p ≥ 1. However, the presented results could probably

be adapted to the case where Θ is a smooth manifold embedded in R
p or an (inĄnite

dimensional) separable Hilbert space. In particular, we will extensively use the fact that
Θ is a complete, separable metric space. We recall that the Wasserstein-2 distance W2

on the space P2(Θ) was deĄned in Eq. (51) as the optimal value of the Kantorovitch’s
optimal transport problem:

∀µ, µ′ ∈ P2(Θ) , W2(µ, µ′) := min
γ∈Γ(µ,µ′)

⎤∫︂

Θ×Θ
∥θ − θ′∥2dγ(θ, θ′)

⎣1/2

, (I.9)

where Γ(µ, µ′) is the set of couplings between µ and µ′, deĄned in Eq. (52). We denote
by Γo(µ, µ′) ⊂ Γ(µ, µ′) the subset of optimal couplings achieving the equality in Eq. (I.9).
We refer to the books of Villani [Villani, 2009] and Santambrogio [Santambrogio, 2015]
for further properties of the Wasserstein distance.

I.2.1 Conditional Optimal Transport distance

The Conditional Optimal Transport (COT) distance WCOT
2 is a modiĄcation of the Wasser-

stein distance W2 with the supplementary constraint that the transport plan should pre-
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serve the marginal over [0, 1]. This constraint is introduced to closely model the training
dynamic of ResNets where the gradients are computed over the weights of each layer inde-
pendently. For this purpose, it is natural to deĄne a Şlayer-wise-L2Ť Wasserstein distance,
that is a L2-distance over the set of families of probability measures in P2(Θ), indexed
over s ∈ [0, 1].

Proposition I.2.1 (COT distance). Define for µ, µ′ ∈ PLeb
2 ([0, 1] × Θ):

WCOT
2 (µ, µ′) :=

⎤∫︂ 1

0
W2

(︁
µ(.♣s), µ′(.♣s)[︄2 ds

⎣1/2

.

Then, WCOT
2 defines a metric on PLeb

2 ([0, 1] × Θ).

Proof. One essentially needs to justify the existence of the integral in the deĄnition of
WCOT

2 . That WCOT
2 is a metric then follows from the properties of the Wasserstein and

L2 metrics respectively.
For Borel probability measures µ, ν ∈ P(Θ) it is known [Villani, 2009, Thm.5.10] that

the Monge-Kantorovitch problem admits the dual formulation:

W2(µ, ν)2 = sup
{︃∫︂

Θ
φdµ+

∫︂

Θ
ψdν

}︃

,

where the supremum is taken over all pairs (φ,ψ) ∈ Cb(Θ)×Cb(Θ) such that φ(x)+ψ(y) ≤
∥x− y∥2. We also have the alternative formulation:

W2(µ, ν)2 = sup
φ∈Cb(Θ)

{︃∫︂

Θ
φdµ+

∫︂

Θ
φcdν

}︃

,

where for φ : Θ → R the c-transform φc of φ is deĄned as [Santambrogio, 2015, Def.1.10]:

∀θ ∈ Θ , φc(θ) := inf
θ′∈Θ

∥θ′ − θ∥2 − φ(θ′) .

Consider (φn)n≥0 a sequence of functions in Cb(Θ) such that for any φ ∈ Cb(Θ) we can Ąnd
a subsequence m(n) with φm(n) → φ for the compact-open topology (uniform convergence
on compact subsets) and ∥φm(n)∥∞ is uniformly bounded. Then we also have φc

m(n) → φc

uniformly on compact subsets with ∥φc
m(n)∥∞ ≤ ∥φm(n)∥∞ uniformly bounded, whence:

W2(µ, ν)2 = sup
n∈N

{︃∫︂

Θ
φndµ+

∫︂

Θ
φc

ndν
}︃

.

Thus, for µ, µ′ ∈ PLeb
2 ([0, 1] × Θ), the application s ↦→ W2 (µ(.♣s), µ′(.♣s))2 is measurable

as it can be expressed as the supremum of countably many measurable functions.

Alternatively, the distance WCOT
2 can be viewed as an optimal transport distance

with the additional constraint that the transport plans should be the identity on the Ąrst
marginal. This new formulation is convenient for calculations and, in particular, allows
easily estimating the distance WCOT

2 from above. Given µ, µ′ ∈ PLeb
2 ([0, 1]×Θ) we deĄne:

ΓLeb(µ, µ′) :=
{︂

γ ∈ PLeb
2 ([0, 1] × Θ2) : γ(.♣s) ∈ Γ(µ(.♣s), µ′(.♣s)) for ds-a.e. s ∈ [0, 1]

}︂

,

Γdiag(µ, µ′) :=
{︃

γ ∈ Γ(µ, µ′) :
∫︂

f(s, s′)dγ(s, θ, s′, θ′) =
∫︂ 1

0
f(s, s)ds , ∀f ∈ C([0, 1]2)

}︃

.
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Note that these to sets are closely related as, if γ ∈ ΓLeb(µ, µ′), then

γ̃ := (π1, π2, π1, π3)#γ ∈ Γdiag(µ, µ′)

and conversely, if γ̃ ∈ Γdiag(µ, µ′), then

γ := (π1, π2, π4)#γ̃ ∈ ΓLeb(µ, µ′) .

In both cases we have for any measurable f : Θ2 → R:
∫︂

[0,1]×Θ2
f(θ, θ′)dγ(s, θ, θ′) =

∫︂

([0,1]×Θ)2
f(θ, θ′)dγ̃(s, θ, s′, θ′) . (I.10)

In the same way the Wasserstein distance W2(µ, µ′) can be obtained of the solution of a
minimization problem over the set Γ(µ, µ′) (Eq. (I.9)), the COT distance WCOT

2 can be
obtained as the solution of minimization problems over the sets ΓLeb(µ, µ′) and Γdiag(µ, µ′).

Proposition I.2.2. Let µ, µ′ ∈ PLeb
2 ([0, 1] × Θ) then:

WCOT
2 (µ, µ′)2 = min

γ∈ΓLeb(µ,µ′)

∫︂

[0,1]×Θ2
∥θ − θ′∥2dγ(s, θ, θ′)

= min
γ∈Γdiag(µ,µ′)

∫︂

([0,1]×Θ)2
∥θ − θ′∥2dγ(s, θ, s′, θ′) .

We denote respectively by ΓLeb
o (µ, µ′) and Γdiag

o (µ, µ′) the set of optimal couplings in both
minimization problems. Then for γ ∈ ΓLeb

o (µ, µ′) we have for ds-a.e. s ∈ [0, 1]:

γ(.♣s) ∈ Γo(µ(.♣s), µ′(.♣s)) , i.e.

∫︂

Θ2
∥θ − θ′∥2dγ(θ, θ′♣s) = W2(µ(.♣s), µ′(.♣s))2 .

Proof. Our proof technique is similar to the one of [Hosseini, 2025, Prop.3.3] and relies on
the possibility of choosing an optimal transport plan γ(.♣s) ∈ Γo(µ(.♣s), µ′(.♣s)) for every
s ∈ [0, 1] in a measurable way.

We show equality with the Ąrst minimization problem on ΓLeb(µ, µ′), equality between
the two minimization problems then comes from Eq. (I.10). Assume there exists a Borel
map γ : s ↦→ γ(.♣s) ∈ P(Θ2) (where P(Θ2) is equipped with the narrow topology) such
that γ(.♣s) ∈ Γo(µ(.♣s), µ′(.♣s)) for every s ∈ [0, 1]. With such a map, one can deĄne a
Borel probability measure on [0, 1] × Θ, that we also denote by γ, which is the measure
whose disintegration w.r.t. the Lebesgue measure on [0, 1] is ¶γ(.♣s)♢s∈[0,1]. In other words,
the measure γ is deĄned by:

∫︂

[0,1]×Θ2
f(s, θ, θ′)dγ(s, θ, θ′) :=

∫︂ 1

0

∫︂

Θ2
f(s, θ, θ′)dγ(θ, θ′♣s)ds , ∀f ∈ Cb([0, 1] × Θ2) .

Such γ will be a solution to our Ąrst optimization problem as we have:
∫︂

[0,1]×Θ2
∥θ − θ′∥2dγ(s, θ, θ′) = WCOT

2 (µ, µ′)2 ≤ inf
γ∈ΓLeb(µ,µ′)

∫︂

[0,1]×Θ2
∥θ − θ′∥2dγ(s, θ, θ′) .

To show the existence of such γ we use a measurable selection result, that is considering
the set-valued mapping s ∈ [0, 1] ↦→ Γo(µ(.♣s), µ′(.♣s)) ⊂ P(Θ2) we show it admits a
measurable section. Consider the set:

G∗ :=
{︁
(s, γ) : γ ∈ Γo(µ(.♣s), µ′(.♣s))}︁ ⊂ [0, 1] × P2(Θ2) .
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Using [Bogachev, 2007, Thm.6.9.6], as for every s ∈ [0, 1] the set Γo(µ(.♣s), µ′(.♣s)) is
narrowly compact, it is sufficient to show that G∗ ∈ B([0, 1] × P2(Θ2)). Let ¶fn♢n∈N

be
dense in Cb(Θ) for the compact-open topology. Then, for every n ∈ N as the mapping
(s, γ) ↦→ ∫︁

Θ2 fndγ − ∫︁

Θ fndµ(.♣s) is measurable, so are the sets:

Gn :=
{︃

(s, γ) :
∫︂

Θ2
fn(θ)dγ(θ, θ′) =

∫︂

Θ
fn(θ)dµ(θ♣s)

}︃

,

G′
n :=

{︃

(s, γ) :
∫︂

Θ2
fn(θ′)dγ(θ, θ′) =

∫︂

Θ
fn(θ′)dµ′(θ′♣s)

}︃

.

Also, as the mapping (s, γ) ↦→ W2(µ(.♣s), µ′(.♣s))2−∫︁Θ2 ∥θ−θ′∥2dγ is measurable by Propo-
sition I.2.1, so is the set:

Go :=
{︃

(s, γ) :
∫︂

Θ2
∥θ − θ′∥2dγ = W2(µ(.♣s), µ′(.♣s))2

}︃

∈ B([0, 1] × P2(Θ2)) .

Finally we have that G∗ = Go∩(
⃓

n∈N Gn ∩ G′
n) is a Borel set, which completes the proof.

Remark I.2.1 (Comparison of Wasserstein and Conditional-Wasserstein topologies).
Note that, for µ, µ′ ∈ PLeb

2 ([0, 1] × Θ), we have that Γdiag(µ, µ′) ⊂ Γ(µ, µ′). Hence from
the previous result, it follows:

W2(µ, µ′) ≤ WCOT
2 (µ, µ′)

and the topology induced by WCOT
2 on PLeb

2 ([0, 1] × Θ) is stronger than the Wasserstein
topology. It is in fact strictly stronger and, for example, the sequence µn =

∫︁ 1
0 δ(−1)⌊2ns⌋ds

and the measure µ = 1
2

∫︁ 1
0 (δ1 + δ−1)ds in PLeb

2 ([0, 1] ×R) are such that W2(µn, µ) → 0 but
WCOT

2 (µn, µ) ≥ 1.

The following result states that the metric space (PLeb
2 ([0, 1]×Θ),WCOT

2 ) is complete.

Proposition I.2.3 (Completeness). (PLeb
2 ([0, 1] × Θ),WCOT

2 ) is a complete metric space.

Proof. The proof is analogous to the proof of completeness of the Wasserstein space
P2([0, 1] × Θ) (see [Villani, 2009, Thm.6.18]).

Let (µn)n≥0 be a Cauchy sequence in PLeb
2 ([0, 1]×Θ). Then, since the WCOT

2 -topology
is stronger than the (complete) W2-topology (cf. Remark I.2.1) and since narrow con-
vergence preserves the marginal condition, such a sequence narrowly converges to some
µ∞ ∈ PLeb

2 ([0, 1] × Θ). Then by narrow lower semicontinuity of WCOT
2 (Lemma I.2.1) we

have for every n ≥ 0:

WCOT
2 (µ∞, µn) ≤ lim inf

m→∞
WCOT

2 (µm, µn) ,

and by taking the lim sup w.r.t. n ≥ 0:

lim sup
n→∞

WCOT
2 (µ∞, µn) ≤ lim sup

m→∞
n→∞

WCOT
2 (µm, µn) = 0 .

Hence (µn) WCOT
2 -converges to µ∞.

Lemma I.2.1 (narrow lower semicontinuity of WCOT
2 ). Let (µn)n≥0 and (νn)n≥0 be se-

quences in PLeb
2 ([0, 1] × Θ) such that (µn, νn) −−−→

n→∞
(µ, ν) narrowly for some µ, ν ∈

PLeb
2 ([0, 1] × Θ). Then:

WCOT
2 (µ, ν) ≤ lim inf

n→∞
WCOT

2 (µn, νn) .
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Proof. Up to extraction of a subsequence one can assume:

WCOT
2 (µn, νn) n→+∞−−−−−→ lim inf

n→+∞
WCOT

2 (µn, νn) .

Then for every n ≥ 0 consider some γn ∈ Γdiag
o (µn, νn). In particular γn ∈ Γ(µn, νn)

and by [Villani, 2009, Lem.4.4] the sequence (γn) is tight. Hence it admits a subsequence
(γnk

)k≥0 narrowly converging to some γ which is in Γdiag(µ, ν) by the properties of narrow
convergence. Thus applying [Villani, 2009, Lem.4.3] and using the characterization of
WCOT

2 in Proposition I.2.2:

WCOT
2 (µ, ν)2 ≤

∫︂

([0,1]×Θ)2
∥θ − θ′∥2dγ

≤ lim inf
k→∞

∫︂

([0,1]×Θ)2
∥θ − θ′∥2dγnk

= lim inf
n→∞

WCOT
2 (µn, νn)2 ,

from which the result follows.

I.2.2 Dynamical formulation of Conditional Optimal Transport

We analyze here the properties of absolutely continuous curves in PLeb
2 ([0, 1] × Θ) when

equipped with the COT metric. Similarly to the classical Wasserstein metric, we show that
absolutely continuous curves obey a certain continuity equation. This characterization will
be crucial to deĄne the gradient Ćow equation used in the training of our NODE model.

Absolutely continuous curves in the Wasserstein space For T > 0, consider
I = (0, T ) an open interval and (µt)t∈I a family of probability measures over the Euclidean
space R

p. Given a Borel velocity Ąeld v : (t, x) ∈ I × R
p ↦→ vt(x) ∈ R

p such that
∫︁

I

∫︁

Rp ∥vt∥dµtdt < ∞, we say that (µt)t∈I satisĄes the continuity equation ∂tµt +div(vtµt)
in the weak sense if:

∫︂

I

∫︂

Rp
(∂tφ(t, x) + ⟨∇φ(t, x), vt(x)⟩) dµt(x)dt = 0 , ∀φ ∈ C1

c (I × R
p) . (I.11)

Equivalently ([Santambrogio, 2015, Prop.4.2]), when the mapping t ↦→ µt is narrowly
continuous, this amounts to have that for every φ ∈ C1

c (Rp) the map t ↦→ µt(φ) :=
∫︁
φdµt

is absolutely continuous and veriĄes:

d
dt
µt(φ) =

∫︂

⟨∇φ, vt⟩ dµt, for dt-a.e. t ∈ I.

An important property of the Wasserstein space P2(Rp) endowed with the distance W2 is
the characterization of absolutely continuous curves: a narrowly continuous curve (µt)t∈I

is absolutely continuous in P2(Rp) if and only if it is solution to the continuity equa-
tion Eq. (I.11) for some velocity Ąeld v with

∫︁

I ∥vt∥L2(µt)dt < ∞ [Ambrosio, 2008b,
Thm.8.3.1]. We refer to the book by Ambrosio, Gigli, and Savaré [Ambrosio, 2008b]
for a detailed study of absolutely continuous curves in (P2(Rp),W2).

Absolutely continuous curves int the Conditional Wasserstein space Similarly
to the characterization of absolutely continuous curves in the Wasserstein space P2(Rp),
an adaptation of [Ambrosio, 2008b, Thm.8.3.1] provides an analogous characterization
of absolutely continuous curves in PLeb

2 ([0, 1] × Θ), equipped with the Conditional OT
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distance WCOT
2 . This characterization allows us to (formally) provide the metric space

(PLeb
2 ([0, 1]×Θ),WCOT

2 ) with a kind of Ş differential structureŤ by seeing tangent vectors as
velocity Ąelds. This identiĄcation will be crucial for deĄning the gradient Ćow equation for
the training risk R, which will take the form of a continuity equation with an appropriate
velocity Ąeld (DeĄnition I.3).

Theorem I.1 (adapted from [Ambrosio, 2008b], Thm.8.3.1). Assume Θ = R
p. Let

I = (0, T ) for some T > 0 and (µt)t∈I an absolutely continuous curve in PLeb
2 ([0, 1] × Θ).

Then there exists a unique Borel velocity field v : (t, s, θ) ∈ I × [0, 1] × Θ ↦→ vt(s, θ) ∈ Θ
such that for a.e. t ∈ I:

vt ∈ L2(µt) , ∥vt∥L2(µt) ≤
\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄ ,

and µ is a weak solution of the continuity equation:

∂tµt + div((0, vt)µt) = 0 on I × [0, 1] × Θ. (I.12)

We will refer to such vt as the tangent velocity Ąeld of the curve (µt)t∈I . Conversely, if
(µt)t∈I is a narrowly continuous curve satisfying Eq. (I.12) for some Borel velocity field vt

with ∥vt∥L2(µt) ∈ L1(I), then (µt)t∈I is absolutely continuous and ♣ d
dtµt♣ ≤ ∥vt∥L2(µt) for

a.e. t ∈ I.

Proof. Part 1: AC curve ⇒ Continuity equation.

Note that this part is the easiest as WCOT
2 -absolute continuity implies W2-absolute

continuity for which the result is well-known, originally proven in [Ambrosio, 2008b,
Thm.8.3.1]. Therefore we here only adapt this proof to our speciĄc setting.

Up to reparameterization, one can assume w.l.o.g. that
\︄
\︄
\︄

d
dtµt

\︄
\︄
\︄ ∈ L∞(I). First we show

that, for φ ∈ C1
c (I × [0, 1] × Θ), the map t ↦→ µt(φ) :=

∫︁ 1
0

∫︁

Θ φdµt is absolutely continuous.
Indeed, for t, u ∈ I, introducing a coupling γt,u ∈ ΓLeb

o (µt, µu) we have:

♣µt(φ) − µu(φ)♣ ≤
\︄
\︄
\︄
\︄

∫︂ 1

0

∫︂

Θ2
(φ(s, θ) − φ(s, θ′))dγt,u(s, θ, θ′)

\︄
\︄
\︄
\︄ ≤ ∥∇θφ∥∞WCOT

2 (µt, µu) ,

from which absolute continuity follows. Then considering the map:

H(s, θ, θ′) :=

∏︂

⋁︂⨄︂

⋁︂⋃︂

∥∇θφ(s, θ)∥ if θ = θ′,

♣φ(s,θ)−φ(s,θ′)♣
∥θ−θ′∥ else,

we have for every t, u ∈ I:

♣µt(φ) − µu(φ)♣
♣t− u♣ ≤ 1

♣t− u♣

∫︂ 1

0

∫︂

Θ2
∥θ − θ′∥H(s, θ, θ′)dγt,u(s, θ, θ′)

≤ WCOT
2 (µt, µu)

♣t− u♣ ∥H∥L2(γt,u) .

As u → t, we have WCOT
2 (µu, µt) → 0 and by the properties of L2 spaces [Cannarsa,

2015, Prop.3.11] we can take a sequence un → t such that W2(µun(.♣s), µt(.♣s)) → 0
for ds-a.e. s ∈ [0, 1]. This implies for those s ∈ [0, 1] that µun(.♣s) → µt(.♣s) narrowly
and that γt,un(.♣s) → γ(.♣s) ∈ Γo(µt(.♣s), µt(.♣s)), i.e. the trivial transport plan γ(.♣s) =
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(Id, Id)#µt(.♣s). Thus we have that γt,un → (π1, π2, π2)#µt narrowly since, by Lebesgue’s
theorem, given a bounded continuous function f ∈ Cb([0, 1] × Θ × Θ):
∫︂

fdγt,un =
∫︂ 1

0

⎤∫︂

Θ2
f(s, θ, θ′)dγt,un(θ, θ′♣s)

⎣

ds −−−→
n→∞

∫︂ 1

0

⎤∫︂

Θ
f(s, θ, θ)dµt(θ♣s)

⎣

ds .

Hence, at a point where t ↦→ µt is metrically differentiable:

lim sup
u→t

♣µt(φ) − µu(φ)♣
♣t− u♣ ≤

\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄ ∥∇θφ∥L2(µt) .

Consider µ =
∫︁

I µtdt ∈ P(I×[0, 1]×Θ) the measure whose disintegration w.r.t. Lebesgue’s
measure on I is (µt)t∈I . Then for φ ∈ C1

c (I × [0, 1] × Θ) we have:
∫︂

I

∫︂

[0,1]×Θ
∂tφ(t, s, θ)dµt(s, θ)dt

= lim
h→0

∫︂

I

∫︂

[0,1]×Θ

φ(t, s, θ) − φ(t− h, s, θ)
h

dµt(s, θ)dt

= lim
h→0

∫︂

I

1
h

(︄
∫︂

[0,1]×Θ
φ(t, s, θ)dµt(s, θ) −

∫︂

[0,1]×Θ
φ(t, s, θ)dµt−h(s, θ)

)︄

dt .

Thus by the previous inequality and Fatou’s lemma:
\︄
\︄
\︄
\︄
\︄

∫︂

I

∫︂

[0,1]×Θ
∂tφ(t, s, θ)dµt(s, θ)dt

\︄
\︄
\︄
\︄
\︄

≤
(︄
∫︂

I

\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄

2

dt

)︄1/2(︄∫︂

I×[0,1]×Θ
∥∇θφ(t, s, θ)∥2dµ(t, s, θ)

)︄1/2

.

Consider the subspace V :=
{︁∇θφ : φ ∈ C1

c (I × [0, 1] × Θ)
}︁

and let V be its closure in
L2(I × [0, 1] × Θ,µ). Then by the previous inequality the linear functional A : V → R

deĄned by:

A(∇θφ) := −
∫︂

I×[0,1]×Θ
∂tφ(t, s, θ)dµ(t, s, θ)

is continuous on V and thus, by Hahn-Banach’s theorem, can be extended to a unique
continuous linear functional on V. Therefore, by Lax-Milgram’s theorem, the minimization
problem

min
{︃

1
2

∫︂

I×Rp+1
∥w(t, s, θ)∥2dµ(t, s, θ) − A(w) : w ∈ V

}︃

admits a unique solution v ∈ V which is characterized by the property that:
∫︂

I×Rp+1
⟨v(t, s, θ),∇θφ(t, s, θ)⟩ dµ(t, s, θ) = A(∇θφ) , ∀φ ∈ C1

c (I × [0, 1] × Θ) .

This is the desired continuity equation by deĄnition of A.
Finally, let (∇θφn) ⊂ V be a sequence converging to v ∈ L2(µ). Considering an

interval J ⊂ I and some η ∈ C1
c (J) with 0 ≤ η ≤ 1 we have by the previous arguments:

∫︂

I×[0,1]×Θ
η(t)∥v(t, s, θ)∥2dµ(t, s, θ) = lim

n→∞

∫︂

I×[0,1]×Θ
η ⟨v,∇θφn⟩ dµ

= lim
n→∞

A(∇θ(ηφn))

≤
(︄
∫︂

J

\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄

2

dt

)︄1/2

lim
n→∞

(︄
∫︂

J×[0,1]×Θ
∥∇θφn∥2dµ

)︄1/2

=

(︄
∫︂

J

\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄

2

dt

)︄1/2(︄∫︂

J×[0,1]×Θ
∥v∥2dµ

)︄1/2

.
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Hence approximating the characteristic function of J with such an η we get:

∫︂

J

∫︂

[0,1]×Θ
∥vt∥2dµtdt ≤

∫︂

J

\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄

2

dt ,

implying ∥vt∥L2(µt) ≤
\︄
\︄
\︄

d
dtµt

\︄
\︄
\︄ for a.e. t ∈ I.

Part 2: Continuity equation ⇒ AC curve.

This part of the proof is new as, according to [Ambrosio, 2008b, Thm.8.3.1], the
continuity equation only ensures W2-absolute continuity, which is strictly weaker that
WCOT

2 -continuity as explained in Remark I.2.1. We show here that the speciĄc form of
the velocity Ąeld ensures WCOT

2 -absolute continuity.
For (t, s) ∈ I × [0, 1], we denote by vt,s the Borel vector Ąeld vt,s : θ ∈ Θ ↦→ vt(s, θ).

Note that by Jensen’s inequality:

∫︂

I

∫︂ 1

0
∥vt,s∥L2(µt(.♣s))dsdt ≤

∫︂

I
∥vt∥L2(µt)dt < +∞ ,

and we have that for ds-a.e. s ∈ [0, 1], t ↦→ ∥vt,s∥L2(µt(.♣s)) ∈ L1(I). Also if φ ∈ C1
c (I × Θ)

and χ ∈ C1
c ([0, 1]) then by deĄnition of the continuity equation:

∫︂

I

∫︂ 1

0

∫︂

Θ
(∂tφ+ ⟨∇θφ, vt,s⟩)χ(s)dµt(.♣s)dsdt = 0 .

Hence if J ⊂ [0, 1] is an interval, approaching the characteristic function of J with χ we
get:

∫︂

I

∫︂

J

∫︂

Θ
(∂tφ+ ⟨∇θφ, vt,s⟩) dµt(.♣s)dsdt = 0 ,

and hence for ds-a.e. s ∈ [0, 1]:
∫︂

I

∫︂

Θ
(∂tφ+ ⟨∇θφ, vt,s⟩) dµt(.♣s)dt = 0 .

Now if we consider (φn) a countable dense sequence in C1
c (I × Θ) endowed with the usual

topology then we can Ąnd a set Λ ⊂ [0, 1] of full Lebesgue’s measure such that for every
s ∈ Λ the above equation holds for every test function φ ∈ C1

c (I × Θ). In other words we
have shown that, for ds-a.e. s ∈ [0, 1], µt(.♣s) solves the continuity equation:

∂tµt(.♣s) + div(vt,sµt(.♣s)) = 0 on I × Θ.

Note that, without loss of generality, we can consider the curve (µt(.♣s))t∈I to be
narrowly continuous. Indeed, as it is a solution of the continuity equation we know that the
curve (µt(.♣s))t∈I admits a narrowly continuous representative µ̃t(.♣s) [Ambrosio, 2008b,
Lem.8.1.2] and that this representative is characterized by that for every φ ∈ C1

c (Θ) and
every t ∈ I:

µ̃t(.♣s)(φ) =
∫︂ t

0

∫︂

Θ

(︁
χ′(u)φ+ χ(u) ⟨∇θφ, vu,s⟩[︄ dµu(.♣s)du ,

where χ ∈ C1(I) is any function such that χ = 0 on a neighbourhood of 0 and χ(u) = 1 for
u ≥ t (the deĄnition does not depend on χ by deĄnition of the continuity equation). Then
it follows that for any t ∈ I and any f ∈ Cb([0, 1]×Θ) the map s ↦→ µ̃t(.♣s)(f) is measurable
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and integrating w.r.t. s we get that µ̃t :=
∫︁ 1

0 µ̃t(.♣s)ds deĄnes a probability measure over
[0, 1] × Θ whose disintegration is ¶µ̃t(.♣s)♢s∈[0,1]. Moreover, for any φ ∈ C1

c ([0, 1] × Θ) we
have:

µ̃t(φ) =
∫︂ t

0

∫︂ 1

0

∫︂

Θ

(︁
χ′(u)φ+ χ(u) ⟨∇θφ, vu,s⟩[︄ dµu(.♣s)dsdu = µt(φ)

and hence in fact the equality µ̃t = µt.
Then, using [Ambrosio, 2008b, Thm.8.3.1] with the assumption that t ↦→ µt(.♣s) is

narrowly continuous, we have that for ds-a.e. s ∈ [0, 1] the curve t ∈ I ↦→ µt(.♣s) is
absolutely continuous and

W2(µt1(.♣s), µt2(.♣s))2 ≤ (t2 − t1)
∫︂ t2

t1

∫︂

Θ
∥vt,s∥2dµt(.♣s)dt , ∀t1 < t2 ∈ I .

Hence integrating w.r.t. s ∈ [0, 1] gives:

WCOT
2 (µt1 , µt2)2 ≤ (t2 − t1)

∫︂ t2

t1

∫︂

[0,1]×Θ
∥vt∥2dµtdt , ∀t1 < t2 ∈ I ,

showing that (µt)t∈I is WCOT
2 -absolutely continuous and

\︄
\︄
\︄

d
dtµt

\︄
\︄
\︄ ≤ ∥vt∥L2(µt) for a.e. t ∈ I.

Remark I.2.2. Note that to study absolutely continuous curves, we introduce the sup-
plementary time variable t ≥ 0. This time variable will model the optimization time in
the Definition I.3 of the gradient flow equation. It is not to be interverted with the NODE
flow time s ∈ [0, 1].

As a consequence of Theorem I.1 we recover two useful results about absolutely contin-
uous curves in PLeb

2 ([0, 1] × Θ). Those are stated in the following Lemmas I.2.2 and I.2.3.
The Ąrst result is a result of approximation along absolutely continuous curves. It states
that the tangent velocity Ąeld (vt)t∈I deĄned in Theorem I.1 indeed furnishes a Ąrst-order
approximation of the curve (µt)t∈I at every time t ∈ I. It will be particularly useful to
differentiate quantities related to µt (Corollaries I.3.2 and I.3.3). The second result is
an application and gives the differential of the square-distance WCOT

2 (µt, µ
′)2 along an

absolutely continuous curve (µt)t∈I .

Lemma I.2.2 (Adapted from [Ambrosio, 2008b, Prop.8.4.6]). Let (µt)t∈I be an absolutely
continuous curve in (PLeb

2 ([0, 1] × Θ), WCOT
2 ) and let v : I × R

p+1 → R
p be the unique

velocity field satisfying the conclusions of Theorem I.1. Then for dt-a.e. t ∈ I it holds that
for any choice of γh

t ∈ ΓLeb
o (µt+h, µt):

lim
h→0

⎤

π1, π2,
1
h

(π3 − π2)
⎣

#
γh

t =
(︂

π1, π2, vt

⎡

#
µt in W2([0, 1] × Θ × Θ)

and

lim
h→0

WCOT
2 (µt+h, (Id + h(0, vt))#µt)

♣h♣ = 0 .

Proof. The proof only needs to be slightly adapted from the one of [Ambrosio, 2008b,
Lem.8.4.6] but we rewrite it here for completeness.
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Let (φn)n≥0 be a countable dense sequence in C1
c ([0, 1] × Θ). Then for dt-a.e. t ∈ I we

have limh→0
1

♣h♣WCOT
2 (µt+h, µt) =

\︄
\︄
\︄

d
dtµt

\︄
\︄
\︄ and for every n ≥ 0:

lim
h→0

µt+h(φn) − µt(φn)
h

=
∫︂

⟨∇θφn, vt⟩ dµt.

Introducing some γh
t ∈ ΓLeb

o (µt+h, µt) we consider:

νh :=
⎤

π1, π2,
1
h

(π3 − π2)
⎣

#
γh

t .

Then for any sequence (hn) converging to 0 the sequence (νhn) is tight in P([0, 1]×Θ×Θ)
and we can consider a narrow limit point ν0. The marginal of νh, and hence of ν0, on
[0, 1] × Θ is µt which allows to write by disintegration ν0 =

∫︁
ν0

s,θdµt(s, θ). Then we have
for every n ≥ 0:

µt+h(φn) − µt(φn)
h

=
1
h

∫︂
(︁
φn(s, θ′) − φn(s, θ)

[︄
dγh

t (s, θ, θ′)

=
1
h

∫︂

(φn(s, θ + hz) − φn(s, θ)) dνh(s, θ, z) ,

and taking the limit h → 0 gives by Lebesgue’s theorem:
∫︂

⟨∇θφn, vt⟩ dµt =
∫︂

[0,1]×Θ

∫︂

Θ
⟨z,∇θφn(s, θ)⟩ dν0

s,θ(z)dµt(s, θ) .

For (s, θ) ∈ [0, 1] × Θ, let us denote by ṽt(s, θ) :=
∫︁

Θ zdν
0
s,θ(z) the Ąrst moment of ν0

s,θ.
Then from the last equality and by a density argument it follows:

div((0, ṽt − vt)µt) = 0 ,

and in particular the continuity equation Eq. (I.12) is satisĄed with the vector Ąeld (0, ṽt).
Let us now show:

∫︂

[0,1]×Θ

∫︂

Θ
∥z∥2dν0

s,θ(z)dµt(s, θ) ≤
\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄

2

.

Indeed we have:
∫︂

[0,1]×Θ

∫︂

Θ
∥z∥2dν0

s,θ(z)dµt(s, θ) ≤ lim inf
h→0

∫︂

[0,1]×Θ×Θ
∥z∥2dνh(s, θ, z)

= lim inf
h→0

∫︂

[0,1]×Θ×Θ

1
h2

∥θ′ − θ∥2dγh
t (s, θ, θ′)

= lim inf
h→0

WCOT
2 (µt+h, µt)2

h2
=
\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄

2

.

Whence by deĄnition of ṽt and Jensen’s inequality:

∥ṽt∥L2(µt) ≤
\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄ = ∥vt∥L2(µt)

from which it follows that ṽt = vt in L2(µt) because of the minimality of ∥vt∥L2(µt) and
the strict convexity of the L2-norm. Moreover the above inequality is strict whenever
ν0

s,θ is not a Dirac mass in a set of µt positive measure. This implies that ν0
s,θ is a Dirac
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mass for dµt-a.e. (s, θ) ∈ [0, 1] × Θ and that ν0 = (π1, π2, vt)#µt. This proves the narrow
convergence of νh towards the desired measure and together with the convergence of the
second moments we have W2 convergence.

Let us now estimate the distance between µt+h and (π1, π2 +h(0, vt))#µt with the cou-
pling γ := (π1, π2 +h(0, vt), π3)#γ

h
t ∈ ΓLeb((π1, π2 +h(0, vt))#µt, µt+h). By the preceding

result:

WCOT
2 ((π1, π2 + hvt)#µt, µt+h)2

h2
≤
∫︂

[0,1]×Θ×Θ

1
h2

∥θ + hvt(s, θ) − θ′∥2dγh
t (s, θ, θ′)

=
∫︂

[0,1]×Θ×Θ
∥vt(s, θ) − z∥2dνh(s, θ, z) −−−→

h→0
0 .

Lemma I.2.3 (Adapted from [Ambrosio, 2008b, Thm.8.4.7]). Let (µt)t∈I be an absolutely
continuous curve in PLeb

2 ([0, 1] × Θ), let v : I × [0, 1] × θ → Θ be its tangent vector Ąeld
and let µ′ ∈ PLeb

2 ([0, 1] × Θ). Then for dt-a.e. t ∈ I:

d
dt

WCOT
2 (µt, µ

′
t)

2 = 2
∫︂ 1

0

∫︂

Θ

⟨︁
θ − θ′, vt(s, θ)

/︄
dγ(s, θ, θ′) , ∀γ ∈ ΓLeb

o (µt, µ
′
t) .

Proof. Having shown Lemma I.2.2, the proof is the same as the one of [Ambrosio, 2008b,
Thm.8.4.7].

I.3 Gradient flow dynamics

To train the NODE model of DeĄnition I.1 we consider performing Gradient Flow on the
parameter µ for the risk R and for the COT metric described in the previous section.
However the parameter set PLeb

2 ([0, 1] × Θ) equipped with the distance WCOT
2 lacks a

proper differential structure. We will thus in this section give a sense to the notion of
gradient Ćow of R. First, motivated by formal computations we will introduce a deĄnition
of gradient Ćow that is consistent with the one proposed by Chen et al. [Chen, 2018]
for the training of NODEs of Ąnite width. Then, we will show this deĄnition to be
equivalent to the notion of curve of maximal slope from the theory of gradient Ćow in
metric spaces [Ambrosio, 2008b; Santambrogio, 2017]. Finally, this equivalence will allow
us to show well-posedness results for the gradient Ćow equation.

I.3.1 Backward equation and adjoint variables

The computation of the gradient will make use of a new ODE linked to Eq. (I.6). This
ODE should be understood as running backward over the time variable s ∈ [0, 1] with the
initial condition at s = 1. In the same way Eq. (I.6) models the processing of the data by
a ResNet of inĄnite depth, the adjoint variables p solutions to this backward ODE should
be considered as modeling the quantities calculated when performing back-propagation
over a deep ResNet.

Definition I.2 (Adjoint variable). Let µ ∈ PLeb
2 ([0, 1] × Θ) and (x, y) ∈ R

d+d′
. Let

(xµ(s))s∈[0,1] be the solution to Eq. (I.5) with parameter µ and xµ(0) = x. Then we call
adjoint variable associated to µ, x and y the solution (pµ,x,y(s))s∈[0,1] to the backward
ODE:

∀s ∈ [0, 1] , pµ,x,y(s) = ∇xℓ(xµ(1), y) +
∫︂ 1

s
DxFµ(.♣r)(xµ(r))⊤pµ,x,y(r)dr . (I.13)

When no ambiguity, the dependence w.r.t. µ, x and y is omitted and we simply write p(s).
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The following proposition states the well-posedness of the backward equation under
suitable assumptions on the basis function ψ and gives a useful representation of the
adjoint variables.

Proposition I.3.1. Let µ ∈ PLeb
2 ([0, 1] × Θ) and (x, y) ∈ R

d+d′
. Assume ψ satisfies As-

sumptions I.1 to I.3. Then there exists a unique solution to Eq. (I.13) which is given
by:

∀s ∈ [0, 1] , pµ,x,y(s) = Φµ,x(s)−⊤Φµ,x(1)⊤∇xℓ(xµ(1), y) . (I.14)

where we define Φµ,x to be the (matrix) solution of the linear ODE:

∀s ∈ [0, 1] , Φµ,x(s) = Id +
∫︂ s

0
DxFµ(.♣r)(xµ(r))Φµ,x(r)dr . (I.15)

When no ambiguity we simply denote by Φµ(s) or even Φ(s).

Proof. Note that Eq. (I.13) is non-autonomous linear ODE w.r.t. the variable p. Thus,
the representation Eq. (I.14) follows from the existence and uniqueness of Φ and to prove
the result it suffices to show the map s ↦→ DxFµ(.♣s)(x(s)) is integrable.

First, as ψ is continuously differentiable w.r.t. x with integrable differential for almost
every Ąxed s ∈ [0, 1] the map x ↦→ Fµ(.♣s)(x) is continuously differentiable with differential
given by:

DxFµ(.♣s)(x) =
∫︂

Θ
Dxψθ(x)dµ(θ♣s) .

Moreover, by continuity of s ↦→ x(s) the integrand Dxψθ(x(t)) is measurable and so is the
map s ↦→ DxFµ(.♣s)(x(s)). Finally integrability follows as Dxψθ(x(s)) has 2-growth w.r.t.
θ and

∫︁

Θ ∥θ∥2dµ(θ♣s) is integrable on [0, 1].

The following result gives an alternate point of view on the adjoint variable p. Geomet-
rically, it follows from Eq. (I.14) that p lives in the co-tangent space of the Ćow x. In the
case of a general (not necessarily with Ąnite support) data distribution D ∈ P(Rd ×R

d′
) it

is convenient to see p as the gradient of a potential ψ over the variables (x, y) ∈ R
d ×R

d′
.

Lemma I.3.1. Let µ ∈ PLeb
2 ([0, 1] × Θ). Then for every (x, y) ∈ R

d+d′
the associated

adjoint variable p can be expressed for every s ∈ [0, 1] as:

pµ,x,y(s) = ∇xψµ(s, xµ(s), y) , (I.16)

where ψµ is the unique solution to the transport equation:

∂sψµ +
˜︁

∇xψµ, Fµ(.♣s)

˜︂

= 0 , ψµ(1, x, y) = ℓ(x, y) , ∀(x, y) ∈ R
d × R

d′
. (I.17)

Proof. The solution to the transport equation can be given in the characteristic form:

∀s ∈ [0, 1] , x ∈ R
d , ψµ(s, xµ(s), y) = ψµ(1, xµ(1), y) = ℓ(xµ(1), y) .

One can then check that the r.h.s. of Eq. (I.16) is indeed a solution of Eq. (I.13).
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I.3.2 The gradient flow equation

We motivate here by formal computations a deĄnition of a gradient Ćow equation for the
risk R. This adjoint sensitivity analysis consists in using a Lagrangian form of the risk
minimization problem to obtain an expression of the gradient w.r.t. the parameter µ.

One can consider for a parameter µ ∈ PLeb
2 ([0, 1] × Θ) and every time s ∈ [0, 1] the

distribution ρµ(.♣s) := (x ↦→ xµ(s), Id)#D of the data at time s. Then, as the inputs are
processed by our model through the ODE Eq. (I.5), ¶ρµ(.♣s)♢s∈[0,1] is a narrowly continuous
solution to the continuity equation:

∂sρ
∗
µ(.♣s) + divx(Fµ(.♣s)ρ

∗
µ(.♣s)) = 0 , (I.18)

and the risk associated to µ is

R(µ) =
∫︂

Rd×Rd′
ℓ(x, y)dρµ(x, y♣1) = ρµ(.♣1)(ℓ) .

We introduce a Lagrange multiplier ψ to penalize the above continuity equation. For
a parameter µ ∈ PLeb

2 ([0, 1] × Θ), a measurable family ρ = ¶ρ(.♣s)♢s∈[0,1] of probability

measures over R
d ×R

d′
and a smooth test function ψ : [0, 1] ×R

d ×R
d′ → R, consider the

lagrangian L deĄned as:

L(µ, ρ, ψ) := ρ(.♣1)(ℓ) − ρ(.♣1)(ψ(1)) − ρ(.♣0)(ψ(0))

+
∫︂ 1

0

∫︂

Rd+d′

(︂

∂sψ +
˜︁

∇xψ, Fµ(.♣s)

˜︂⎡

dρ(.♣s)ds . (I.19)

Using the deĄnition of F and inverting integrals, the variation of L w.r.t. µ is given for
every ρ and ψ by:

δL
δµ

(µ, ρ, ψ) : (s, θ) ↦→
∫︂

Rd+d′
⟨∇xψ(s, x, y), ψ(θ, x)⟩ dρ(x, y♣s) .

Also, if ρ = ρµ is the solution of Eq. (I.18) for the parameter µ, we have the relation
L(µ, ρµ, ψ) = R(µ) for any test function ψ. Hence the variation of R w.r.t. µ is:

δR
δµ

(µ) =
δL
δµ

(µ, ρµ, ψ) +
δL
δρ

(µ, ρµ, ψ)
δρµ

δµ
(µ) ,

where the Lagrange multiplier ψ can be chosen arbitrarily. Also the variation of L w.r.t.
the family of probability measures ρ, seen as the probability measure whose disintegration
on [0, 1] is ¶ρs♢s∈[0,1] (with the Ąxed initial condition ρ(.♣0) = D), can be formally given
by:

δL
δρ

(µ, ρ, ψ) = (ℓ− ψ(1)) δs=1 + ∂sψ +
˜︁

∇xψ ,Fµ(.♣s)

˜︂

.

We see that taking ψ = ψµ to be a solution of Eq. (I.17) cancels δL
δρ for every ρ and hence:

δR
δµ

(µ) =
δL
δµ

(µ, ρµ, ψµ) .

By Theorem I.1 we know that, for every absolutely continuous curve (µt) passing through
µ, its variation at µ is given by ∂tµt = −div((0, v)µ) for some v ∈ L2(µ). A notion of
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gradient of R (for the ŞdifferentialŤ structure of PLeb
2 ([0, 1]×Θ)) at µ could thus be deĄned

as the unique solution to the variational problem:

∇R(µ) ∈ arg min
v∈L2(µ)

1
2

∥v∥2
L2(µ) −

⟨︃

∇θ
δR
δµ

(µ), v
⟩︃

L2(µ)

.

This problem admits a unique solution v∗ ∈ L2(µ), provided that ∇θ
δR
δµ (µ) ∈ L2(µ), and

using the relation Eq. (I.16) between the adjoint variable pµ and the potential ψµ we have:

v∗ = ∇θ
δR
δµ

(µ) = ∇θ
δL
δµ

(µ, ρµ, ψµ) ,

that is

v∗ : (s, θ) ↦→
∫︂

Rd+d′
Dθψ(θ, x)⊤∇xψµ(x, y)dρµ(x, y♣s) = Ex,yDθψ(θ, xµ(s))⊤pµ,x,y(s) .

If the above calculations are purely formal they motivate the following deĄnition of
gradient Ćow for R. In particular, this deĄnition will be shown in the next section to be
equivalent to the appropriate notion of gradient Ćow in metric spaces.

Definition I.3 (Gradient Ćow equation). Let I ⊂ R be an interval. For µ ∈ PLeb
2 ([0, 1] × Θ)

let us define:

∇R[µ] : (s, θ) ↦→ Ex,yDθψ(θ, xµ(s))⊤pµ,x,y(s) . (I.20)

We say a locally absolutely continuous curve t ∈ I ↦→ µt ∈ PLeb
2 ([0, 1] × Θ) is a gradient

Ćow for R if it is a weak solution to the continuity equation:

∂tµt − div ((0,∇R[µt])µt) = 0 on I × [0, 1] × Θ. (I.21)

The following result is a useful representation formula for the gradient Ćow curves
deĄned by DeĄnition I.3: for every t ≥ 0 the gradient Ćow µt at time t is the pushforward
of the initialization µ0 by a Ćow-map. The proof relies on classical results from transport
equation theory [Ambrosio, 2008a].

Proposition I.3.2. Assume ψ is twice continuously differentiable and satisfies Assump-
tions I.1 to I.3. Let (µt)t≥0 be a gradient flow for the risk R and consider for every t ≥ 0
the vector field:

Vt : (s, θ) ↦→ (0,∇R[µt](s, θ)) =
(︂

0,Ex,yDθψ(θ, xµt(s))
⊤pµt,x,y(s)

⎡

∈ R × Θ .

Then for every t ≥ 0 we have µt = (Xt)#µ0 where Xt is the flow-map solution of the
ODE:

d
dt
Xt(s, θ) = Vt(Xt(s, θ)) , X0 = Id . (I.22)

Proof. The existence and uniqueness of the Ćow-map Xt for every t ≥ 0 follows from
the assumptions on ψ (in particular linear growth and local Lipschitz continuity of Dθψ
w.r.t. θ) and classical theory of ODEs. The Ćow-map representation of µt then follows
from [Ambrosio, 2008a, Thm.3.2] as for any initial value (s, θ) ∈ [0, 1]×Θ the set of curves
solutions to the ODE is the singleton ¶(Xt(s, θ))t≥0♢.
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Consistency with the adjoint gradient flow A case of particular interest for nu-
merical applications is when the measure µ is discretized and approximated at every time
s ∈ [0, 1] by an empirical distribution. Given M ≥ 1 and θ = (θj)1≤j≤M ∈ L2([0, 1],Θ)M

we deĄne the associated empirical distribution µθ ∈ PLeb
2 ([0, 1] × Θ) by:

for ds-a.e. s ∈ [0, 1], µθ(.♣s) :=
1
M

M∑︂

j=1

δθj(s)ds . (I.23)

i.e. µθ is the measure whose disintegration at any time s ∈ [0, 1] is the empirical measure
1

M

∑︁M
j=1 δθj(s). Then we denote by R(θ) := R(µθ) the risk associated to θ. In the original

work of Chen et al. [Chen, 2018], the authors propose to train the Neural ODE parame-
terized by θ and minimize R(θ) by performing gradient descent for the adjoint gradient
deĄned as:

∇θj R(θ) := Ex,yDθψ(θj , x(s))⊤p(s) ,

where x and p are respectively the solutions of Eqs. (I.6) and (I.13) for the parameter
µθ. One can observe that the adjoint gradient is the one calculated by Eq. (I.20) when
µ = µθ. Given sufficient regularity assumptions on the basis function ψ, we have by Propo-
sition I.3.2 that (µt)t≥0 is a gradient Ćow in the sense of DeĄnition I.3 with µ0 = µθ0 if
and only if µt = µθt

for every t ≥ 0 and (θt)t≥0 is a gradient Ćow for the above adjoint
gradient.

I.3.3 Gradient flows as curves of maximal slope

There exists a large body of mathematical works devoted to the generalization of the classi-
cal theory of gradient Ćows to functionals over metric spaces. Ambrosio, Gigli, and Savaré
[Ambrosio, 2008b] give an in-depth presentation of this theory. Complementary and more
synthetic presentations are given by Ambrosio et al. [Ambrosio, 2013] and Santambrogio
[Santambrogio, 2017]. Based on those works, we introduce here another deĄnition of gra-
dient Ćows for the risk R which is the one of curves of maximal slope and show it coincides
with the deĄnition from the previous section.

I.3.3.1 Curves of maximal slope in metric spaces

When Z is a Euclidean space, and f is a smooth function the gradient Ćow of f is deĄned
as the solution of the ODE d

dtzt = −∇f(zt). Then such a gradient Ćow satisĄes:

d
dt
f(zt) = −∥∇f(zt)∥2 = −1

2

⎤

∥ d
dt
zt∥2 + ∥∇f(zt)∥2

⎣

,

whereas for any other smooth curve (yt) we have by Young’s inequality:

d
dt
f(yt) = −

⟨︃

∇f(yt),
d
dt
yt

⟩︃

≥ −1
2

⎤

∥ d
dt
yt∥2 + ∥∇f(yt)∥2

⎣

, (I.24)

with equality if and only if d
dtyt = −∇f(yt). Hence, we see that imposing equality in the

above inequality gives a characterization of gradient Ćow curves in the Euclidean case. The
deĄnition of curves of maximal slope is based on the generalization of this characterization
to metric spaces. For example, a generalization of the speed’s norm ∥ d

dtzt∥ is given by

the metric derivative
\︄
\︄
\︄

d
dtzt

\︄
\︄
\︄. To give a sense to the gradient’s norm ∥∇f(z)∥ we need to

introduce the notion of upper gradient.
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Definition I.4 (Upper gradient [Ambrosio, 2008b, Def.1.2.1]). Let (Z, d) be a complete
metric space and f : Z → R be a function. The map g : Z → [0,+∞] is an upper gradient
for f if for every absolutely continuous curve (zt)t∈I we have that t ↦→ g(zt) is measurable
and:

♣f(zt1) − f(zt2)♣ ≤
∫︂ t2

t1

g(zt)
\︄
\︄
\︄
\︄

d
dt
zt

\︄
\︄
\︄
\︄ dt , ∀t1 ≤ t2 ∈ I .

When no ambiguity an upper gradient of f will simply be denoted by ♣∇f ♣.

Given an upper gradient for f , the deĄnition of curves of maximal slope consists in
imposing equality in Eq. (I.24).

Definition I.5 (Curve of maximal slope [Ambrosio, 2008b, Def.1.3.2]). Let (Z, d) be a
complete metric space, I ∈ R be an interval and f : Z → R a function with ♣∇f ♣ an upper
gradient for f . We say that (zt)t∈I is a curve a maximal slope for f (w.r.t. ♣∇f ♣) if it
satisfies:

(i) (zt)t∈I is locally absolutely continuous,

(ii) the map t ↦→ f(zt) is non-increasing,

(iii) for dt-a.e. t ∈ I it holds d
dtf(zt) ≤ −1

2

⎤\︄
\︄
\︄

d
dtzt

\︄
\︄
\︄

2
+ ♣∇f ♣2(zt)

⎣

.

If limt→inf I zt = z exists then we say (zt)t∈I is a curve of maximal slope starting at z.

Remark I.3.1 (About the various deĄnitions of curves of maximal slope). There exists
various definitions of the notion of curve of maximal slope in metric spaces, see for ex-
ample [Ambrosio, 2013, Sec.4] for a discussion about the various definitions and their
relations. Our definition is the same as the one used in [Hauer, 2019, Def.2.12]. In par-
ticular, it implies the following Energy Dissipation Inequality [Hauer, 2019, Prop.2.14]:

f(zt1) − f(zt2) ≥ 1
2

∫︂ t2

t1

(︄\︄
\︄
\︄
\︄

d
dt
zt

\︄
\︄
\︄
\︄

2

+ ♣∇f ♣2(zt)

)︄

dt , ∀t1, t2 ∈ I . (EDI)

This definition differs from the one exposed in [Dello Schiavo, 2024, Def.2.2] (see also [Mu-
ratori, 2020, Def.4.4]) as the map t ↦→ f(zt) need not be locally absolutely continuous. The
difference between these two definitions is discussed in [Dello Schiavo, 2024, Rem.2.6] but
observe that for our purpose (i) the loss R will be shown to be locally Lipschitz in Corol-
lary I.3.1, hence implying that R(µt) is locally absolutely continuous, (ii) the gradient
norm ∥∇R[µ]∥L2(µ) will be shown to be an upper gradient in Proposition I.3.4. For these
reasons, we need not here make the distinction between these two definitions and prefer
weaker assumptions.

Note that there is a priori no reasons for DeĄnitions I.3 and I.5 to deĄne the same
notion of gradient Ćow for the risk R. In particular, the Ąrst deĄnition uses the existence
of the adjoint variable p and thus some regularity on ψ. In contrast, the second deĄnition
requires an upper gradient which is yet unspeciĄed for R. Taking appropriate assumptions
on the basis function ψ, we show in the rest of this section that the risk R is sufficiently
regular for the two deĄnitions to coincide. This will be the content of Theorem I.2.
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I.3.3.2 Curve of maximal slope for the risk R
Provided with DeĄnition I.5, we seek to characterize the curves of maximal slope for the
risk R in the metric space PLeb

2 ([0, 1] × Θ). We Ąrst show the NODE’s output is a locally
Lipschitz function of the parameter µ ∈ PLeb

2 ([0, 1] × Θ).

Assumption I.2 (local Lipschitz continuity w.r.t. θ). Assume that ψ : Θ × R
d → R

d is
locally Lipschitz w.r.t. θ with a Lipschitz constant that grows at most linearly w.r.t. Θ: for
every R ≥ 0 there exists a constant C(R) s.t.:

∀x ∈ B(0, R) , ∀θ, θ′ ∈ Θ , ∥ψ(θ, x) − ψ(θ′, x)∥ ≤ C(R)(1 + max(∥θ∥, ∥θ′∥))∥θ − θ′∥ .

Lemma I.3.2 (local Lipschitz continuity of the Ćow). Assume ψ satisfies Assumptions I.1
and I.2 and consider some input x ∈ R

d. Then the map

µ ∈ PLeb
2 ([0, 1] × Θ) ↦→ (xµ(s))s∈[0,1] ∈ C([0, 1],Rd)

is locally Lipschitz. More precisely, for every E ≥ 0 there exists a constant C = C(E) s.t.:

sup
s∈[0,1]

∥xµ(s) − xµ′(s)∥ ≤ CWCOT
2 (µ, µ′) ,

for every µ, µ′ ∈ PLeb
2 ([0, 1] × Θ) with E2(µ), E2(µ′) ≤ E. Moreover, the constant C can be

chosen uniformly over x in a compact set.

Proof. Consider x ∈ R
d, E ≥ 0 and µ, µ′ such as in the statement. We denote by

(x(s))s∈[0,1] and (x′(s))s∈[0,1] the Ćow associated to x and to the parameters µ and µ′

respectively. Let R ≥ 0 be such that ∥x∥ ≤ R. Then by Proposition I.1.1 the trajectories
x, x′ are uniformly bounded by some R′ = R′(R, E) . Then using Eq. (I.5) we have for
every s ∈ [0, 1]:

∥x(s) − x′(s)∥ ≤∥x(0) − x′(0)∥ + ∥
∫︂ s

0

∫︂

Θ
ψ(θ, x(r))dµ(θ♣r)dr −

∫︂ s

0

∫︂

Θ
ψ(θ, x′(r))dµ′(θ♣r)dr∥

≤∥x(0) − x′(0)∥ +
∫︂ s

0

∫︂

Θ
∥ψ(θ, x(r)) − ψ(θ, x′(r))∥dµ(θ♣r)dr

+
∫︂ s

0
∥
∫︂

Θ
ψ(θ, x′(r))d(µ− µ′)(θ♣r)∥dr .

For the Ąrst integral note that using the local Lipschitz continuity of ψ w.r.t. x in As-
sumption I.1 we have for every r ∈ [0, 1]:

∫︂

Θ
∥ψ(θ, x(r)) − ψ(θ, x′(r))∥dµ(θ♣r) ≤ C1

∫︂

Θ
(1 + ∥θ∥2)dµ(θ♣r)∥x(r) − x′(r)∥ ,

where C1 = C1(R, E). For the second integral note that at Ąxed r ∈ [0, 1], if γ ∈ Γo(µ(.♣r), µ′(.♣r))
is a (optimal) coupling between µ(.♣r) and µ′(.♣r), then:

∫︂

Θ
ψ(θ, x′(r))d(µ− µ′)(θ♣r) =

∫︂

Θ2
(ψ(θ, x′(r)) − ψ(θ′, x′(r)))dγ(θ, θ′) .

Using the local Lipschitz continuity of ψ w.r.t. θ in Assumption I.2 and the optimality
of γ:

∥
∫︂

Θ
ψ(θ, x′(r))d(µ− µ′)(θ♣r)∥ ≤

∫︂

Θ2
∥ψ(θ, x′(r)) − ψ(θ′, x′(r))∥dγ(θ, θ′)

≤
∫︂

Θ2
C2(1 + max(∥θ∥, ∥θ′∥))∥θ − θ′∥dγ(θ, θ′)

≤
√

3C2
(︁
1 + E2(µ(.♣r)) + E2(µ′(.♣r))[︄1/2 W2(µ(.♣r), µ′(.♣r)) ,
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where C2 = C2(R, E). Integrating those inequalities gives by Grönwall’s lemma that for
s ∈ [0, 1]:

∥x(s)−x′(s)∥ ≤
√

3eC1(1+E2(µ))C2

∫︂ s

0

(︁
1 + E2(µ(.♣r)) + E2(µ′(.♣r))[︄1/2 W2(µ(.♣r), µ′(.♣r))dr

≤ C3WCOT
2 (µ, µ′) ,

where C3 = C3(R, E).

As an immediate corollary of the above proposition we get that, provided the loss
function ℓ is itself locally Lipschitz then the risk R is also a locally Lipschitz function of µ.

Corollary I.3.1 (local Lipschitz continuity of the risk). Assume that ψ satisfies As-
sumptions I.1 and I.2 and ℓ is locally Lipschitz w.r.t. x. Then the risk map L : µ ∈
PLeb

2 ([0, 1] × Θ) ↦→ R(µ) is locally Lipschitz.

Assuming more regularity on the map ψ, one can express the Ąrst variation δx of
the Ćow map with respect to a variation of the parameter transported by a velocity Ąeld
v ∈ L2(µ).

Assumption I.3 (Differentiability of ψ). Assume that ψ is continuously differentiable
and s.t.

(i) Dxψ grows at most quadratically with θ: for every R ≥ 0 there exists a constant C(R)
such that

∀x ∈ B(0, R) , ∀θ ∈ Θ , ∥Dxψ(θ, x)∥ ≤ C(R)(1 + ∥θ∥2) .

(ii) Dθψ grows at most linearly with θ: for every R ≥ 0 there exists a constant C = C(R)
such that

∀x ∈ B(0, R) , ∀θ ∈ Θ , ∥Dθψ(θ, x)∥ ≤ C(R)(1 + ∥θ∥) .

Proposition I.3.3. Assume ψ satisfies Assumptions I.1 to I.3. Consider µ ∈ PLeb
2 ([0, 1] × Θ)

and a velocity field v : [0, 1] × Θ → Θ in L2(µ). For t ∈ R, define µt := (Id + t(0, v))#µ.
Then, for x ∈ R

d, (xµt)t∈R is differentiable in C([0, 1],Rd) at t = 0 and δx := d
dtxµt ♣t=0 is

the solution to:

∀s ∈ [0, 1] , δx(s) =
∫︂ s

0
DFµ(.♣r)(xµ(r))δx(r)dr +

∫︂ s

0

∫︂

Θ
Dθψ(θ, xµ(r))v(r, θ)dµ(θ♣r)dr .

(I.25)

Proof. First, thanks to Assumption I.3, for ν ∈ P2(Θ) the map Fν : Rd → R
d is differen-

tiable with DFν : x ↦→ ∫︁

Θ Dxψ(θ, x)dν(θ). Also, δx is well-deĄned as the unique solution
of Eq. (I.25) and:

∀s ∈ [0, 1] , δx(s) =
∫︂ s

0

∫︂

Θ
Φµ,x(s)Φµ,x(r)−1Dθψ(θ, x(r))v(r, θ)dµ(r, θ) .

For simplicity, in the rest of the proof we will write xt := xµt for any t ∈ R. Let us
then show that δx is the derivative of xt at t = 0. For t ̸= 0, consider the normalized
increment:

zt :=
1
t
(xt − x0) ∈ C([0, 1],Rd) .
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Then we have by deĄnition of xt and x0 that for every s ∈ [0, 1]:

zt(s) =
1
t

∫︂ s

0

∫︂

Θ
ψ(θ, xt(r))dµt(r, θ) − 1

t

∫︂ s

0

∫︂

Θ
ψ(θ, x0(r))dµ(r, θ)

=
1
t

∫︂ s

0

∫︂

Θ
(ψ(θ + tv(r, θ), xt(r)) − ψ(θ, x0(r))) dµ(r, θ)

=
∫︂ s

0

∫︂

Θ

⎤∫︂ 1

0
Dxψ(θ, x0(r) + utzt(r))du

⎣

· zt(r)dµ(r, θ)

+
∫︂ s

0

∫︂

Θ

⎤∫︂ 1

0
Dθψ(θ + utv(r, θ), xt(r))du

⎣

· v(r, θ)dµ(r, θ) .

Hence zt is solution of the linear ODE zt(s) =
∫︁ s

0 (At(r) · zt(r) + bt(r)) dr where we deĄned
for dr-a.e. r ∈ [0, 1]:

At(r) :=
∫︂

Θ

∫︂ 1

0
Dxψ(θ, x0(r) + utzt(r))dudµ(θ♣r) ,

bt(r) :=
∫︂

Θ

∫︂ 1

0
Dθψ(θ + utv(r, θ), xt(r)) · v(r, θ)dudµ(θ♣r) ,

and in order to prove that zt → δx in C([0, 1],Rd) as t → 0 it suffices to show that At and
bt converge respectively in L1([0, 1]) to:

A(r) :=
∫︂

Θ
Dxψ(θ, x0(r))dµ(θ♣r) , and b(r) :=

∫︂

Θ
Dθψ(θ, x0(r)) · v(r)dµ(θ♣r) .

Indeed, note that WCOT
2 (µt, µ) ≤ t∥v∥L2(µ) and the family (zt)t∈[−1,1] is bounded C([0, 1],Rd)

by Lemma I.3.2. Thus for t ∈ R:

∫︂ 1

0
♣At(r) −A(r)♣ dr ≤

∫︂ 1

0

∫︂

Θ

\︄
\︄
\︄
\︄

∫︂ 1

0
Dxψ(θ, x0(r) + utzt(r))du− Dxψ(θ, x0(r))

\︄
\︄
\︄
\︄ dµ(r, θ) −−→

t→0
0

where Assumption I.3 allows to bound the integrand by an integrable function and to
apply Lebesgue’s theorem, showing that At → A as t → 0 in L1([0, 1]). Similarly for bt:

∫︂ 1

0
♣bt(r) − b(r)♣ dr ≤

∫︂ 1

0

∫︂

Θ

\︄
\︄
\︄
\︄

∫︂ 1

0
Dθψ(θ + utv(r, θ), xt(r))du− Dθψ(θ, x0(r))

\︄
\︄
\︄
\︄ ∥v(r, θ)∥dµ(r, θ) −−→

t→0
0.

A direct consequence of the previous result is the differentiability of the Ćow map and
consequently of the risk along absolutely continuous curves.

Corollary I.3.2 (Differentiability of the Ćow). Assume ψ satisfies Assumptions I.1 to I.3.
Let I ⊂ R be an interval and consider (µt)t∈I an absolutely continuous curve in PLeb

2 ([0, 1] × Θ)
satisfying the continuity equation:

∂tµt + div((0, vt)µt) = 0 on I × [0, 1] × Θ.

Consider some x ∈ R
d. Then (xµt)t∈I is an absolutely continuous curve in C([0, 1],Rd)

and is differentiable in C([0, 1],Rd) for dt-a.e. t ∈ I with δxt := d
dtxµt the solution to:

∀s ∈ [0, 1] , δxt(s) =
∫︂ s

0
DFµt(.♣r)(xµt(r))δxt(r)dr +

∫︂ s

0

∫︂

Θ
Dθψ(θ, xµt(r))vt(r, θ)dµt(θ♣r)dr .

(I.26)
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Proof. For t ∈ I we use the shortcut notation xt := xµt . The fact that (xt)t∈I is absolutely
continuous follows from Lemma I.3.2 stating that the Ćow map is locally Lipschitz. To
prove the result it hence suffices to show that δxt is the derivative of t ↦→ xt in C([0, 1],Rd).

Note that, without loss of generality we can consider vt to be the (uniquely deĄned)
tangent velocity Ąeld of the curve (µt)t∈I . Indeed if ṽt is the tangent velocity Ąeld then
we have by Theorem I.1 that in the sense of distributions:

div((0, vt − ṽt)µt) = 0 .

Hence for every x ∈ R
d and every s ∈ [0, 1]:

∫︂ s

0

∫︂

Θ
Dθψ(θ, xt(r))vt(r, θ)dµt(r, θ) =

∫︂ s

0

∫︂

Θ
Dθψ(θ, xt(r))ṽt(r, θ)dµt(r, θ)

and the deĄnition of δxt stays unchanged. Then, assuming vt is the tangent velocity
Ąeld to the curve µt, we can consider a subset Λ ⊂ I of full Lebesgue measure such
that the conclusions of Lemma I.2.2 hold. For every t ∈ Λ and every h ̸= 0 consider
µ̃h

t := (Id + h(0, vt))#µt and x̃h
t the associated Ćow. Then by Proposition I.3.3:

∥xt+h − xt

h
− δxt∥C([0,1]) ≤ ∥ x̃

h
t − xt

h
− δxt∥C([0,1]) + ∥xt+h − x̃h

t

h
∥C([0,1]) −−−→

h→0
0

where the Ąrst term goes to 0 by application of Proposition I.3.3.The second term also
goes to 0 by the fact that the Ćow map is locally Lipschitz, thus

∥xt+h − x̃h
t ∥C([0,1]) ≤ CWCOT

2 (µt+h, µ̃
h
t )

for some constant C and 1
h∥xt+h − x̃h

t ∥C([0,1]) → 0 by Lemma I.2.2. Note that, as Λ ⊂ I is
independent of x, it follows that the curve t ↦→ xt is differentiable at every t ∈ Λ for every
x ∈ R

d.

Corollary I.3.3 (Differentiability of the loss). Assume ψ satisfies Assumptions I.1 to I.3
and ℓ is continuously differentiable. Let I ⊂ R be an interval and (µt)t∈I be as in Corol-
lary I.3.2. Then (R(µt))t∈I is absolutely continuous and for almost every t ∈ I:

d
dt

R(µt) =
∫︂

[0,1]×Θ
⟨∇R[µt](s, θ), vt(s, θ)⟩ dµt(s, θ) .

Proof. First, the fact that t ↦→ R(µt) is absolutely continuous follows from the fact that
µ ↦→ R(µ) is locally Lipschitz, as shown in Corollary I.3.1. It remains to show the formula
for its derivative.

For t ∈ I and (x, y) ∈ R
d × R

d′
use the shortcut notations xt := xµt , pt := pµt,x,y and

Φt := Φµt,x. By the proof of Corollary I.3.2 we know that there exists a subset Λ ⊂ I of
full Lebesgue measure such that for every t ∈ Λ, the map t ↦→ xt is differentiable at t for
every x ∈ R

d. By Lebesgue theorem, the map t ↦→ R(µt) is differentiable at every t ∈ Λ
with:

d
dt

R(µt) = Ex,y ⟨∇xℓ(xt(1), y), δxt(1)⟩ ,

where, at Ąxed x ∈ R
d, δxt veriĄes Eq. (I.26) and is given by

δxt(1) =
∫︂

[0,1]×Θ
Φt(1)Φt(s)−1Dθψ(θ, xt(s))vt(s, θ)dµt(s, θ) .
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Also, the adjoint variable pt is given by pt(s) = Φt(s)−⊤Φt(1)⊤∇xℓ(xt(1), y). Hence by
inverting the integration order, we see that for t ∈ Λ:

d
dt

R(µt) = Ex,y ⟨∇xℓ(xt(1), y), δxt(1)⟩ =
∫︂

[0,1]×Θ

˜︁

Ex,yDθψ(θ, xt(s))⊤pt(s), vt(s, θ)
˜︂

dµt(s, θ) .

By the expression of ∇R[µt] in Eq. (III.10), this is the desired result.

Thanks to Corollary I.3.2 (which can be seen as a chain-rule formula) one can show
that the gradient norm ∥∇R[µ]∥L2(µ) gives an upper gradient for the risk R in the sense
of DeĄnition I.4. Moreover the following Proposition I.3.4 shows it corresponds to the
notion of local slope ([Ambrosio, 2008b, Def.1.2.4]). The result relies on the following
lemma.

Lemma I.3.3 (Continuity of the adjoint variable p). Assume ψ satisfies Assumptions I.1
to I.3. Then, for fixed (x, y) ∈ R

d+d′
, the map µ ↦→ pµ,x,y ∈ C([0, 1] × R

d) is WCOT
2 -

continuous on PLeb
2 ([0, 1] × Θ).

Proof. Let µ ∈ PLeb
2 ([0, 1] × Θ) and consider a sequence (µn)n≥0 in PLeb

2 ([0, 1] × Θ) s.t.
WCOT

2 (µn, µ) → 0. Fix a pair (x, y) ∈ R
d+d′

and use the shortcuts xn := xµn (resp.
x := xµ) and pn := pµn,x,y (resp. p := pµ,x,y). By Lemma I.3.2 we already have xn → x in
C([0, 1]) and we show now that pn → p in C([0, 1]) using Ascoli’s theorem.

Remark that by the assumptions on ψ, all the trajectories x, xn, p and pn stay in a
bounded set B(0, R) for some R ≥ 0. Also, as µn → µ, we have that the sequence (µn)
has uniformly integrable second moment and for every ε > 0 we can Ąnd a k ≥ 0 s.t.

∫︂

∥θ∥≥k
(1 + ∥θ∥2)dµ ≤ ε , and sup

n≥0

∫︂

∥θ∥≥k
(1 + ∥θ∥2)dµn ≤ ε .

Then for n ≥ 0 and s1 ≤ s2 ∈ [0, 1] we have by Eq. (I.13) and the assumptions on ψ:

∥pn(s2) − pn(s1)∥ ≤
∫︂ s2

s1

∫︂

Θ
∥Dxψ(θ, xn(r))∥∥pn(r)∥dµn(r, θ)

≤ C

∫︂ s2

s1

∫︂

Θ
(1 + ∥θ∥2)dµn(r, θ)

≤ C(ε+ (1 + k2)♣s2 − s1♣) ,

where C = C(R). Hence the sequence (pn)n≥0 is equicontinuous and, up to a subsequence,
we have pn → p̄ ∈ C([0, 1]). Let us then show p̄ = p. Indeed using the initial condition we
have for n ≥ 0 and s ∈ [0, 1]:

pn(s) = ∇xℓ(xn(1), y) +

∫︂ 1

s

∫︂

Θ
Dxψ(θ, xn(r))⊤pn(r)dµn(r, θ) .

First we have ∇xℓ(xn(1), y) −−−→
n→∞

∇xℓ(x(1), y). Also, note that by the assumptions on ψ

we have Dxψ(θ, xn(r))⊤pn(r) ≤ C(1+∥θ∥2) and Dxψ(θ, xn(r))⊤pn(r) → Dxψ(θ, x(r))⊤p̄(r)
locally uniformly over [0, 1] × Θ. Hence by the properties of W2-convergence, we can take
the limit in the above equation to obtain:

p̄(s) = ∇xℓ(x(1), y) +

∫︂ 1

s

∫︂

Θ
Dxψ(θ, x(r))⊤p̄(r)dµ(r, θ) ,

i.e. p̄ = p by uniqueness of the solutions to Eq. (I.13).
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Lemma I.3.4 (Continuity of ∥∇R(µ)∥L2(µ) ). Assume ψ satisfies Assumptions I.1 to I.3.

Then the map µ ↦→ ∥∇R[µ]∥L2(µ) is WCOT
2 -continuous on PLeb

2 ([0, 1] × Θ).

Proof. Let µ ∈ PLeb
2 ([0, 1] × Θ) and consider a sequence (µn)n≥0 in PLeb

2 ([0, 1] × Θ) s.t.
WCOT

2 (µn, µ) → 0. For an input x ∈ R
d, denote by xn (resp. x) the Ćow associated to

µn (resp. µ) and starting from x. Similarly introduce the adjoint variables (pn)n≥0 and p.
Then by Lemma I.3.2 and Lemma I.3.3 we have that xn → x and pn → p in C([0, 1],Rd).
As a consequence the sequence of continuous maps

fn : (r, θ) ↦→ Ex,yDθψ(θ, xn(r))⊤pn(r)

converges locally uniformly towards the map f : (r, θ) ↦→ Ex,yDθψ(θ, x(r))⊤p(r) and is
uniformly bounded by a function of linear growth. As WCOT

2 -convergence implies W2-
convergence and by the properties of W2-convergence ([Villani, 2009, Thm.6.9]) this im-
plies:

∥∇R[µn]∥2
L2(µn) =

∫︂

[0,1]×Θ
∥fn∥2dµn −−−→

n→∞

∫︂

[0,1]×Θ
∥f∥2dµ = ∥∇R[µ]∥2

L2(µ) .

Proposition I.3.4 (∥∇R(µ)∥L2(µ) is an upper-gradient). Assume ψ satisfies Assump-

tions I.1 to I.3. Let µ ∈ PLeb
2 ([0, 1] × Θ), then ∥∇R[µ]∥L2(µ) is the local slope of the risk

R at µ, that is:

∥∇R[µ]∥L2(µ) = lim sup
ν→µ

(R(µ) − R(ν))+

WCOT
2 (µ, ν)

. (I.27)

Moreover, it is an upper-gradient in the sense of Definition I.4.

Proof. The last part of the result follows from Theorem I.1, since if (µt)t∈I is an absolutely
continuous curve then it satisĄes the continuity equation with a vector Ąeld v such that
∥vt∥L2(µt) ≤

\︄
\︄
\︄

d
dtµt

\︄
\︄
\︄ for a.e. t ∈ I. Hence by Corollary I.3.3 and Cauchy-Schwarz we have:

∀t1 ≤ t2 ∈ I , ♣R(µt1) − R(µt2)♣ ≤
∫︂ t2

t1

∥∇R[µt]∥L2(µt)

\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄ dt .

Let us then show Eq. (I.27). Consider some parameter µ ∈ PLeb
2 ([0, 1]×Θ) and denote

by ♣∇R♣(µ) the r.h.s. of Eq. (I.27). Then for ε > 0, by continuity of ∥∇R[µ]∥L2(µ)

(Lemma I.3.4) and by deĄnition of ♣∇R♣(µ) one can Ąnd a ν ∈ PLeb
2 ([0, 1] × Θ) s.t.:

(R(µ) − R(ν))+

WCOT
2 (µ, ν)

≥ ♣∇R♣ (µ) − ε

and
\︄
\︄
\︄∥∇R[µ]∥L2(µ) − ∥∇R[ν ′]∥L2(ν′)

\︄
\︄
\︄ ≤ ε

if WCOT
2 (µ, ν′) ≤ WCOT

2 (µ, ν). Consider (µt)t∈[0,1] a constant speed geodesics with end-
points µ0 = µ and µ1 = ν (such a geodesic can easily be constructed by similarity
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with classical Wasserstein geodesics, see [Ambrosio, 2008b, Thm.7.2.2]). Then by The-
orem I.1 the tangent velocity Ąeld v of the curve (µt) satisĄes for dt-a.e. t ∈ [0, 1],
∥vt∥L2(µt) ≤

\︄
\︄
\︄

d
dtµt

\︄
\︄
\︄ = WCOT

2 (µ, ν) and using Corollary I.3.3:

R(ν) = R(µ) +
∫︂ 1

0
⟨∇R[µt], vt⟩L2(µt) dt

≤ R(µ) + WCOT
2 (µ, ν)

∫︂ 1

0
∥∇R[µt]∥L2(µt)dt

≤ R(µ) + WCOT
2 (µ, ν)∥∇R[µ]∥L2(µ) + ε .

Similarly we have

R(µ) ≤ R(ν) + WCOT
2 (µ, ν)∥∇R[µ]∥L2(µ) + ε

and hence ♣∇R♣ (µ) ≤ ∥∇R[µ]∥L2(µ) + ε.
For the converse inequality consider for t ∈ R the parameter µt = (Id+t(0,∇R[µ]))#µ.

Then, by Proposition I.3.3 with v = ∇R[µ], the map t ↦→ R(µt) is differentiable at t = 0
and applying the same calculations as in Corollary I.3.3:

d
dt

R(µt)
\︄
\︄
\︄
t=0

= ⟨∇R[µ], v⟩L2(µ) = ∥∇R[µ]∥2
L2(µ).

Hence observing that WCOT
2 (µt, µ) ≤ t∥v∥L2(µt) we have

lim inf
t→0+

(R(µt) − R(µ))+

WCOT
2 (µt, µ)

≥ ∥∇R[µ]∥L2(µ) .

As a consequence of the previous result, we will from now on only consider as upper
gradient of R the one given for every µ ∈ PLeb

2 ([0, 1] × Θ) by:

♣∇R♣(µ) := ∥∇R[µ]∥L2(µ) =

(︄
∫︂

[0,1]×Θ
∥Ex,yDθψ(θ, x(s))⊤p(s)∥2dµ(s, θ)

)︄1/2

. (I.28)

Note that the vector Ąeld ∇R[µ] was used in DeĄnition I.3 to deĄne the notion of gradient
flow whereas the upper-gradient ♣∇R♣(µ) is used in the DeĄnition I.5 of curves of maximal
slope. The following theorem is the main result of this section and shows these two notions
coincide.

Theorem I.2. Assume ψ satisfies Assumptions I.1 to I.3 and ℓ is smooth. Let I ⊂ R be
an open interval. Then a curve (µt)t∈I is a gradient Ćow in the sense of Definition I.3 if
and only if it is a curve of maximal slope for R in the sense of Definition I.5.

Proof. Part 1: Gradient flows are curves of maximal slope.

Let (µt)t∈I be a gradient Ćow for R in the sense of DeĄnition I.3. Then (µt) is a locally
absolutely continuous curve satisfying the continuity equation ∂tµt + div(vtµt) = 0 with
vt = −∇R[µt]. Hence by Theorem I.1 we have for a.e. t ∈ I:

\︄
\︄
\︄
\︄

d
dt
µt

\︄
\︄
\︄
\︄ ≤ ∥vt∥L2(µt) = ∥∇R[µt]∥L2(µt) .
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Also, by Corollary I.3.2, (R(µt))t∈I is absolutely continuous with for a.e. t ∈ I:

− d
dt

R(µt) = ⟨vt,∇R[µt]⟩L2(µt) = ∥∇R[µt]∥2
L2(µt) .

Thus recalling that ♣∇R♣(µ) = ∥∇R[µ]∥L2(µ) we get DeĄnition I.5 by putting together the
two previous equations.

Part 2: Curves of maximal slope are gradient flows.

Let (µt)t∈I be a curve of maximal slope for R in the sense of DeĄnition I.5. Then
in particular (µt)t∈I is locally absolutely continuous in (PLeb

2 ([0, 1] × Θ) , WCOT
2 ) and

by Theorem I.1 there exists a Borel velocity Ąeld v : I × [0, 1] × Θ → Θ such that µ
satisĄes the continuity equation:

∂tµt + div((0, vt)µt) = 0, on I × [0, 1] × Θ,

and such that the metric derivative satisĄes ♣ d
dtµt♣ ≥ ∥vt∥L2(µt) for a.e. t ∈ I. Hence it

follows from Corollary I.3.3 that (R(µt))t∈I is absolutely continuous and for a.e. t ∈ I:

− d
dt

R(µt) = − ⟨vt,∇R[µt]⟩ .

Using the EDE condition we thus have:

− ⟨vt,∇R[µt]⟩ ≥ 1
2

(♣ d
dt
µt♣2 + ♣∇R♣2(µt)) ≥ 1

2
(∥vt∥2

L2(µt) + ∥∇R[µt]∥2
L2(µt))

from which it follows by Young’s inequality that vt = −∇R[µt] in L2(µt) for a.e. t ∈ I.

Note that, although it does not appear in DeĄnition I.3, the above equivalence shows
that if (µt)t∈I is a gradient Ćow for R then

\︄
\︄
\︄

d
dtµt

\︄
\︄
\︄ = ∥∇R[µt]∥L2(µt) i.e. ∇R[µt] is in fact

the (uniquely deĄned) tangent velocity Ąeld of the curve (µt)t∈I .

I.3.4 Existence, uniqueness, and stability of gradient flow curves

We show here the well-posedness result for the gradient Ćow equation of the risk R, namely
we show the existence, uniqueness, and stability of gradient Ćow curves starting from any
initialization µ0 ∈ PLeb

2 ([0, 1]×Θ). For the ŞexistenceŤ part we will rely on classical results
from the theory of gradient Ćows in metric spaces showing the convergence of proximal
sequences towards a curve known as (Generalized) Minimising Movements [De Giorgi,
1993]. For the ŞuniquenessŤ part we will show that gradient Ćow trajectories are stable,
that is if two initializations µ0, µ

′
0 are close (in the sense of the metric WCOT

2 ), then the
emanating gradient Ćow curves (µt)t≥0, (µ′

t)t≥0 stay close in Ąnite time.

I.3.4.1 Existence

We proceed to show the existence of gradient Ćow curves as deĄned in DeĄnition I.3. For
that purpose, we need a strengthening of Assumption I.1. Notably, Assumption I.A allows
to show the Ćow map µ ↦→ xµ is continuous for the topology of narrow convergence over
PLeb

2 ([0, 1] × Θ).

Assumption I.A. For some α ∈ [1, 2) we assume that:
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(i) The basis function ψ has α-growth w.r.t. θ, locally w.r.t. x. That is for every compact
K ⊂ R

d there exists a constant C = C(K) s.t:

∀x ∈ K , ∀θ ∈ Θ , ∥ψ(θ, x)∥ ≤ C(1 + ∥θ∥α) .

(ii) The basis function ψ is continuously differentiable and its differential Dxψ w.r.t. x
has α-growth w.r.t. θ, locally w.r.t. x. That is for every compact K ⊂ R

d there exists
a constant C = C(K) s.t.:

∀x ∈ K ,∀θ ∈ Θ , ∥Dxψ(θ, x)∥ ≤ C(1 + ∥θ∥α) .

Theorem I.3 (Existence of curves of maximal slope). Assume ψ satisfies Assumptions I.1
to I.3 and Assumption I.A. Let µ0 ∈ PLeb

2 ([0, 1]×Θ). Then there exists a curve of maximal

slope (µt)t∈[0,+∞) starting from µ0 and
(︂\︄
\︄
\︄

d
dtµt

\︄
\︄
\︄

⎡

t≥0
∈ L2

loc([0,+∞)).

Proof. The result follows from the successive application of [Ambrosio, 2008b, Thm.2.2.3
and Thm.2.3.3], the Ąrst result ensuring the existence of Generalized Minimizing Move-
ments and the second result stating that these curves are curves of maximal slope for
the local slope. The proof proceeds by verifying the assumptions of these theorems.
We consider here PLeb

2 ([0, 1] × Θ) equipped with the topology induced by the distance
WCOT

2 and with the (weaker) topology of narrow convergence, denoted by τ . Note that
(PLeb

2 ([0, 1] × Θ) , WCOT
2 ) is a complete metric space (Proposition I.2.3) and that the

distance WCOT
2 is τ -lower-semicontinuous (Lemma I.2.1).

Part 1: WCOT
2 -bounded sets are τ -relatively compact.

This property is veriĄed as WCOT
2 -bounded sets are tight and hence τ -relatively com-

pact by Prokhorov’s theorem.

Part 2: R is τ -continuous on WCOT
2 -bounded sets.

Let (µn) be a WCOT
2 -bounded sequence in PLeb

2 ([0, 1] × Θ) such that µn
τ−→ µ for some

µ ∈ PLeb
2 ([0, 1] × Θ) and let us show that R(µn) → R(µ). Take x ∈ R

d and denote
by xn := xµn the Ćow trajectory starting from x and associated to µn. By Lebesgue’s
theorem, it suffices to show that xn(1) → xµ(1). Using Ascoli’s theorem, we will proceed
by showing that xn → xµ in C([0, 1],Rd).

From the WCOT
2 -boundedness and the proof of Proposition I.1.1, it follows that the

trajectories xn stay in a compact set. Moreover given s1 < s2 ∈ [0, 1] we have using the
α-growth assumption:

∥xn(s2) − xn(s1)∥ ≤
∫︂

[s1,s2]×Θ
∥ψ(θ, xn(r))∥dµn(r, θ) ≤

∫︂

[s1,s2]×Θ
C(1 + ∥θ∥α)dµn(r, θ) .

Also as the sequence (µn) is WCOT
2 -bounded it has uniformly integrable α-moments. Given

ε > 0 we can thus Ąnd a k ≥ 0 such that, for every n ≥ 0,
∫︁

∥θ∥≥k C(1 + ∥θ∥α)dµn ≤ ε.
Using this in the previous inequality and the fact that the marginal of µn on [0, 1] is the
Lebesgue measure gives:

∀s1 < s2 ∈ [0, 1] , ∥xn(s2) − xn(s1)∥ ≤ ε+ C(1 + kα)(s2 − s1) .

Thus the trajectories (xn) are equicontinuous and, by Arzela-Ascoli’s theorem, we have
(up to a subsequence) that xn → x̄ in C([0, 1],Rd).
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Let us show that x̄ = xµ is the Ćow generated by µ. This will conclude this part of the
proof as it will imply xn(1) → xµ(1) and then R(µn) → R(µ) by Lebesgue’s convergence
theorem. Considering s ∈ [0, 1] we have:

xn(s) = x+

∫︂

[0,1]×Θ
✶r≤sψ(θ, xn(r))dµn(r, θ)

= x+

∫︂

[0,1]×Θ
✶r≤sψ(θ, x̄(r))dµ(r, θ)

+

∫︂

[0,1]×Θ
✶r≤s (ψ(θ, xn(r)) − ψ(θ, x̄(s))) dµn(r, θ) (L1)

+

∫︂

[0,1]×Θ
✶r≤sψ(θ, x̄(r))d(µn − µ)(r, θ) . (L2)

In this last equality, we need to show that L1 and L2 vanish as n → ∞. In L1 the integrand
has α-growth. Hence, given ε > 0, we have using the uniform integrability of ∥θ∥α on the
sequence (µn) that for every n ≥ 0:

∥
∫︂

✶r≤s (ψ(θ, xn(r)) − ψ(θ, x̄(r))) dµn(r, θ)∥ ≤ ε+

∫︂

✶r≤s,∥θ∥≤k∥ψ(θ, xn(r)) − ψ(θ, x̄(r))∥dµn(r, θ) .

Then, as ψ is locally-Lipschitz w.r.t. x and xn → x̄, we have that the integrand on the
r.h.s. converges uniformly to 0 and hence:

lim sup
n→∞

∥
∫︂

[0,1]×Θ
✶r≤s (ψ(θ, xn(r)) − ψ(θ, x̄(s))) dµn(r, θ)∥ ≤ ε .

In L2 the integrand is not continuous so we can’t simply apply the deĄnition of narrow
convergence and need to leverage the fact that (µn) is a WCOT

2 -bounded sequence in
PLeb

2 ([0, 1] × Θ). Note that for every (r, θ) ∈ [0, 1] × Θ, ∥ψ(θ, x̄(r))∥ ≤ C(1 + ∥θ∥α). Given
ε > 0 and using the uniform integrability of ∥θ∥α we can thus have a k ≥ 0 such that:

sup
n≥0

∫︂

∥θ∥≥k
C(1 + ∥θ∥α)dµn,

∫︂

∥θ∥≥k
C(1 + ∥θ∥α)dµ ≤ ε .

Then, whenever δ > 0, we can Ąnd a continuous function φ : [0, 1] × Θ → R
d such that

∥φ(r, θ)∥ ≤ C(1 + ∥θ∥α), φ(r, θ) = ψ(θ, x̄(r)) for every r ≤ s and φ(r, θ) = 0 whenever
r ≥ s+ δ. Considering such a function φ we have for L2:

∥
∫︂

✶r≤sψ(θ, x̄(r))d(µn − µ)(r, θ)∥ ≤ ∥
∫︂

φd(µn − µ)∥ +

∫︂

∥✶r≤sψ(θ, x̄(r)) − φ(r, θ)∥d(µn + µ)(r, θ)

≤ ∥
∫︂

φd(µn − µ)∥ + 4ε+ C(1 + kα)δ

where we used the fact that, in the second term, the integrand has α-growth and is only
non-zero for r ∈ [s, s+ δ]. Hence having chosen δ sufficiently small gives:

lim sup
n→∞

∥
∫︂

✶r≤sψ(θ, x̄(r))d(µn − µ)(r, θ)∥ ≤ lim sup
n→∞

∥
∫︂

φd(µn − µ)∥ + 5ε ≤ 5ε ,

where the Ąrst lim sup is 0 by deĄnition of narrow convergence. We have thus shown that
for every s ∈ [0, 1], taking the limit as n → ∞:

x̄(s) = x+

∫︂ s

0
ψ(θ, x̄(r))dµ(θ♣r)dr ,
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i.e. x̄ = xµ is the Ćow trajectory associated to µ and starting from x.

Part 3: ∥∇R(µ)∥L2(µ) is τ -lower semicontinuous on WCOT
2 -bounded subsets.

We previously considered the upper-gradient ♣∇R♣ deĄned in Eq. (I.28) as ♣∇R♣(µ) :=
∥∇R[µ]∥L2(µ). However, Ambrosio, Gigli, and Savaré [Ambrosio, 2008b, Thm.2.3.3] state
that the obtained curve of maximal slope is a curve of maximal slope for another deĄnition
of gradient, referred to as relaxed slope. To show these two notions coincide here we show
that the map µ ↦→ ∥∇R[µ]∥L2(µ) is τ -lower-semicontinuous on WCOT

2 -bounded subsets
(c.f. [Ambrosio, 2008b, Rm.2.3.4]).

As before consider a WCOT
2 -bounded sequence (µn) in PLeb

2 ([0, 1] × Θ) which narrowly
converges towards some µ ∈ PLeb

2 ([0, 1] × Θ). Then we previously have shown that for
every x ∈ R

d we have xµn → xµ in C([0, 1],Rd). Proceeding with similar arguments one
could show the same for the adjoint variable p, that is pn := pµn,x,y → pµ,x,y in C([0, 1],Rd).
Then using a generalization of Fatou’s lemma with varying measures (e.g. [Feinberg, 2020,
Thm.2.4]) we have:

lim inf
n→∞

∥∇R[µn]∥2
L2(µn) = lim inf

n→∞

∫︂

[0,1]×Θ
∥Ex,yDθψ(θ, xn(r))⊤pn(r)∥2dµn(r, θ)

≥
∫︂

[0,1]×Θ
lim inf
n→∞

(r′,θ′)→(r,θ)

∥Ex,yDθψ(θ′, xn(r′))⊤pn(r′)∥2dµ(r, θ)

= ∥∇R[µ]∥2
L2(µ) ,

which is the desired property.

I.3.4.2 Uniqueness

We present here a uniqueness result for solutions of the gradient Ćow equation, which is the
content of the following Theorem I.4. The proof is standard and relies on the lipschitzness
of the gradient vector Ąeld ∇R[µ] w.r.t. the measure µ. It uses the following Assump-
tion I.B on the basis function ψ to ensure local lipschitzness of the adjoint variable p
(Lemma I.3.5).

Assumption I.B. Assume that ψ is twice continuously differentiable with D2
θ,θψ uniformly

bounded, D2
θ,xψ having linear growth and D2

x,xψ having quadratic growth w.r.t. θ. Namely,
for every R ≥ 0 there exists a constant C = C(R) s.t. for every x, x′ ∈ B(0, R) and every
θ, θ′ ∈ Θ it holds:

∥D2
θ,θψ(θ, x)∥ ≤ C(R) , ∥D2

θ,xψ(θ, x)∥ ≤ C(R)(1 + ∥θ∥) , ∥D2
x,xψ(θ, x)∥ ≤ C(R)(1 + ∥θ∥2) .

Theorem I.4 (Uniqueness of curves of maximal slope). Assume ψ satisfies Assump-
tions I.1 to I.3 and Assumption I.B and that ∇xℓ is locally Lipschitz w.r.t. x. Let
µ0 ∈ PLeb

2 ([0, 1] × Θ). Then the gradient flow for the risk R starting from µ0, if it exists,
is unique.

Proof. Let (µt)t≥0 and (µ′
t)t≥0 be two gradient Ćow curves for the risk R starting from µ0.

We will proceed to show that WCOT
2 (µt, µ

′
t) = 0 for every t ≥ 0.

We use the shorter notations vt := ∇R[µt], v′
t := ∇R[µ′

t] to refer to the tangent
vector fields of µ and µ′ respectively. Observe that the map t ↦→ WCOT

2 (µt, µ
′
t)

2 is locally
absolutely continuous and by Lemma I.2.3 its differential is given at almost every t ≥ 0
by:

d

dt
WCOT

2 (µt, µ
′
t)

2 = 2

∫︂ 1

0

∫︂

Θ

⟨︁
θ′ − θ, v′

t(s, θ
′) − vt(s, θ)

/︄
dγt(s, θ, θ

′),
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where γt ∈ ΓLeb
o (µt, µ

′
t) can be any optimal coupling.

Let T ≥ 0 and deĄne E := supt∈[0,T ] max(E2(µt), E2(µ′
t)) < ∞. Fix some t ∈ [0, T ]

and consider (x, y) in the support of the data ditsribution D with the shortcuts xt := xµt ,
pt := pµt,x,y and similarly x′

t, p
′
t for µ′

t. As the data distribution has compact support, we
have that there exists some R = R(E) such that ∥xt(s)∥, ∥x′

t(s)∥, ∥pt(s)∥, ∥p′
t(s)∥ ≤ R.

Then using Lemmas I.3.2 and I.3.5 as well as the assumptions on ψ we have for every
(s, θ, θ′) ∈ [0, 1] × Θ2:

∥Dθψ(θ, xt(s))⊤pt(s) − Dθψ(θ′, x′
t(s))

⊤p′
t(s)∥

≤ ∥Dθψ(θ, xt(s))⊤pt(s) − Dθψ(θ′, xt(s))⊤pt(s)∥
+ ∥Dθψ(θ′, xt(s))⊤pt(s) − Dθψ(θ′, x′

t(s))
⊤p′

t(s)∥
≤ ∥Dθψ(θ, xt(s)) − Dθψ(θ′, xt(s))∥∥pt(s)∥

+ ∥Dθψ(θ′, xt(s)) − Dθψ(θ′, x′
t(s))∥∥pt(s)∥

+ ∥Dθψ(θ′, x′
t(s))∥∥pt(s) − p′

t(s)∥
≤ C1∥θ − θ′∥ + C1(1 + ∥θ′∥)WCOT

2 (µt, µ
′
t) + C1(1 + ∥θ′∥)WCOT

2 (µt, µ
′
t) , (I.29)

with C1 = C1(E) some constant. Fixing some γt ∈ ΓLeb
o (µt, µ

′
t), using that 2 ⟨a, b⟩ ≤

∥a∥2 + ∥b∥2 and integrating the previous inequality over (x, y) and (s, θ, θ′) we get:

d
dt

WCOT
2 (µt, µ

′
t)

2 ≤
∫︂

[0,1]×Θ2

(︂

∥θ − θ′∥2 + ∥vt(s, θ) − v′
t(s, θ

′)∥2
⎡

dγt(s, θ, θ′) ≤ C2WCOT
2 (µt, µ

′
t)

2 ,

for some constant C2 = C2(E). We can then conclude using Grönwall’s inequality to:

∀t ∈ [0, T ] , WCOT
2 (µt, µ

′
t)

2 ≤ eC2tWCOT
2 (µ0, µ0)2 = 0 .

The above proof relied on the following lemma, showing that the adjoint variable map
µ ↦→ pµ,x,y is locally Lipschitz under Assumption I.B.

Lemma I.3.5. Assume ψ satisfies Assumptions I.1 to I.3 and Assumption I.B and that
∇xℓ is locally Lipschitz w.r.t. x. Then for fixed (x, y) ∈ R

d ×R
d′

the adjoint variable map
µ ∈ PLeb

2 ([0, 1] × Θ) ↦→ pµ,x,y ∈ C([0, 1],Rd) is locally Lipschitz. Namely, for every E ≥ 0
there exists a constant C = C(E) such that:

sup
s∈[0,1]

∥pµ,x,y(s) − pµ′,x,y(s)∥ ≤ CWCOT
2 (µ, µ′)

for every parameterization µ, µ′ such that E2(µ), E2(µ′) ≤ E. Moreover, the constant C
can be chosen uniformly over (x, y) in a compact subset.

Proof. Consider (x, y) ∈ R
d ×R

d′
, E ≥ 0 and parameterizations µ, µ′ as in the proposition.

We denote by (x(s)) and (x′(s)) the forward Ćows and (p(s)) and (p′(s)) the backward
Ćows associated to x, y and to µ and µ′ respectively. Let R ≥ 0 be such that ∥x∥+∥y∥ ≤ R.
Using Proposition I.1.1 and Eq. (I.13) we can assume that the trajectories x, x′, p and p′

are uniformly bounded by some R′ = R′(R, E). Then we get from Eq. (I.13) that at every
s ∈ [0, 1]:

∥p(s) − p′(s)∥ ≤ ∥p(1) − p′(1)∥

+
∫︂ 1

s
∥
∫︂

Θ
Dxψ(θ, x(r))⊤p(r)dµ(θ♣r) −

∫︂

Θ
Dxψ(θ, x′(r))⊤p′(r)dµ′(θ♣r)∥dr.

72



I.3. Gradient Ćow dynamics

Fixing r ∈ [s, 1], the integrand on the r.h.s. can be decomposed as:

∥
∫︂

Θ
Dxψ(θ, x(r))⊤p(r)dµ(θ♣r) −

∫︂

Θ
Dxψ(θ, x′(r))⊤p′(r)dµ′(θ♣r)∥

≤
∫︂

Θ
∥Dxψ(θ, x(r)) − Dxψ(θ, x′(r))∥∥p(r)∥dµ(θ♣r)

+
∫︂

Θ
∥Dxψ(θ, x′(r))∥∥p(r) − p′(r)∥dµ(θ♣r)

+ ∥
∫︂

Θ
Dxψ(θ, x′(r))p′(r)d(µ′ − µ)(θ♣r)∥

=: I1(r) + I2(r) + I3(r) .

Then using the assumptions on ψ and Lemma I.3.2:

I1(r) ≤ C1WCOT
2 (µ, µ′)

∫︂

Θ
(1 + ∥θ∥2)dµ(θ♣r) ,

I2(r) ≤ C2∥p(r) − p′(r)∥
∫︂

Θ
(1 + ∥θ∥2)dµ(θ♣r) ,

with C1 = C1(R, E) and C2 = C2(R, E). For I3, considering γ ∈ Γo(µ(.♣r), µ′(.♣r)) gives:

I3(r) ≤
∫︂

Θ2
∥Dxψ(θ, x′(r)) − Dxψ(θ′, x′(r))∥∥p′(r)∥dγ(θ, θ′)

≤ C3(1 + E2(µ(.♣r)) + E2(µ′(.♣r)))1/2W2(µ(.♣r), µ′(.♣r)) ,

with C3 = C3(R, E). Assembling all the previous inequalities we get by Grönwall’s lemma:

∥p(s) − p′(s)∥ ≤ eC2(1+E2(µ))

⎛

∐︂

∥p(1) − p′(1)∥
+ WCOT

2 (µ, µ′)
(︂

C1(1 + E2(µ)) + C3(1 + E2(µ) + E2(µ′))1/2
⎡

⎞

ˆ︁ .

To conclude it suffices to note that by deĄnition p(1) = ∇xℓ(x(1), y) and p′(1) = ∇xℓ(x′(1), y)
and using Lemma I.3.2 with the assumptions on ℓ:

∥p(1) − p′(1)∥ ≤ C4WCOT
2 (µ, µ′) , where C4 = C4(R, E).

I.3.4.3 Stability

We now turn to a stability result on the gradient Ćow equation. The following Theo-
rem I.5 is stronger than the above Theorem I.4. It implies that if a sequence of initial-
izations (µn

0 )n≥0 WCOT
2 -converges to some initialization µ0 then the associated gradient

Ćows (µn
t )n≥0 WCOT

2 -converge to µt, uniformly over Ąnite time intervals. For simplicity
we consider here that ℓ is the square loss ℓ : (x, y) ↦→ 1

2∥x − y∥2, but the result could be
extended to any other loss satisfying ∥∇xℓ∥ ≤ φ(ℓ) for a concave increasing function φ.
We also consider the following supplementary assumptions allowing to control the growth
of E2(µt) along the gradient Ćow (Lemma I.3.6).

Assumption I.C. Assume that ψ is continuously differentiable and such that Dxψ is
uniformly bounded and Dθψ is of linear growth w.r.t. θ. Namely, there exists an absolute
constant C s.t.:

∀x ∈ R
d , ∀θ ∈ Θ , ∥Dxψ(θ, x)∥ ≤ C , ∥Dθψ(θ, x)∥ ≤ C(1 + ∥θ∥) .
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Theorem I.5 (Stability of curves of maximal slope). Assume ψ satisfies Assumptions I.1
to I.3 and Assumptions I.B and I.C and assume ℓ is the square loss. Let (µt)t≥0, (µ′

t)t∈t≥0

be gradient flow curves for the risk R starting from µ0, µ
′
0 ∈ PLeb

2 ([0, 1] × Θ) respectively
and let E0 be such that E2(µ0), E2(µ′

0) ≤ E0. Then for every T ≥ 0 there exists a constant
C = C(E0, T ) such that:

∀t ∈ [0, T ] , WCOT
2 (µt, µ

′
t) ≤ eCtWCOT

2 (µ0, µ
′
0) .

Proof. Let T ≥ 0. By the energy bound of Lemma I.3.6 below, we know that we can Ąnd
a E = E(E0, T ) such that for every t ∈ [0, T ]:

E2(µt) , E2(µ′
t) ≤ E .

Then using Assumption I.B and proceeding as in the proof of the above Theorem I.4
(c.f. Eq. (I.29)) we get a constant C = C(E) such that for dt-a.e. t ∈ [0, T ]:

d
dt

WCOT
2 (µt, µ

′
t)

2 ≤ CWCOT
2 (µt, µ

′
t)

2 ,

which gives the result using Grönwall’s inequality.

In the above proof, we used the following technical result giving an upper bound on
the energy E2(µt) along a gradient Ćow curve (µt)t≥0.

Lemma I.3.6. Assume ψ satisfies Assumptions I.1 to I.3 and Assumptions I.B and I.C
and ℓ is the square loss. Let (µt)t≥0 be a gradient flow for the risk R and let E ≥ 0 be s.t.
E2(µ0) ≤ E. Then there exists a constant C = C(E) such that E2(µt) ≤ eCt(E2(µ0) + Ct)
for every t ≥ 0.

Proof. For (x, y) ∈ R
d × R

d′
use the shortcuts xt := xµt , pt := pµt,x,y. Note that the

map t ↦→ E2(µt) = WCOT
2 (µt,Leb([0, 1]) ⊗ δ0)2 is locally absolutely continuous and that

by Lemma I.2.3 its derivative is given at dt-a.e. t ≥ 0 by:

d
dt

E2(µt) = 2
∫︂

[0,1]×Θ

˜︁

θ,Ex,yDθψ(θ, xt(s))⊤pt(s)
˜︂

ds .

By Assumption I.C there exists an absolute constant C1 such that ∥DxFµt(.♣s)∥ ≤ C1 and
hence ∥pt(s)∥ ≤ eC1∥pt(1)∥ for every s ∈ [0, 1]. Using the initial condition on pt(1) and
the fact that ℓ is the quadratic loss:

Ex,y∥pt(s)∥ ≤ eC1Ex,y∥xt(1) − y∥ ≤ C2

√︂

R(µt) ≤ C2

√︂

R(µ0) ,

for some universal constant C2. Then using that by Assumption I.C we have ∥Dθψ(θ, x)∥ ≤
C1(1 + ∥θ∥) and with the previous inequality we get:

d
dt

E2(µt) ≤ 2C1C2

⎤

E2(µt) +
√︂

E2(µt)
⎣√︂

R(µ0) .

Noting that R(µ0) ≤ C3 for some constant C3 = C3(E), the result follows by Grönwall’s
inequality
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Appendices

I.A Well-posedness of the gradient flow equation for SHL

residuals

While Theorems I.3 and I.4 show existence and uniqueness to gradient Ćow equation of
the training risk R under mild assumptions on the basis function ψ, those assumptions
are however not met for residuals which are 2-perceptrons as deĄned in Eq. (34). Indeed,
in this case ψ is of the form:

ψ((u,w, b), x) = uσ(w⊤x+ b) , (I.30)

where x ∈ R
d, (u,w, b) are parameters in Θ = R

d × R
d × R and σ : R → R is a non-

linear activation. In particular, we will be considering such residuals in Section II.5. We
thus justify here why the existence and uniqueness results of Theorems I.3 and I.4 still
apply in the case of the SHL architecture where ψ is given by Eq. (I.30), even if Assump-
tions I.A and I.B are not satisĄed. The idea is to restrict ourselves to compactly supported
parameterizations µ ∈ PLeb

2 ([0, 1] × Θ) where both assumptions are satisĄed dµ almost
everywhere.

In the rest of this section, we consider the parameter space Θ = R
d × R

d × R and the
basis function is supposed to be given by Eq. (I.30) with some activation σ satisfying As-
sumption II.3. Note in particular that Assumptions I.1 to I.3 are satisĄed and that the
representation result of Proposition I.3.2 holds. The following preliminary result states
that if the initialization µ0 is compactly supported, so is a solution µt of the gradient Ćow
at every time t ≥ 0.

Lemma I.A.1. Assume ψ if of the form Eq. (I.30) with some activation σ satisfying As-
sumption II.3. Let µ0 ∈ PLeb

2 ([0, 1] × Θ) be some compactly supported initialization with
Supp(µ0) ⊂ B(0, R0) for some R0 ≥ 0. If (µt)t≥0 is a gradient flow of the risk R then for
every T ≥ 0 there exists RT ≥ 0 such that:

∀t ∈ [0, T ] , Supp(µt) ⊂ B(0, RT ) . (I.31)

Proof. Let (µt)t≥0 be such as in the statement. In view of Proposition I.3.2 such a gradient
Ćow is given for every t ≥ 0 by µt = (Xt)#µ0, where X is a solution of Eq. (I.22). Let us
then consider some T ≥ 0. The energy E2(µt) is a continuous function along the gradient
Ćow time t so that E := supt∈[0,T ] E2(µt) < ∞. Then using Assumption II.3 we have a
constant C = C(E) such that for every t ∈ [0, T ] and every (s, θ) ∈ [0, 1] × Θ:

∥ d
dt
Xt(s, θ)∥ ≤ C(1 + ∥Xt(s, θ)∥) .

Hence by Grönwall’s lemma:

∥Xt(s, θ)∥ ≤ eCt(∥X0(s, θ)∥ + Ct) ,

from which the result follows by taking RT = eCT (R0 + CT ).

Note that ψ may not satisfy Assumption I.B when considering θ ∈ Θ but it does when
considering θ in bounded regions B(0, R) ⊂ Θ. Hence using the above Lemma I.A.1 and
restricting ourselves to Ąnite time intervals, one can show uniqueness of the gradient Ćow
curves whenever the initialization is compactly supported.
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Proposition I.A.1. Assume ψ if of the form Eq. (I.30) with some activation σ satisfy-
ing Assumption II.3. Let µ0 ∈ PLeb

2 ([0, 1] × Θ) be some compactly supported initialization.
Then the gradient flow (µt)t≥0 of the risk R starting from µ0, if it exists, is unique.

Proof. Let (µt)t≥0 , (µ′
t)t≥0 be two gradient Ćow curves starting from µ0. We will proceed

to show that WCOT
2 (µt, µ

′
t) = 0 for every t ≥ 0.

Fix some T ≥ 0. By the above Lemma I.A.1, we can Ąnd some R ≥ 0 such that for
every t ∈ [0, T ] we have Supp(µt),Supp(µ′

t) ⊂ B(0, R). Then note that ψ satisĄes Assump-
tion I.B when restricted to θ ∈ B(0, R) in the sense that for every compact set K ⊂ R

d

there exists a constant C = C(K,R) s.t. for every x, x′ ∈ K and θ, θ′ ∈ B(0, R):

∥D2
θ,θψ(θ, x)∥ ≤ C, ∥D2

θ,xψ(θ, x)∥ ≤ C(1 + ∥θ∥) , ∥D2
x,xψ(θ, x)∥ ≤ C(1 + ∥θ∥2) .

Also note that, for every t ∈ [0, T ] and every optimal Conditional OT coupling γt ∈
Γdiag

o (µt, µ
′
t), we have that γt is compactly supported with Supp(γt) ⊂ B(0, R) ×B(0, R).

Hence proceeding as in the proof of Theorem I.4 (c.f. Eq. (I.29)) we Ąnd a constant
C = C(R) s.t. for dt-a.e. t ∈ [0, T ]:

d
dt

WCOT
2 (µt, µ

′
t)

2 ≤ CWCOT
2 (µt, µ

′
t)

2 ,

from which it follows by Grönwall’s inequality that

WCOT
2 (µt, µ

′
t)

2 ≤ eCtWCOT
2 (µ0, µ0)2 = 0 .

Finally, the following result states the existence of a gradient Ćow curve of the risk R
for the SHL architecture when the initialization is compactly supported.

Proposition I.A.2. Assume ψ if of the form Eq. (I.30) with some activation σ satisfy-
ing Assumption II.3. Let µ0 ∈ PLeb

2 ([0, 1] × Θ) be some compactly supported initialization.
Then there exists a gradient flow (µt)t≥0, defined for every t ≥ 0, for the risk R starting
at µ0.

Proof. Let µ0 be such as in the statement and consider some T0 ≥ 0. Then by the
previous Proposition I.A.1, the gradient Ćow (µt)t≥0 starting from µ0, if it exists, is unique
and by Lemma I.A.1 there exists a RT0 > 0 such Supp(µt) ⊂ B(0, RT0) for every t ∈ [0, T0].

It is then easy to modify ψ into some ψ̃ such that ψ(θ, x) = ψ̃(θ, x) whenever θ ∈
B(0, 2RT0), ψ̃ satisĄes Assumptions I.1 to I.3 but also Assumption I.A. For example,
consider for every x ∈ R

d and (u,w, b) ∈ Θ:

ψ̃((u,w, b), x) := π(u)σ(w⊤x+ b) ,

for some smooth map π : R
d → R

d (depending on RT0) such that ∥π∥ and ∥Dπ∥ are
uniformly bounded and π(u) = u if ∥u∥ < 2RT0 . Denote by L̃ the modiĄed risk associated
to the modiĄed basis function ψ̃. Then Theorem I.3 applies and there exists a gradient
Ćow (µ̃t)t≥0 for the modiĄed risk L̃ starting from µ0. Consider the the time T deĄned by:

T ∗ = sup ¶T ≥ 0 : Supp(µ̃t) ⊂ B(0, 2RT0) , ∀t ∈ [0, T ]♢ .

Note that by the deĄnition of T ∗ and ψ̃, if T < T ∗ then for every t ∈ [0, T ], ∇L̃[µ̃t] =
∇R[µ̃t] in L2(µ̃t) and hence (µ̃t)t∈[0,T ] is a gradient Ćow for the original risk R, starting
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from µ0. We show by contradiction that T ∗ > T0, implying that there exists a gradient
Ćow for R starting from µ0 and deĄned up to time T0.

Assume T ∗ ≤ T0. Consider E := supt∈[0,T0+1] E2(µ̃t). For any T < T ∗, we have that
(µ̃t)t∈[0,T ] is a gradient Ćow for R starting from µ0 and in particular Supp(µ̃T ) ⊂ B(0, RT0).
But then, reasoning as in the proof of Lemma I.A.1, there exists a constant C = C(E)
(independent of T ) such that for every ε ∈ [0, 1]:

∀t ∈ [T, T + ε] , Supp(µ̃t) ⊂ B(0, eCε(RT0 + Cε)) ,

which is included in B(0, 2RT0) for ε sufficiently small. Hence chosing T sufficiently close
from T ∗ we get a T + ε > T ∗ such that Supp(µ̃t) ⊂ B(0, 2RT0) for every t ∈ [0, T + ε].
This is in contradiction with the deĄnition of T ∗.
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II.1 Introduction

A central question in modern machine learning is to understand why neural networks
perform so well in practice, despite the apparent complexity of their training dynamics.
At the heart of this process lies a challenging non-convex optimization problem, typically
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approached using Ąrst order optimization methods such as (stochastic) gradient descent.
However, while there has been an important amount of work on the subject [Hardt, 2016a;
Bartlett, 2018; Zou, 2019; Li, 2017; Li, 2018; Du, 2018; Du, 2019; Allen-Zhu, 2019; Lee,
2019; Zou, 2020; Liu, 2020; Chen, 2020; Nguyen, 2021; Marion, 2023b], convergence prop-
erties of those algorithms still lacks theoretical understanding. Due to the exponential
increase in the size of state-of-the-art models, a particular focus was placed on overparam-
eterized architectures, whose number of parameters is very high w.r.t. the number of data.
Following Eq. (36), such architectures take the form of mappings F(θi)1≤i≤M

: Rd → R
d

deĄned by:

F(θi)1≤i≤M
: x ∈ R

d ↦→ 1
M

M∑︂

i=1

ψ(θi, x) , (II.1)

where Θ is some space of parameters, ψ : Θ × R
d → R

d is some basis function and
(θi)1≤i≤M ∈ ΘM is some family of parameters whose size M , the width of the model, is usu-
ally large. Depending on the choice of Θ and ψ, Eq. (II.1) can model various types of neural
network architectures ranging from simple single-hidden-layer perceptrons (Eq. (I.2)) to
more complex convolutional layers (Eq. (I.3)), used in the original ResNet architecture for
image classiĄcation [He, 2016a], or even multi-head attention layers (Eq. (I.4)), used in
Transformer architectures [Vaswani, 2017]. Several authors have then proposed to model
architectures with an arbitrary (Ąnite or inĄnite) number of parameters by using parame-
terization in the space of measures. The obtained mean-field models, described in Eq. (39),
are mappings Fµ : Rd → R

d deĄned by:

Fµ : x ∈ R
d ↦→

∫︂

Θ
ψ(θ, x)dµ(θ) , (II.2)

where µ ∈ P(Θ) is a distribution of parameters. This setting Ąrst provides a convenient
framework for studying the training of overparameterized neural network architectures
with dedicated mathematical tools such as Wasserstein gradient flows. Moreover, this
setting also allows for favorable training properties such as the absence of spurious critical
points in the loss-landscape, permitting the development of a theory of convergence for
the training of shallow architectures at large depth [Chizat, 2018; Mei, 2018; Javanmard,
2020; Wojtowytsch, 2020].

Following on Chapter I, we focus here on studying the training dynamics of deep
neural networks and more precisely of deep Residual Neural Networks (ResNets) [He,
2016a], which we presented in Section 1.4.1. The deĄning characteristic of ResNets is
the use of skip connections, a mechanism enabling the efficient training of extremely deep
models, marking the beginning of the modern era of machine learning. Neural Ordinary
Differential Equations (NODEs), proposed by Chen et al. [Chen, 2018] and which we
described in Section 1.4.2, correspond to the limit of ResNets whose number of layers
tends to inĄnity and treat deep networks as ODE solvers with trainable parametric vector
Ąelds. We consider here models of ResNets whose both depth and width are very large.
Such mean-Ąeld models of NODEs are ODEs whose velocity Ąeld (called residual) are
parameterized by a distribution of parameters. Let us recall DeĄnition I.1:

Definition I.1 (Mean-Ąeld NODE). For a family of probability measures µ = ¶µ(.♣s)♢s∈[0,1] ∈
P(Θ)[0,1] and input x ∈ R

d, we define the NODE model output as NODEµ(x) := xµ(1)
where (xµ(s))s∈[0,1] satisfies the Forward ODE:

d
ds
xµ(s) = Fµ(.♣s)(xµ(s)) , xµ(0) = x . (I.5)
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When there is no ambiguity, we simply write x(s).

We proposed in Chapter I to parameterize such models by measures in PLeb
2 ([0, 1] × Ω),

the set of probability measures over [0, 1] × Θ with uniform marginal on [0, 1]. We then
showed in Proposition I.1.1 that the above deĄnition is well-posed provided mild regularity
assumptions on the basis function ψ are satisĄed (cf. Assumption I.1).

Supervised learning As in Chapter I we consider a supervised learning framework
where we are given a training data distribution D consisting of pairs of input data x ∈ R

d

and target or labels y ∈ R
d′

. Then for a parameterization µ ∈ PLeb
2 ([0, 1]×Θ), the training

risk is deĄned as:

R(µ) := E(x,y)∼yℓ(NODEµ(x), y) = E(x,y)∼yℓ(xµ(1), y) , (II.3)

where ℓ : R
d × R

d′ → R≥0 is some loss function. Of particular interest in this section
will be the case of a Ąnite number of data, that is of an empirical data distribution
D = 1

N

∑︁N
i=1 δ(xi,yi), where N ≥ 1 is the number of samples. In this case, R is the

empirical risk given by:

R(µ) =
1
N

N∑︂

i=1

ℓ(xi
µ(1), yi) .

We showed in Chapter I, that the training of deep ResNets for the minimization of this risk
is modeled by a gradient Ćow w.r.t. to a Conditional Optimal Transport metric structure
on the space of parameterizations PLeb

2 ([0, 1]×Θ). Concretely, this gradient Ćow takes the
form Eq. (I.21), a nonlinear advection PDE solved by the parameter distribution. We in
particular showed in Section I.3.4 that such a PDE is well-posed. We ask here the question
of the convergence of this dynamic:

Given an initial parameterization µ0, does the gradient flow (µt)t≥0 converge
to an optimal parameterization µ∗ ∈ arg min R?

II.1.1 Related works and contributions

Recently, several works have addressed the problem of proving convergence of gradient
descent algorithms in the training of neural networks. If convergence properties of gradient
descent are well understood for models that are linear w.r.t. their input [Hardt, 2016a;
Bartlett, 2018; Zou, 2019; Achour, 2024], it is not the case for non-linear neural network
architectures.

Finitely deep architectures In [Li, 2017; Li, 2018; Du, 2018], the authors focus on
the training of ŞshallowŤ two layer fully connected neural networks and establish conver-
gence of GD in an overparameterized setting where width of the intermediary layer scales
polynomially with the size N of the dataset. The works of [Du, 2019; Allen-Zhu, 2019;
Zou, 2019; Lee, 2019; Zou, 2020; Liu, 2020; Chen, 2020; Nguyen, 2021] extend those
results to arbitrary deep neural networks in the overparameterized setting. SpeciĄcally,
the results in [Du, 2019; Allen-Zhu, 2019; Liu, 2020] apply to deep ResNets. A common
feature for the above cited works is to rely on the fact that, for a sufficiently high number
of parameters, the model can be well approximated by a linear model corresponding to its
Ąrst order expansion around the initialization. In [Chizat, 2019] this phenomenon, called
Şlazy regimeŤ, is attributed to an inappropriate scaling of the parameters. On the other
hand, [Liu, 2020] refer to this phenomenon as ŞlinearŤ or Şkernel regimeŤ and relate it to
the constancy of the Neural Tangent Kernel (NTK) introduced in [Jacot, 2018].
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Chapter II. Convergence in the training of residual architectures

Infinitely deep ResNets Allen-Zhu, Li, and Song [Allen-Zhu, 2019], Du et al. [Du,
2019], and Liu, Zhu, and Belkin [Liu, 2020] give convergence results for the training of
deep neural networks with gradient descent and their results can be applied to ResNets.
However, in those works the width of intermediary layers has to depend on the depth of the
network. Therefore, these results do not apply to the training of the model in DeĄnition I.1,
corresponding to the limit D → +∞. Marion et al. [Marion, 2023b] give local convergence
results for the training of inĄnitely deep ResNets / NODEs based on a local Polyak-
čojasiewicz condition. They assume a model of Ąnite width and their result therefore
does not hold in the mean-Ąeld limit where residuals are of the form Eq. (II.2). They also
consider parameter initializations that are Lipschitz w.r.t. depth which is not consistent
with applications where the parameters are initialized at random, independently at each
layer. As a comparison Eq. (II.2) models residuals of both Ąnite and inĄnite width and
we only assume the family ¶µ(.♣s)♢s∈[0,1] is measurable w.r.t. s ∈ [0, 1].

Mean-field models of NODEs The result presented here should be compared with
several other works [Lu, 2020; Ding, 2021; Ding, 2022; Isobe, 2023] that have also studied
the convergence of gradient descent for the training of inĄnitely deep and arbitrarily wide
ResNet models similar to DeĄnition I.1. Ding et al. [Ding, 2021; Ding, 2022] Ů and also
Lu et al. [Lu, 2020], but with a different training dynamic Ů give a result of optimality at
convergence: if the parameter distribution converges then its limit is a global minimizer of
the risk. They do not however provide proofs of convergence and this convergence assump-
tion seems hard to justify a priori as the loss-landscape of ResNets can have non-compact
subsets. In fact, cases where the gradient Ćow fails to converge have been identiĄed for
simple architectures [Bartlett, 2018]. In contrast, our results ensure the convergence of
the parameter distribution provided the risk at initialization is sufficiently low.

Borrowing tools from the study of asymptotic behavior of evolution PDEs, Isobe [Isobe,
2023] studies the asymptotic behavior of gradient Ćow curves associated to the training
of ResNets. Precisely, he shows the risk R satisfy functional inequalities similar to the
Polyak-čojasiewicz inequality in the neighborhood of critical points and shows convergence
of the gradient Ćow to a critical point. Aside from technical differences, our work differs
in at least two fundamental aspects. First, [Isobe, 2023] considers adding a regularization
term to the risk. Such a regularization ensures gradient Ćow curves stay in strongly com-
pact sets [Isobe, 2023, Prop.5.4] and admit convergent sub-sequences. Also, the obtained
functional inequality does not rule out the presence of non-optimal critical points and the
obtained limit is thus not necessarily a minimizer of the risk. In contrast, we consider
an unregularized risk whose level sets may be non-compact and show convergence of the
gradient Ćow towards a global minimum for well-chosen initializations.

Contributions We study in this chapter the asymptotic behavior of gradient Ćow curves
for the minimization of the risk R associated to the training of deep ResNets or NODEs.
SpeciĄcally, we show that, for standard examples of residual architectures, the risk R
satisĄes a Polyak-Łojasiewicz (P-Ł) property around well-chosen initializations. The risk
has thus no saddles in these regions and decreases at a constant rate along the gradient Ćow.
We study the case of residuals that are random feature models [Rahimi, 2007] in Section II.4
and the case of residuals that are 2-layer perceptrons in Section II.5. Based on previous
works on the convergence of curves of maximal slope under the P-č assumption [Hauer,
2019; Dello Schiavo, 2024], we can then formulate a convergence result: for initializations
with a sufficiently large but Ąnite number of features and sufficiently low risk the gradient
Ćow converges towards a global minimizer (Theorems II.6 and II.7). The dependence of
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these convergence conditions w.r.t. the data distribution can be numerically quantiĄed
and checked for common architectures and initializations. Our results are to be compared
with the ones of Lu et al. [Lu, 2020] and Ding et al. [Ding, 2022]. Both works give a result
of optimality under a convergence assumption but do not give conditions guaranteeing
convergence of the gradient Ćow. Moreover, their results hold under the assumption of
an inĄnite number of features whereas our convergence conditions can be obtained with a
Ąnite number of features.

Finally, we implemented and trained ResNets for solving image classiĄcation problems
on the MNIST [LeCun, 2010] and CIFAR10 [Krizhevsky, 2009] datasets. In addition to
support our theoretical results, the numerical results presented in Section II.7 also show
that reduction of the training risk go along with an increase of the classiĄcation accuracy
on test data.

II.2 Polyak-Łojasiewicz property and convergence of gradi-

ent flow

Our approach to show convergence of the gradient Ćow is to show that the risk satisĄes a
local Polyak-čojasiewicz (P-č) property around well-chosen parameterizations. The P-č
inequality provides a lower bound on the ratio between the square gradient’s risk ♣∇R♣2
and the risk R. It thus prevents the existence of spurious critical points and guarantees
that the risk decreases at a constant rate along gradient Ćow.

II.2.1 The Polyak-Łojasiewicz property in Hilbert spaces

We consider here the problem of minimizing a function f : H → R deĄned on some sepa-
rable (possibly inĄnite dimensional) Hilbert space H. In the context of training machine
learning models, the function f corresponds to some training objective such as the train-
ing risk and the task of minimizing f is solved by a gradient descent algorithm. For an
initialization z0 ∈ H, the gradient descent with stepsize τ > 0 is the iterative scheme:

∀k ≥ 0 , zk+1 = zk − τ∇f(zk) .

For theoretical purposes, it is also convenient to consider the gradient flow dynamic, cor-
responding to the limit of gradient descent when the stepsize τ tends to 0. For a function
f : H → R and an initialization z0 ∈ H the gradient Ćow for f starting from z0 is deĄned
as the solution (zt)t≥0 to the Cauchy problem:

∀t ≥ 0 ,
d
dt
zt = −∇f(zt) . (II.4)

Theory for the existence of solutions to such gradient systems under mild regularity as-
sumptions on f was originally developed in [Brezis, 1973]. We are here concerned with
analyzing the convergence of such optimization methods. A Ąrst question is the one of
the effective minimization of f , that is whether f(zk) (resp. f(zt)) tends to f∗ := inf f
when k → +∞ (resp. t → +∞). A second question is the one of the ability for these
methods to Ąnd a minimizer, that is whether zk (resp. zt) tends to some z∗ ∈ arg min f
when k → +∞ (resp. t → +∞).

Along gradient Ćow curves, the decrease of f is given by d
dtf(zt) = −∥∇f(zt)∥2. Thus,

to obtain a constant decay rate for f , it is natural to ask that the square norm of the
gradient is lower-bounded by f itself, namely a condition of the form:

∀z ∈ H , ∥∇f(z)∥2 ≥ m (f(z) − f∗) , (II.5)
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for some constantm > 0. Such Polyak-Łojasiewicz inequality was originally used by Polyak
[Polyak, 1963] to establish the convergence of the gradient descent algorithm. It also
bears the name of čojasiewicz who showed at the same time that (a generalization of) this
inequality is a generic property of analytic functions near their critical points [čojasiewicz,
1963], a property later generalized by Kurdyka [Kurdyka, 1998]. A generalization to
inĄnite dimensional spaces was also introduced by Simon [Simon, 1983], with application
to the study of the asymptotic behavior of evolution PDEs [Chill, 2003]. More recently,
the Polyak-čojasiewicz inequality has proven convenient in non-convex optimization for
studying the convergence of various other Ąrst order optimization methods [Karimi, 2016],
including applications to the training of neural networks [Oymak, 2019; Chatterjee, 2022].
An advantage of Eq. (II.5) is that it is a local condition which can be checked pointwise,
only requiring the knowledge of f and of its gradient. This stands in contrast with other
assumptions used to obtain convergence of Ąrst order methods which generally requires
the convexity of f and/or the existence of a minimizer z∗. Moreover, unlike convexity,
this condition is robust to small perturbations or reparameterizations of the space H.

Still, Eq. (II.5) is usually too strong to be satisĄed in many applications. For example,
when studying the training of neural networks, it is known that the loss-landscape has
saddle points and Eq. (II.5) can hence not be satisĄed on the whole parameter space. For
this reason, we consider here a local variant of the Polyak-čojasiewicz inequality which
was proposed in [Oymak, 2019; Chatterjee, 2022].

Definition II.1 (Local P-č inequality). Let f : H → R≥0 be some non-negative contin-
uously differentiable function and consider z0 ∈ H. For constants R,m > 0, we say f
satisfies the (R,m)-Polyak-Łojasiewicz inequality around z0 if for every z ∈ B(z0, R) it
holds:

∥∇f(z)∥2 ≥ mf(z) . (II.6)

Remark II.2.1. Different formulations of the (R,m)-P-Ł property have been proposed in
the literature. For example [Chatterjee, 2022] introduced the local ratio:

α(z0, R) := inf
z∈B(z0,R)

f(z)>0

∥∇f(z)∥2

f(z)
.

A direct consequence of the (R,m)-P-č property in DeĄnition II.1 is that f admits no
spurious critical points (saddles, local maxima or local minima) around z0 and that all
critical points are global minimizers. On its own, such a local property is however insuf-
Ącient to conclude to convergence of gradient Ćow to a global minimizer z∗ ∈ arg min f .
Indeed, Eq. (II.6) only controls the decrease rate of f inside a ball and if the gradient
Ćow dynamic escape this ball, it might get stuck at a spurious critical point. Nonetheless,
using a conĄnement argument it is possible to conclude to a local convergence result: if
f is sufficiently small at initialization then the gradient Ćow of f converges with a linear
convergence rate.

Theorem II.1 (Convergence of gradient Ćow). Let f : H → R≥0 be some non-negative
continuously differentiable function with locally Lipschitz gradient and consider z0 ∈ H.
Assume that f satisfies a (R,m)-P-Ł inequality around z0 for some R,m > 0 and that
f(z0) satisfies:

f(z0) <
R2m

4
.
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Let (zt)t≥[0,T ) be the gradient flow curve starting from z0, defined until some time T > 0.
Then the following statements holds:

(i) confinement: T = +∞ and zt ∈ B(z0, R) for every t ∈ [0,+∞),

(ii) convergence: z∞ := lim+∞ zt exists, is in B(z0, R) and s.t. f(z∞) = 0,

(iii) convergence rate: for every t ∈ [0,+∞) it holds:

f(zt) ≤ f(z0)e−mt and ∥zt − z∞∥ ≤ Re−mt/2 .

Proof. The above result is the content of [Chatterjee, 2022, Thm. 1.1] which generalizes
to inĄnite dimensional Hilbert spaces. However, we give here a proof for the sake of
completeness.

First, by application of the Cauchy-Lipschitz theorem, there exists a maximal time
T > 0 s.t. the solution zt to the gradient Ćow equation is uniquely deĄned for t ∈ [0, T ).
Note that, if there exists t0 ∈ [0, T ) s.t. f(zt0) = 0, then a stationary point of the gradient
Ćow has been reached in Ąnite time and all the above claim follow. Thus we can assume
w.l.o.g. that f(zt) > 0 for every t ∈ [0, T ). DeĄne for t ∈ [0, T ):

E(t) :=

√︄

4f(zt)
m

+
∫︂ t

0
∥∇f(zt′)∥ dt′ .

and consider TR := inf ¶t ∈ [0, T ) : ∥zt − z0∥ ≥ R♢ and T ∗ := T ∧ TR . Then the map
t ↦→ E(t) is locally absolutely continuous on [0, T ∗) and for a.e. t ∈ [0, T ∗) we have:

d
dt

E(t) = −∥∇f(zt)∥2

√︁

mf(zt)
+ ∥∇f(zt)∥ ≤ 0 .

Thus E is decreasing with t and for every t ∈ [0, T ∗) it holds:

∫︂ t

0
∥∇f(zt′)dt′∥ ≤

√︄

4f(z0)
m

< R .

This shows that the curve (zt)t∈[0,T ∗) has Ąnite length, hence that limt→T ∗ zt =: z∗ exists
and that it is in B(z0, R). Moreover, this also shows that

∥z0 − zt∥ ≤
√︄

4f(z0)
m

< R

for every t ∈ [0, T ∗) and as a consequence TR > T ∗, i.e. T ∗ = T . But then, since the
curve (zt) admits a limit when t → T , this means T = +∞ since otherwise the gradient
Ćow could be extended to a strictly larger time interval, leading to a contradiction with
the deĄnition of T . Thus we have shown that T = +∞, that zt ∈ B(z0, R) for every
t ∈ [0,+∞) and that lim+∞ zt =: z∞ exists and is equal to z∗ ∈ B(z0, R).

For the convergence rates, observe that, following from the fact that zt ∈ B(z0, R), we
have for a.e. t ≥ 0:

d
dt
f(zt) = −∥∇f(zt)∥2 ≤ −mf(zt) ,
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leading to f(zt) ≤ f(z0)e−mt for every t ≥ 0. Also, for t ≥ 0 it holds:

∥zt − z∞∥ ≤
∫︂ ∞

t
∥∇f(zt′)∥dt′

=

√︄

4f(zt)
m

+
⎤

lim
t′→+∞

E(t′) − E(t)
⎣

≤
√︄

4f(zt)
m

≤ Re−mt/2 ,

which Ąnishes the proof.

It is important to stress that, in the above theorem, there is a result of convergence of
gradient Ćow curves as well as a result of existence of minimizers. Indeed, we only assume
that f ≥ 0 and the existence of a global minimizer z∗ ∈ Z s.t. f(z∗) = 0 is part of the
conclusion. Finally, the same result hold for gradient descent.

Theorem II.2 (Convergence of gradient descent). Let f : H → R≥0 be some non-negative
continuously differentiable function with locally Lipschitz gradient and consider z0 ∈ H.
Assume that f satisfies a (R,m)-P-Ł inequality around z0 for some R,m > 0 and that
f(z0) satisfies:

f(z0) <
R2m

4
.

Then, for any α ∈
⎤√︂

4f(z0)
mR2 , 1

⎣

, there exists τ > 0 sufficiently small such that the iterates

(zk)k≥0 of gradient descent with step-size τ satisfy:

(i) confinement: zk ∈ B(z0, R) for every k ≥ 0,

(ii) convergence: z∞ := lim+∞ zk exists, is in B̄(z0, R) and s.t. f(z∞) = 0,

(iii) convergence rate: for every k ≥ 0 it holds:

f(zk) ≤ (1 − αmτ)kf(z0) and ∥zt − z∞∥ ≤ (1 − αmτ)k/2∥z0 − z∞∥ .

Proof. Proof of this result can be found in [Chatterjee, 2022, Thm. 1.2].

II.2.2 The Polyak-Łojasiewicz property in metric spaces

We now consider the case where we want to minimize a function f : Z → R deĄned on a
complete metric space (Z, d). In this setting, there is no notion of gradient which could
be used as a direction of descent in an iterative algorithm. Instead, for an initialization
z0 ∈ Z and a step-size τ > 0, one can consider the proximal descent scheme which produces
iteratively:

∀k ≥ 0 , zk+1 ∈ arg min
z∈Z

f(z) +
1

2τ
d(z, zk)2 .

In turn, this proximal sequence deĄnes a limiting dynamic when the stepsize τ tends to 0,
thereby generalizing the notion of gradient Ćow to the setting of metric spaces. In Hilbert
spaces, gradient Ćow curves can be characterized as solutions to variational inequalities
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involving the gradient norm. For example, the curve (zt)t∈R is the solution to the gradient
Ćow equation Eq. (II.4) if and only if it is an absolutely continuous curve satisfying the
Energy Dissipation Inequality (EDI):

∀t ∈ R ,
d
dt
f(zt) ≤ −1

2

(︄/︂
/︂
/︂
/︂

d
dt
zt

/︂
/︂
/︂
/︂

2

+ ∥∇f(zt)∥2

)︄

. (II.7)

The above characterization then generalizes to the setting of metric spaces by replacing
the objects with their metric counterparts. The norm of the velocity

/︂
/︂
/︂

d
dtzt

/︂
/︂
/︂ is replaced by

the metric derivative
\︄
\︄
\︄

d
dtzt

\︄
\︄
\︄ ([Ambrosio, 2008b, Def. 1.1.2]) and the norm of the gradient

∥∇f(zt)∥ is replaced by the notion of upper gradient. Recalling DeĄnition I.4, a function
g : Z → [0,+∞] is an upper gradient for f if for every absolutely continuous curve (zt)t∈I

on an interval I ⊂ R it holds:

♣f(zt1) − f(zt2)♣ ≤
∫︂ t2

t1

g(zt)
\︄
\︄
\︄
\︄

d
dt
zt

\︄
\︄
\︄
\︄ dt , ∀t1 ≤ t2 ∈ I .

In Section I.3, we for example showed that ∥∇R∥L2(µ) is an upper gradient for the training
risk R deĄned on the space of parameter distributions PLeb

2 ([0, 1] × Θ) equipped with the
metric WCOT

2 (Proposition I.3.4). Curves of maximal slopes of f can then be deĄned as
absolutely continuous curves in Z for which Eq. (II.7) holds. We recall here DeĄnition I.5.

Definition I.5 (Curve of maximal slope [Ambrosio, 2008b, Def.1.3.2]). Let (Z, d) be a
complete metric space, I ∈ R be an interval and f : Z → R a function with ♣∇f ♣ an upper
gradient for f . We say that (zt)t∈I is a curve a maximal slope for f (w.r.t. ♣∇f ♣) if it
satisfies:

(i) (zt)t∈I is locally absolutely continuous,

(ii) the map t ↦→ f(zt) is non-increasing,

(iii) for dt-a.e. t ∈ I it holds d
dtf(zt) ≤ −1

2

⎤\︄
\︄
\︄

d
dtzt

\︄
\︄
\︄

2
+ ♣∇f ♣2(zt)

⎣

.

If limt→inf I zt = z exists then we say (zt)t∈I is a curve of maximal slope starting at z.

There is an important amount of literature devoted to the study of gradient Ćow
dynamics in metric spaces [Ambrosio, 2008b; Ambrosio, 2013; Santambrogio, 2017]. Of
particular interest is the case of the space P(X) of probability measures over some metric
space X, equipped with the Wasserstein distance Wp for some p ≥ 1. In this case, the
seminal work of Jordan, Kinderlehrer, and Otto [Jordan, 1998] has shown that some
evolution PDEs such as Fokker-Planck equations can be interpreted as gradient Ćows of
functionals deĄned on the space of probability measures w.r.t. the Wasserstein metric.
More recently, this formalism has attracted growing interest for studying the training
dynamics of neural networks, modeled by Wasserstein gradient Ćows on the distribution
of their parameters [Chizat, 2018; Mei, 2018]. Similarly, we showed in Section I.3 that the
training of our mean-Ąeld NODE model can be modeled with a gradient Ćow w.r.t. the
conditional OT metric WCOT

2 , corresponding to solutions of some advection PDE on the
space of parameters (DeĄnition I.3).

We are here interested in analyzing the convergence of curves of maximal slopes for a
function f : Z → R. The strategy is the same as in the case of Hilbert spaces, observing
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that the decrease of f along such curves is formally given by d
dtf(zt) = −♣∇f ♣2(zt). Thus,

the natural generalization of Eq. (II.5) is:

∀z ∈ Z , ♣∇f ♣2(z) ≥ m(f(z) − f∗) , (II.8)

for some constant m > 0 and where f∗ := inf f . The above Polyak-čojasiewicz in-
equality in a metric space setting has encountered applications in the analysis of non-
convex and non-smooth optimization problems [Bolte, 2010]. Following from the inter-
pretation of PDEs as gradient Ćows, Eq. (II.8) takes the form of functional inequalities
used in the classical entropy method to establish quantitative contraction properties of
solutions [Blanchet, 2018; Hauer, 2019]. A classical example is the heat equation, where
the logarithmic-Sobolev inequality can be interpreted as a (metric) P-č inequality for the
Boltzmann entropy. As before, the general form in Eq. (II.8) will however be too strong to
be satisĄed and we will consider instead a local variant of Eq. (II.8) which was proposed
in [Dello Schiavo, 2024].

Definition II.2 (Local P-č property in metric spaces). Let f : Z → R≥0 be a non-
negative function with upper gradient ♣∇f ♣ and consider z0 ∈ Z. For constants R,m > 0,
we say that f satisfies a (R,m)-Polyak-Łojasiewicz inequality (w.r.t. ♣∇f ♣) around a z0 if
for every z ∈ B(z0, R) it holds:

♣∇f ♣2(z) ≥ mf(z) . (II.9)

As for the case of Hilbert spaces, while such a local P-č property is insufficient to
conclude to unconditional convergence of curves of maximal slope, it allows obtaining
convergence when f is already sufficiently small at initialization. The following result can
be found in [Dello Schiavo, 2024].

Theorem II.3 ([Dello Schiavo, 2024, Cor. 1.5]). Let f : Z → R≥0 be lower semicontin-
uous and non-negative, let ♣∇f ♣ be an upper-gradient for f and consider z0 ∈ Z. Assume
that f satisfies a (R,m)-P-Ł inequality around z0 and that f(z0) satisfies:

f(z0) <
mR2

4
. (II.10)

For T > 0, let (zt)t≥[0,T ) be a curve of maximal slope for f (w.r.t. upper gradient ♣∇f ♣)
starting from z0. Then the following statements hold:

(i) confinement: zt ∈ B(z0, R) for every t ∈ [0, T ),

(ii) convergence: zT := limt→T zt exists and is in B(z0, R),

(iii) convergence rate: for every t ∈ [0, T ] it holds:

f(zt) ≤ f(z0)e−mt and d(zt, zT ) ≤ Re−mt/2 ,

with the convention that e−∞ = 0.

Finally, we conclude this section by noticing that above convergence result is open in
the sense that if its assumptions are satisĄed for some initialization z0 then it is also the
case for any initialization z′

0 sufficiently close to z0.

Proposition II.2.1. Let f : Z → R≥0 be continuous and non-negative and let the as-
sumptions of Theorem II.3 be satisfied at some z0 ∈ Z. Then there exists a neighborhood
U of z0 such that the assumptions of Theorem II.3 are also satisfied at any initialization
z′

0 ∈ U .
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Proof. By deĄnition of the (R,m)-P-č property, if it is satisĄed around z0 then, for any
δ ∈ (0, R) a (R− δ,m)-P-č property is satisĄed around z′

0 for any z′
0 ∈ B(z0, δ). Moreover

it follows from the continuity of f that the condition Eq. (II.10) is open: if it is satisĄed
at z0 with R and m then it is satisĄed at any z′

0 ∈ B(z0, δ) with R− δ and m provided δ
is sufficiently small.

II.3 Convergence for general architectures

We explain here how one can prove convergence of the gradient Ćow towards a minimizer
of the risk R when training the NODE model deĄned in DeĄnition I.1. Precisely, we show
that the risk satisĄes a Polyak-čojasiewicz inequality of the form Eq. (II.8) where the
P-č constant depends both on the dataset and on the parameterization. We then explain
how this constant is related to functional properties of the space of residuals and give
conditions to ensure its positivity. Those conditions are described here at a general level
but will be speciĄed in Sections II.4 and II.5 for practical examples of architectures and
initializations.

Finite number of data As in Chapter I, we consider training the NODE model for
the minimization of the training risk associated to a distribution of labeled training data
R

d × R
d′ ∋ (x, y) ∼ D. SpeciĄcally, to obtain convergence results, we focus on the case

where the data distribution is the empirical distribution D = 1
N

∑︁N
i=1 δ(xi,yi) for a dataset

{︁
(xi, yi)

}︁

1≤i≤N ∈ (Rd × R
d)N . In this case, the risk R for a parameterization µ is given

by the empirical risk:

R(µ) =
1

2N

N∑︂

i=1

ℓ(xi
µ(1), yi) , (II.11)

where xi
µ is the Ćow of Eq. (I.5) starting at xi and with parameterization µ, which we will

simply denote by xi when no ambiguity. Similarly we denote by pi
µ := pµ,xi,yi , or simply

pi when no ambiguity, the associated adjoint variables solution to Eq. (I.13). We also
suppose that ψ satisĄes Assumptions I.1 to I.3.

Assumption on the loss To show the convergence of gradient methods for the training
of our NODE architecture, we will show the empirical risk R satisĄes a local Polyak-
čojasiewicz property. In this purpose, a minimal working assumption is that the loss
function ℓ itself satisĄes the P-č property. This assumption is in particular satisĄed in
regression problems by the quadratic loss ℓ(x, y) = 1

2∥x−y∥2 or locally by the cross entropy

loss ℓ(x, y) = − log
⎤∑︁

j
y[j] exp(x[j])

∑︁

j
exp(x[j])

⎣

in classiĄcation. For the sake of simplicity, we assume

the P-č constant is 2 but all the results of course still hold with other constants.

Assumption II.1. The loss function ℓ : Rd ×R
d′

is smooth and satisfies the P-Ł property
w.r.t. x ∈ R

d, uniformly w.r.t (x, y) ∈ R
d × R

d′
, that is:

∀(x, y) ∈ R
d × R

d′
, ∥∇xℓ(x, y)∥2 ≥ 2ℓ(x, y) .

II.3.1 Conditioning of the tangent kernel implies the P-Ł property

We showed in Proposition I.3.4 that, for the mean-Ąeld NODE model deĄned in DeĄni-
tion I.1, an upper gradient of the training risk R is given by the norm the the gradient
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Ąeld ∇R[µ] obtained in Eq. (I.20). In the setting of a Ąnite number of data samples, we
thus have for any µ ∈ PLeb

2 ([0, 1] × Θ):

♣∇R♣2(µ) =
∫︂ 1

0

∫︂

Θ

/︂
/︂
/︂
/︂
/︂

1
N

N∑︂

i=1

Dθψ(θ, xi(s))⊤pi(s)

/︂
/︂
/︂
/︂
/︂

2

dµ(s, θ)

=
1
N2

∫︂ 1

0

⎛

∐︂
∑︂

1≤i,j≤N

pi(s)⊤K[µ(.♣s)](xi(s), xj(s))pj(s)

⎞

ˆ︁ds ,

where for a parameterization ν ∈ P2(Θ) we deĄne the kernel K[ν] : Rd × R
d → R

d×d as:

∀x, x′ ∈ R
d , K[ν](x, x′) :=

∫︂

θ
Dθψ(θ, x)Dθψ(θ, x′)⊤dν(θ) . (II.12)

For a point cloud z = (zi)1≤i≤N ∈ (Rd)N we will denote by K[ν, z] ∈ R
dN×dN the kernel

matrix associated to K[ν] and deĄned as the block matrix:

K[ν, z] :=
(︂

K[ν](zi, zj)
⎡

1≤i,j≤N
. (II.13)

In particular, we see that the conditioning λmin (K[ν, z]) of the kernel matrix will play an
important role in proving a local P-č property for the risk R. Indeed, in terms of the
kernel matrix K, the square gradient can then be written :

♣∇R♣2(µ) =
1
N2

∫︂ 1

0
⟨pµ(s),K[µ(.♣s),xµ(s)]pµ(s)⟩ ds , (II.14)

where for every s ∈ [0, 1] we deĄned the point cloud xµ(s) := (xi
µ(s)) ∈ (Rd)N and where

we concatenated the adjoint variables into pµ(s) := (pi
µ(s))1≤i≤N ∈ R

dN . In the following,
when no ambiguity, we will write x = xµ ∈ C([0, 1], (Rd)N ) and p = pµ ∈ C([0, 1],RdN ).

Lemma II.3.1. Assume ψ satisfies Assumptions I.1 to I.3 and ℓ satisfies Assumption II.1.
Consider µ ∈ PLeb

2 ([0, 1] × Θ). Then there exists a constant C = C(E2(µ)) s.t.:

♣∇R♣2(µ) ≥ 2e−C

N

⎤∫︂ 1

0
λmin(K[µ(.♣s),xµ(s)])ds

⎣

R(µ) , (II.15)

Proof. Thanks to Assumption I.3 and to the deĄnition of pi
µ, there exists a constant

C = C(E2(µ)) such that for every 1 ≤ i ≤ N we have the estimate:

∥pi
µ(s)∥2 ≥ e−C∥pi

µ(1)∥2 , ∀s ∈ [0, 1] .

Using that pi
µ(1) = ∇xℓ(xi

µ(1), yi) and with the previous Assumption II.1 we have

∥pµ(s)∥2 ≥ e−C∥pµ(1)∥2 ≥ 2Ne−CR(µ) .

Putting this lower bound in Eq. (II.14) then gives the result.

The above Lemma II.3.1 shows that the conditioning λmin(K) of the kernel matrix
provides a lower bound on the ratio between the square gradient and the risk: assuming
λmin(K) > 0 Ů which will for example always be true in Section II.4.2 Ů implies the
P-č inequality Eq. (II.9) for the risk. It in particular implies that the risk has no spurious
critical points Ů every critical point is a global minimizer. This remarkable property arises
from the combination of skip connections and the inĄnite-depth limit, which together
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enable NODEs to implement an invertible warping of the input space. This stands in
stark contrast to Ąnite-width feedforward architectures, which typically exhibit numerous
saddle points [Achour, 2024].

The P-č constant in Eq. (II.15) could for example be computed numerically during
training. However, at this point, it is not clear how one can be sure, before training,
that the P-č inequality will hold along the gradient Ćow. We investigate this problem
in the next sections for special kinds of architectures. Nonetheless, a direct corollary
of Lemma II.3.1 is that gradient Ćow converges if it stays bounded and if we assume the
kernel matrix stays well-conditioned.

Corollary II.3.1. Assume ψ satisfies Assumptions I.1 to I.3 and ℓ satisfies Assump-
tion II.1. For an initialization µ0 ∈ PLeb

2 ([0, 1] × Θ), let (µt)t≥0 be a gradient flow of
R starting from µ0. If there exists a constant C > 0 s.t., for every t ≥ 0, E2(µt) ≤ C
and

∫︁ 1
0 λmin(K[µt(.♣s),xµt(s)])ds ≥ C−1, then the gradient flow converges in the sense that

µt
t→+∞−−−−→ µ∞ ∈ PLeb

2 ([0, 1] × Θ) and there exists a constant C ′ > 0 s.t.:

R(µt) ≤ e−C′tR(µ0), ∀t ≥ 0 .

II.3.2 Expressivity and functional properties of the set of residuals

The kernel K[µ] deĄned in Eq. (II.12) corresponds to the Neural Tangent Kernel (NTK)
associated to the architecture in Eq. (II.2) [Jacot, 2018]. Properties of the NTK, and
especially conditioning of the associated kernel matrix, have been identiĄed by several
works has a key ingredient to show convergence of gradient methods for the training
of neural networks [Allen-Zhu, 2019; Du, 2019; Lee, 2019; Zou, 2020; Liu, 2020]. In
turn, the positivity of the kernel matrix K here readily plays a role in Corollary II.3.1 to
establish convergence of gradient Ćow for the training of NODEs. We explain here how this
conditioning is related to functional properties of the set of residuals and more precisely to
their expressivity. Later-on we will give examples of architectures and parameterizations
for which sufficient expressivity of the residuals can be ensured to show convergence of
gradient methods for the training of deep ResNets.

Positive kernels and RKHS By construction, the kernel K[µ] deĄned in Eq. (II.12)
is a (vector valued) positive kernel over Rd. Indeed, for µ ∈ P2(Θ), we have that for every
(xi)1≤i≤N and every (pi)1≤i≤N ∈ (Rd)N :

∑︂

1≤i,j≤N

˜︁

pi,K[µ](xi, xi)pj
˜︂

=
∫︂

Θ

/︂
/︂
/︂
/︂
/︂

N∑︂

i=1

Dθψ(θ, xi(s))⊤pi(s)

/︂
/︂
/︂
/︂
/︂

2

dµ(θ) ≥ 0 .

It is a classical result that every such kernel deĄnes a unique structure of Reproduc-
ing Kernel Hilbert Space (RKHS) over R

d, a Hilbert space of functions for which the
evaluation function is continuous [Steinwart, 2008; Carmeli, 2010]. The kernel K[µ]
is here directly given by a feature representation, that is a representation of the form
K[µ](x, y) = χ(x)⊤χ(y) with a map χ : R

d → L(Rd,H) for some Hilbert space H. If
such a representation always deĄnes a positive kernel, one can conversely show that such
a representation always exists whenever K is a positive kernel [Carmeli, 2010]. This rep-
resentation can however not be expected to be unique and corresponds to a certain square
root of K[µ] viewed as an integral operator [Bach, 2017b]. Here, one can for example
consider H = L2(µ) and χ is given by:

∀x, p ∈ R
d , χ(x) · p = Dθψ(., x)⊤p .
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The associated RKHS is deĄned by:

Fµ :=
{︃

F : x ↦→ χ(x)⊤ · δθ =
∫︂

Θ
Dθψ(θ, x)δθ(θ)dµ(θ) : δθ ∈ L2(µ)

}︃

(II.16)

and

∀F ∈ Fµ , ∥F∥Fµ
:= inf

{︂

∥δθ∥L2(µ) : F (x) = χ(x)⊤ · δθ , ∀x ∈ R
d
}︂

. (II.17)

The RKHS Fµ can be seen as the linearization of the space of residuals at some param-
eterization µ ∈ P2(Θ). Its functional properties depend on the choice of architecture,
materialized by the basis function ψ, which is Ąxed, but also on the choice of the param-
eterization, which will vary during training.

Universality of residuals A lower bound on the minimum eigenvalue of the kernel
matrix K is assumed in Corollary II.3.1 to ensure convergence of gradient Ćow. For a
kernel K, the property of having its associated kernel matrix being (strictly) positive on
every separated point cloud is a property we refer to as strict positivity. We make the
following deĄnition:

Definition II.3 (Strict positivity). We say a positive kernel K is strictly positive if for
every family z = (zi)1≤i≤N ∈ (Rd)N of mutually disjoint points the associated kernel
matrix K[z] is positive definite.

The notion of strict positivity is related to the stronger notion of universality which
is the property for a RKHS to be dense in the space of continuous functions [Micchelli,
2006; Sriperumbudur, 2011] (the two notions are for example equivalent for radial ker-
nels [Sriperumbudur, 2011]). In particular, this condition is satisĄed by a large class of
common kernels such as Gaussian or Matérn kernels. More generally, being strictly pos-
itive in the sense of DeĄnition II.3 requires for the associated RKHS F to be at least of
dimension M ≥ dN , since it implies that, for any family of N mutually-disjoint points
z = (zi)1≤i≤N ∈ (Rd)N and any family of vectors (F i)1≤i≤N ∈ (Rd)N there exists some
F ∈ F s.t. F (xi) = F i for every index i ∈ ¶1, ..., N♢. However, when considering a Ąxed
family z = (zi)1≤i≤N ∈ (Rd)N , the strict positivity assumption can be satisĄed for Ąnite
dimensional RKHSs of dimension M ≤ Nd, for example by considering a polynomial ker-
nel, or by RKHSs of dimension M ≥ poly(N) with high probability over the sampling of
random features.

For a RKHS Fµ as in Eq. (II.16), the expressivity of Fµ depends on ψ and on the
parameterization µ. An example we develop further in Sections II.4 and II.5 is the case of
2-layer perceptrons of Eq. (34) where trained parameters are weight matrices U,W ∈ R

d×M

and a bias vector b ∈ R
M and ψ((U,W, b), x) = Uσ(W⊤x + b), with σ an activation

function applied component-wise. In this case, when considering the ReLU activation or
the trigonometric activation cos, the strict positivity of the NTK is ensured provided the
width M ≥ 1 is sufficiently large.

II.4 Linear parameterization of the residuals

Most often in the literature studying the training properties of ResNets, the considered
residual transformations are Multi-Layer Perceptrons (MLP) [Du, 2019; Allen-Zhu, 2019;
Hardt, 2016a]. These consist in the composition of several trained linear layers alterna-
tively composed with a non-linear activation function. In contrast, we Ąrst consider here
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a simpliĄed architecture where the residual term is linear w.r.t. the parameters while still
being nonlinear w.r.t the inputs. While retaining the expressivity properties of MLPs,
such a parameterization has the advantage of simplifying the learning dynamic.

Precisely, we consider residuals that are of the form Eq. (II.2) where the parameter
space is Θ = Hd, for some a Hilbert space H, and ψ : Θ × R

d → R
d is deĄned as:

∀θ = (θi)1≤i≤d ∈ Θ , ∀x ∈ R
d, ψ(θ, x) = θ · ϕ(x) =

⎛

ˆ︂
∐︂

⟨θ1, ϕ(x)⟩H
...

⟨θd, ϕ(x)⟩H

⎞

ˆ︃
ˆ︁ ∈ R

d , (II.18)

where ϕ : Rd → H is some measurable map which we call feature map.

Examples of ResNets with linear parameterization Depending on the choice of a
feature map ϕ and on the choice of a Hilbert space H, the above deĄned class of residuals
encompasses several interesting examples of architectures.

• Linear residuals: This corresponds to the case where H = R
d and ϕ = Id. In this

case the set of parameters identiĄes to Θ = R
d×d, the set of matrices of size d × d,

and the residuals simply consist in the left matrix-vector multiplication.

• Perceptrons with Ąxed hidden layer: Recalling Eq. (34), the single-hidden-layer per-
ceptron model is deĄned by:

F(U,W,b) : x ∈ R
d ↦→ Uσ(W⊤x+ b) , (II.19)

where U,W ∈ R
d×M are trainable weight matrices and b ∈ R

M is a trainable bias
vector. In comparison, Eq. (II.20) encompasses the case of random feature mod-
els [Rahimi, 2007] where the inner weight matrix W and the bias vector are Ąxed.
This corresponds to a feature space H = R

M and a feature map ϕ : x ↦→ σ(W⊤x+b).
We will show convergence for ResNets with this type of residuals in Section II.4.3,
provided the width M is sufficiently large.

RKHS parameterization of residuals Linear parameterization of ψ greatly simpli-
Ąes the parameterization of the residuals since, leveraging the linearity w.r.t. θ ∈ Θ, a
parameter distribution is equivalently described by its mean. Recalling Eq. (II.2), the
output of a residual Fµ parameterized by µ ∈ P2(Θ) on an input x ∈ R

d is:

Fµ(x) =
∫︂

Θ
θ · ϕ(x)dµ(θ) = Eµ[θ] · ϕ(x) .

As a consequence, the space of residuals can be described by a single parameter θ ∈ Θ:

F := ¶F : x ↦→ θ · ϕ(x) : θ ∈ Θ♢ . (II.20)

In particular, this space of residuals is a vector space which is independent of the parameter
distribution. Concretely, for every parameter distribution µ ∈ P2(Θ), we have Fµ = F
where Fµ is the linearization of the space of residuals deĄned in Eq. (II.16). Moreover,
this space is in fact isometric to the space of parameters. The following result is a direct
application of [Carmeli, 2010, Prop. 1].
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Proposition II.4.1. The vector space F is a Reproducing Kernel Hilbert Space of vector
fields over R

d whose kernel is given by:

∀x, x′ ∈ R
d , K(x, x′) :=

⟨︁
ϕ(x), ϕ(x′)

/︄

H Id ∈ R
d×d . (II.21)

Moreover the mapping T : θ ∈ Θ ↦→ F = θ · ϕ(.) ∈ F is a partial isometry and it holds:

∀F ∈ F , ∥F∥2
F = inf

∮︂

∥θ∥2
Θ =

d∑︂

i=1

∥θi∥2
H : F (x) = θ · ϕ(x) , ∀x ∈ R

d

⨀︁

.

Upon restricting Θ to Ker(T)⊤, we will assume in the following that T is injective and
hence an isometry, which is equivalent to assume that Span(¶ϕ(x), x ∈ R

d♢) is dense in
H. Moreover, we abuse notations and extend the operator T to L2([0, 1],Θ) by deĄning
for θ ∈ L2([0, 1],Θ):

T(θ)(s) := T(θ(s)) , for a.e. s ∈ [0, 1].

Then T : L2([0, 1],Θ) → L2([0, 1],F) is an isometry and its inverse T−1 is deĄned similarly.
We also denote by π : PLeb

2 ([0, 1],Θ) → L2([0, 1],F) the (surjective) mapping associating
to a parameter distribution its corresponding residuals and deĄned for µ ∈ PLeb

2 ([0, 1],Θ)
by:

for a.e. s ∈ [0, 1], π(µ)(s) := T
(︂

Eµ(.♣s)[θ]
⎡

= Eµ(.♣s)[θ] · ϕ(.) ∈ F . (II.22)

It admits a natural right-inverse which we denote by π−1 : L2([0, 1],F) → PLeb
2 ([0, 1],Θ)

and which consists in considering parameter distributions that are single dirac masses at
each layer. Namely, if F ∈ L2([0, 1],F), then θ = T−1(F ) ∈ L2([0, 1],Θ) and we deĄne:

π−1(F ) :=
∫︂ 1

0
δθ(s)ds ,

i.e. the measure µ ∈ PLeb
2 ([0, 1],Θ) whose disintegration is ¶δθ(s)♢s∈[0,1].

The RKHS-NODE model In this section, we are interested in understanding the
convergence properties of Ąrst order methods such as Gradient Descent (GD) on inĄnitely
deep ResNet models for which the residual layers are encoded in a vector-valued RKHS.
Instantiating the NODE model in DeĄnition I.1 to the case of residuals in a RKHS give
the following deĄnition of RKHS-NODEs:

Definition II.4 (RKHS-NODE). Let F be a RKHS of vector-fields over R
d. Then for

F ∈ L2([0, 1],F) and a data input x ∈ R
d, the RKHS-NODE model is given by:

NODEF (x) = xF (1)

where xF is the solution to the forward problem:

∀s ∈ [0, 1] , xF (s) = x+
∫︂ s

0
F (r, xF (r))dr . (II.23)

Note that there is a slight abuse of notation as we denote by NODE the model pa-
rameterized either by parameter distributions µ ∈ PLeb

2 ([0, 1],Θ) (DeĄnition I.1) or by
residuals F ∈ L2([0, 1],F) (DeĄnition II.4). Indeed, for every parameter distribution
µ ∈ PLeb

2 ([0, 1],Θ) and every input x ∈ R
d, we have xµ = xπ(µ) and hence:

NODEµ(.) = NODEπ(µ)(.) ,

where π : PLeb
2 ([0, 1],Θ) → L2([0, 1],F) is the surjection deĄned in Eq. (II.22).
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Relevance of the RKHS-NODE model. The main difference between the model
of DeĄnition II.4 and standard ResNets is linearity in the parameters of the residual blocks.
As a comparison, a 2-layer MLP is nonlinear w.r.t. the parameters of the hidden layers.
However, this linearity assumption does not impact the expressivity of the model, but only
its training dynamic. (i) Indeed, considering F to be a random feature approximation
(c.f. Eq. (II.33)) of some universal RKHS, the residual blocks are as expressive as a 2-
layer MLP since both are dense in the space of continuous functions. (ii) Up to the
cost of adding a supplementary variable, the dynamical system parameterized by a 2-
layer MLP can be expressed as a model which is linear w.r.t. its parameters [Vialard,
2020, Section 3.2]. Only the training dynamic between these two architectures differs.
Also, this assumption of linearity in the parameters also prevents the use of normalization
layers. In this direction, Zhang, Dauphin, and Ma [Zhang, 2018] have shown that ResNets
without normalization but proper initialization of the weights can lead to robust training
and similar generalization on the test set than standard ResNets. Finally, the model
of DeĄnition II.4 still retains the effect of depth and the nonlinearity w.r.t. the input. Due
to composition of these residual blocks the model’s output is still highly non-linear w.r.t.
parameters. For these reasons, we consider this model as an important step towards the
study of the general case.

In turn, this linearity in parameters naturally leads to an RKHS parameterization
which has two important beneĄts on the theoretical side: (i) Flows of vector-Ąelds as
implemented by our model in Eq. (II.23) have already been studied theoretically and
for applications in image registration problems [Younes, 2010; Beg, 2005; Niethammer,
2011]. Under some regularity assumptions on the considered RKHS F , one can show that
the model’s output corresponds to the invertible action of a diffeomorphism by compo-
sition on the input [Trouvé, 1998]. This property was already used in [Salman, 2018]
to implement models of Normalizing Flows [Kobyzev, 2020] with applications in genera-
tive modeling. (ii) There is an important literature in Machine Learning about Kernel
methods [Schölkopf, 2002]. In practice, various sub-sampling methods exist in order to
approximate inĄnite-dimensional RKHSs with Ąnite-dimensional spaces generated by ran-
dom features [Rahimi, 2007; Rahimi, 2008].

To further support the practical applicability and the relevance of this model in com-
parison with standard architectures, we report in Section II.7 numerical experiments on
MNIST and CIFAR10 datasets. They show that Ů as predicted by our theory Ů the
model can be trained in these cases to almost zero loss. But more importantly, they show
that the model is able to generalize well on the test dataset with performances that are
similar to those of classical ResNets.

Supervised learning We consider a supervised learning problem where the RKHS-
NODE model of DeĄnition II.4 is trained for the minimization of the training risk associ-
ated to the data distribution R

d × R
d′ ∋ (x, y) ∼ D and, as in Section II.3, we consider

a Ąnite training dataset D =
{︁
(xi, yi)

}︁

1≤i≤N ∈ (Rd × R
d)N . Then, instantiating the risk

deĄned in Eq. (I.8) to the case of a linear parameterization of residuals, gives here:

R(F ) :=
1
N

N∑︂

i=1

ℓ(NODEF (xi), yi) =
1
N

N∑︂

i=1

ℓ(xi
F (1), yi) , (II.24)

where F ∈ L2([0, 1],F) is the family of residuals and xi
F is the Ćow of Eq. (II.23) starting

at xi with parameterization F . Note that there is again a slight abuse of notation with the
risk R deĄned in Eq. (I.8). As before, this is justiĄed since for every parameter distribution
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µ ∈ PLeb
2 ([0, 1],Θ) we have:

R(µ) = R(π(µ)) ,

where π : PLeb
2 ([0, 1],Θ) → L2([0, 1],F) is the surjection deĄned in Eq. (II.22).

II.4.1 Gradient flow equation in the case of RKHS residuals

Gradient Ćows for the mean-Ąeld models of NODEs were deĄned in DeĄnition I.3 as solu-
tions to some non-linear advection PDE. Before turning to the convergence analysis of such
dynamics, we discuss the interpretation of this PDE in the case where the parameteriza-
tion of residuals is linear w.r.t. parameters. Precisely, in this case, leveraging the isometry
T between the parameter space Θ and the residual space F (cf. Proposition II.4.1), we
show this dynamic corresponds to an actual gradient Ćow on the space of parameters.

To place ourselves in the setting of Chapter I we will consider in this section that the
feature space H is Ąnite-dimensional, though most results could probably apply to the
case where H is an arbitrary separable Hilbert space. More importantly, we make the
following regularity assumption on the feature map ϕ.

Assumption II.2 (Admissibility).
We say that the RKHS F is admissible if the feature map ϕ : Rd → H is in C2(Rd,H).
This in particular implies that F is continuously embedded in C2(Rd,Rd) and for every
F ∈ F it holds:

∥F∥C2(Rd,Rd) ≤ ∥ϕ∥C2(Rd,H)∥F∥F

Note that the above Assumption II.2 implies that the basis function ψ deĄned in Eq. (II.18)
satisĄes all the assumptions considered in Chapter I, namely Assumptions I.1 to I.3 and As-
sumptions I.A to I.C. In particular, for residuals F ∈ L2([0, 1],F) and data (x, y) ∈ R

d×R
d′

the adjoint variable is deĄned by pF,x,y := pµ,x,y where one can consider any parameter-
ization µ ∈ PLeb

2 ([0, 1] × Θ) s.t. π(µ) = F . As in Eq. (I.13), the backward ODE reads
here:

∀s ∈ [0, 1] , pF,x,y(s) = ∇xℓ(xF (1), y) +
∫︂ 1

s
DxF (r, xF (r))⊤pF,x,y(s) . (II.25)

In this section, for every index i ∈ ¶1, ..., N♢, we will denote by pi
F the adjoint variable

associated to the data point (xi, yi).
In Chapter I, the adjoint variables were used in DeĄnition I.3 to deĄne a notion of

gradient velocity Ąeld. For a parameter distribution µ ∈ PLeb
2 ([0, 1]×Θ), the velocity Ąeld

∇R[µ] ∈ L2(µ) reads here using the deĄnition of ψ:

∀(s, θ) ∈ [0, 1] × Θ , ∇R[µ](s, θ) =
1
N

N∑︂

i=1

Dθψ(θ, xi
µ(s))⊤pi

µ(s) =
1
N

N∑︂

i=1

pi
µ(s) ⊗ ϕ(xi

µ(s)) .

Notably, due to the linearity of ψ w.r.t. the parameters, this velocity Ąeld is here indepen-
dent of θ ∈ Θ. Thus, leveraging the isometry between the space of parameters Θ and the
space of residuals F , this dual vector can be used to deĄne a dual vector on the space of
residuals. Namely, for µ ∈ PLeb

2 ([0, 1] × Θ) and F = π(µ) ∈ L2([0, 1],F) we deĄne for a.e.
s ∈ [0, 1]:

∇R(F )(s) := T

(︄

1
N

N∑︂

i=1

pi
µ(s) ⊗ ϕ(xi

µ(s))

)︄

=
1
N

N∑︂

i=1

K(., xi
F (s))pi

F (s) ∈ F , (II.26)
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where the second equality comes from the reproducing property of the kernel K. This
deĄnition is unambiguous since the Ćows xi

µ and the adjoint variables pi
µ only depend on

the residuals F = π(µ) ∈ L2([0, 1],F). We show here that it corresponds to a true notion
of gradient for the risk R deĄned on the space of residuals.

Proposition II.4.2. Assume F is admissible according to Assumption II.2. Then R is
continuously differentiable and ∇R defined in Eq. (II.26) is its gradient.

Proof. Let I ⊂ R be an open interval s.t. 0 ∈ I and let (Ft)t∈I be a smooth (at least
continuously differentiable) curve in L2([0, 1],F) s.t. F0 = F . DeĄne, for every t ∈ I,
Θt = T−1(Ft) ∈ L2([0, 1],Θ) and deĄne µt = π−1(Ft) =

∫︁ 1
0 δθt(s)ds ∈ PLeb

2 ([0, 1],Θ). Then
by construction, we have R(Ft) = R(µt) for every t ∈ I. Also, the curve t ∈ I ↦→ µt is
absolutely continuous in PLeb

2 ([0, 1],Θ) and satisfy the continuity equation:

∂tµt + div(µt(0, θ′
0)) = 0 over I × [0, 1] × Θ,

where θ′
0 = T−1(F ′

0). Thus, applying Corollary I.3.3, the risk is differentiable at t = 0 and
writing without ambiguity xi

0 = xi
µ0

= xi
F0

and pi
0 = pi

µ0
= pi

F0
we have:

d
dt

R(Ft)
\︄
\︄
\︄
\︄
t=0

=
∫︂

[0,1]×Θ

⟨︁∇R[µ0](s, θ), θ′
0(s)

/︄

Θ dµ0(s, θ) .

Using that θ′
0 = T−1(F ′

0) and the deĄnition of ∇R in Eq. (II.26) this equation reads:

d
dt

R(Ft)
\︄
\︄
\︄
\︄
t=0

=
∫︂ 1

0

⨀︂

1
N

N∑︂

i=1

K(., xi
0(s))pi

0(s), F ′
0(s)

⨁︁

F

ds =
⟨︁∇R(F0), F ′

0

/︄

L2([0,1],F) .

This hence shows that ∇R, as deĄned by Eq. (II.26), is the directional (or Gâteaux)
derivative of R. Since the applications F ↦→ xi

F and F ↦→ pi
F are continuous (cf. Lem-

mas I.3.2 and I.3.5) it follows that the map F ↦→ ∇R(F ) is also continuous. By classical
results, this imply R is continuously differentiable and ∇R is its gradient (see e.g. [Younes,
2010, Prop. C.1]).

Note that, for F satisfying Assumption II.2, the forward Ćow map F ↦→ xF and
the adjoint Ćow map F ↦→ pF,x,y are locally Lipschitz by Lemmas I.3.2 and I.3.5. As
a consequence, the gradient map F ∈ L2([0, 1],F) ↦→ R(F ) is locally Lipschitz and the
gradient Ćow equation is well-posed. That is, for any F0 ∈ L2([0, 1],F), there exists a
unique solution F ∈ C1

loc([0,+∞), L2([0, 1],F)) of the Cauchy problem:

∀t ≥ 0 ,
d
dt
Ft = −∇R(Ft) .

We show now that the notion of gradient Ćow of the risk w.r.t. the parameter distribution
µ as deĄned in the previous chapter (DeĄnition I.3) here corresponds to the classical notion
of gradient Ćow w.r.t. the Hilbert metric structure on the space of residuals F .

Proposition II.4.3. Let µ0 ∈ PLeb
2 ([0, 1] × Θ) and (µt)t∈[0,+∞) be a gradient flow for the

risk R starting from µ0 given by Theorem I.3. For t ∈ [0,+∞), define Ft := π(µt) ∈
L2([0, 1],F). Then (Ft)t∈[0,+∞) is the solution of the gradient flow equation:

∀t ≥ 0 ,
d
dt
Ft = −∇R(F ) .

Conversely, consider (Ft)t∈[0,+∞) the solution of the above gradient flow equation for
some F0 ∈ L2([0, 1],F). Then, defining µt = π−1(Ft) for every t ∈ [0,+∞), the curve
(µt)t∈[0,+∞) is the gradient flow of the risk starting from µ0.
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Proof. Note that by Jensen’s inequality the mapping π : PLeb
2 ([0, 1] × Θ) → L2([0, 1],F)

deĄned in Eq. (II.22) is a contraction. Indeed, for µ, µ′ ∈ PLeb
2 ([0, 1] × Θ):

/︂
/︂π(µ) − π(µ′)

/︂
/︂2

L2([0,1],F) =
∫︂ 1

0

/︂
/︂
/︂Eµ(.♣s)[θ] − Eµ′(.♣s)[θ]

/︂
/︂
/︂

2

Θ
ds

≤
∫︂ 1

0
W2(µ(.♣s), µ′(.♣s))2ds

≤ WCOT
2 (µ, µ′)2 .

Thus, it directly follows from the local absolute continuity of (µt)t∈[0,+∞) that the curve
(Ft)t∈[0,+∞) is locally absolutely continuous in L2([0, 1],F). As a consequence (see e.g. [Am-
brosio, 2008b, Rem. 1.1.3]), it is almost everywhere differentiable with a differential
F ′

t ∈ L1
loc([0,+∞), L2([0, 1],F)) and for every t1 < t2 ∈ [0,+∞) it holds:

Ft2 = Ft1 +
∫︂ t2

t1

F ′
tdt .

Hence, to conclude it suffices to show that F ′
t = −∇R(Ft) for a.e. t ∈ [0,+∞). For this,

let us consider some G ∈ L2([0, 1],F). Using the density of C∞([0, 1],F) in L2([0, 1],F)
we can consider w.l.o.g. that G is smooth and using the isometry between Θ and F we
write G(s) = T(ω(s)) for some ω ∈ C∞([0, 1],Θ). Then by construction for every t ≥ 0:

⟨G,Ft⟩L2([0,1],F) =
∫︂ 1

0

˜︁

ω(s),Eµt(.♣s)[θ]
˜︂

Θ
ds =

∫︂ 1

0

∫︂

Θ
⟨ω(s), θ⟩Θ dµt(s, θ) .

Since, ⟨G(s), θ⟩Θ is smooth and bounded by a function of linear growth it follows from
deĄnition of gradient Ćow curves (DeĄnition I.3) that for a.e. t ∈ [0,+∞):

d
dt

⟨G,Ft⟩L2([0,1],F) = −
∫︂

[0,1]×Θ
⟨ω(s),∇R[µt](s, θ)⟩Θ dµt(s, θ) = − ⟨G,∇R(Ft)⟩L2([0,1],F) ,

where we used Eq. (II.26). Hence, for every t1 < t2 ∈ [0,+∞) it holds:

⟨G,Ft2 − Ft1⟩L2([0,1],F) = −
∫︂ t2

t1

⟨G,∇R(Ft)⟩L2([0,1],F) dt =
⟨︃

G,−
∫︂ t2

t1

∇R(Ft)dt
⟩︃

L2([0,1],F)

,

which shows that Ft2 − Ft1 = − ∫︁ t2
t1

∇R(Ft)dt and implies the desired result.
For the converse result, note that, for every t ≥ 0, µt =

∫︁ 1
0 δθt(s)ds where θt = T−1(Ft).

Then, for a test function φ ∈ C∞
c ([0, 1] × Θ) and for t ≥ 0:

µt(φ) =
∫︂

[0,1]×Θ
φ(s, θ)dµt(s, θ) =

∫︂ 1

0
φ(s, θt(s)) .

Hence differentiating w.r.t. t:

d
dt
µt(φ) =

∫︂ 1

0

⟨︁∇φ(s, θt(s)), θ′
t(s)

/︄

Θ ds = −
∫︂

[0,1]×Θ
⟨∇φ(s, θ),∇R[µt](s, θ)⟩Θ dµt(s, θ) ,

where we used Eq. (II.26) and that T(θ′
t) = F ′

t = −∇R(Ft).
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II.4.2 Convergence of RKHS-NODE

Following the line of proof sketched in Section II.3, we show how to derive P-č inequalities
of the form Eq. (II.5) for the empirical risk associated with the RKHS-NODE model. For
this purpose we will rely on expressivity properties of the set of residuals F and more
precisely on the strict positivity of the kernel matrix, as deĄned by DeĄnition II.3.

Similarly as the space of residuals, the associated kernel is independent of the parameter
distribution. Indeed, instantiating Eq. (II.12) with ψ of the form Eq. (II.18) gives that for
every ν ∈ P2(Θ) and every x, x′ ∈ R

d:

K[µ](x, x′) = K(x, x′) =
⟨︁
ϕ(x), ϕ(x′)

/︄

H Id ,

i.e. K[ν] is the kernel K associated to the RKHS F . As before, we denote by K the kernel
matrix deĄned for z = (zi)1≤i≤N ∈ (Rd)N as the block matrix

K[z] := (K(zi, zj))1≤i,j≤N ∈ R
dN×dN . (II.27)

The square norm of the gradient in Eq. (II.14) thus reads here for F ∈ L2([0, 1],F):

∥∇R(F )∥2
L2([0,1],F) =

1
N2

∫︂ 1

0
⟨pF (s),K[xF (s)]pF (s)⟩ ds , (II.28)

where xF (s) = (xi(s))1≤i≤N ∈ (Rd)N and pF (s) := (pi(s))1≤i≤N ∈ R
dN for every s ∈ [0, 1].

Then, as in Lemma II.3.1, one can show that the risk R satisĄes a P-č property whenever
the kernel K is assumed to be strictly positive.

Proposition II.4.4 (RKHS-NODE satisfy P-č). Assume F satisfies Assumption II.2, its
associated kernel K is strictly positive in the sense of Definition II.3 and the input data
has separation δ := mini̸=j ∥xi − xj∥ > 0. Then, for every R ≥ 0, the empirical risk R
satisfies the (R,m)-P-Ł property of Definition II.1 with m given by:

m =
1
N
λK

(︂

δe−κR
⎡

e−2κR . (II.29)

where κ = κ(ϕ) and λK : R>0 → R>0 is the positive increasing function (possibly depending
on N) defined by:

λK(δ) := inf
z=(zi)∈(Rd)N

mini̸=j ∥zi−zj∥≥δ

λmin(K[z]) (II.30)

Proof. Let R > 0 and consider F ∈ L2([0, 1],F) s.t. ∥F∥L2([0,1],F) ≤ R. First, note that
it follows from Assumption II.2 and from the forward and backward ODEs in Eqs. (II.23)
and (II.25) that we have for every index i, j ∈ ¶1, ..., N♢ and every s ∈ [0, 1]:

/︂
/︂
/︂xi

F (s) − xj
F (s)

/︂
/︂
/︂ ≥ e−κRδ

and

∥pi
F (s)∥ ≥ e−κR∥∇xℓ(xi

F (1), yi)∥ ,
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where κ = ∥ϕ∥C2 . Then, plugging this into Eq. (II.28) and using the deĄnition of λK gives:

∥∇R(F )∥2
L2([0,1],F) =

1
N2

∫︂ 1

0
⟨pF (s),K[xF (s)]pF (s)⟩ ds

≥ 1
N2

∫︂ 1

0
λmin(K[xF (s)])∥pF (s)∥2ds

≥ 1
N2

λK(e−κRδ)e−2κR
N∑︂

i=1

∥∇xℓ(xi
F (1), yi)∥2

≥ 1
N2

λK(e−κRδ)e−2κR
N∑︂

i=1

ℓ(xi
F (1), yi)

=
1
N
λK(e−κRδ)e−2κRR(F ) ,

where we used Assumption II.1 in the penultimate line.

Since the empirical risk R satisĄes a local P-č property, the analysis of Section II.2
gives the convergence of gradient Ćow curves, provided the risk at initialization is already
sufficiently low. This condition depend on the kernel K through its conditioning λK

deĄned in Eq. (II.30). While we keep here an abstract condition for the sake of generality,
the quantitative dependence of λK w.r.t. the data separation δ > 0 will be made explicit
for a large class of kernels in Section II.4.3.

Theorem II.4. Let the assumptions of Proposition II.4.4 be satisfied and consider the
associated constants δ, κ and the function λK defined in Eq. (II.30). Let F0 ∈ L2([0, 1],F)
be some initialization and write ∥F0∥L2 = R0. Assume there exists R ≥ 0 s.t.:

4NR(F0) < R2λK(δe−κ(R+R0))e−2κ(R+R0) . (II.31)

Then, the gradient flow (Ft)t≥0 of R with initialization F0 converges to some F∞ ∈
L2([0, 1],F) and for every t ≥ 0 it holds:

R(Ft) ≤ e−mtR(F 0) , and ∥Ft − F∞∥L2([0,1],F) ≤ e−mt/2R ,

where m = 1
N λK(δe−κ(R+R0))e−2κ(R+R0).

Proof. It follows from the assumptions and from Proposition II.4.4 that R : L2([0, 1],F) → R

satisĄes the (R,m)-P-č property of DeĄnition II.1 around F0 with

m =
1
N
λK(δe−κ(R+R0))e−2κ(R+R0) .

The result then follows from an application of Theorem II.1.

Moreover, a similar conclusion holds for gradient descent on the risk R. The following
result is an application of Theorem II.2.

Theorem II.5. Let the assumptions of Proposition II.4.4 be satisfied and consider the
associated constants δ, κ and the function λK defined in Eq. (II.30). Let F0 ∈ L2([0, 1],F)
be some initialization and write ∥F0∥L2 = R0. Assume there exists R ≥ 0 s.t.:

4NR(F0) < R2λK(δe−κ(R+R0))e−2κ(R+R0) .
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Define m = 1
N λK(δe−κ(R+R0))e−2κ(R+R0). Then, for any α ∈

⎤√︂
2R(F0)

mR2 , 1
⎣

, there exists

a sufficiently small step-size τ > 0, s.t. the iterates (Fk)k≥0 of gradient descent on R with
initialization F0 and step-size τ satisfy for every k ≥ 0:

R(Fk) ≤ (1 − αmτ)kR(F 0) , and ∥Fk − F∞∥L2([0,1],F) ≤ (1 − αmτ)k/2R ,

where F∞ ∈ B̄(F0, R) is s.t. R(F∞) = 0.

Proof. It follows from the assumptions and from Proposition II.4.4 that R : L2([0, 1],F) → R

satisĄes the (R,m)-P-č property of DeĄnition II.1 around F0 with

m =
1

N
λK(δe−κ(R+R0))e−2κ(R+R0) .

The result then follows from an application of Theorem II.2.

Note that there are two important parameters determining the P-č constantm in Propo-
sition II.4.4 and thus the convergence rate of gradient Ćow in Theorem II.4 and of gradient
descent in Theorem II.5. The Ąrst one is the data-separation δ = mini̸=j ∥xi − xj∥ which
is a priori imposed by the dataset but which could be increased by an appropriate pre-
processing of the data such as normalization, rescaling or embedding in high dimension.
The other parameter is the function λK which depends on the choice of the kernel K and
thus on the choice of a functional space F for the residuals. In Section II.4.3, we use re-
sults on condition number for radial basis function interpolation problems [Schaback, 1995]
to provide a lower bound on λK in the case of radial kernels (e.g. Gaussian or Matérn
kernels). However, if in theory, prior knowledge of the data might allow to optimize the
choice of kernel, we expect the selection of an optimal kernel to be an intractable problem
in practice. Instead, cross-validation techniques can be used to select a suitable kernel.

Finally, the degeneracy of the P-č constant m as R → +∞ readily appears in Propo-
sition II.4.4. Thus one should not expect these bounds to imply global convergence of
gradient descent without making any further assumption. Indeed, cases where gradient
descent fails to converge towards a global optimizer of the loss are observed in [Bartlett,
2018]. Instead, Theorems II.4 and II.5 are local convergence results in which the condition
in Eq. (II.31) expresses a threshold between two kinds of behaviours: (i) if R(F 0) is suf-
Ąciently small, the training dynamic converges towards a global minimizer. The limiting
behaviour is when the l.h.s. of Eq. (II.31) tends to 0. Because of a regularizing effect of
gradient descent (i.e. that ∥F k − F 0∥L2 ≤ R), the parameter stays in a ball of arbitrary
small radius R all along the training dynamic. In this limit, we recover a ŞlinearŤ or
ŞkernelŤ regime where the model is well approximated by its linearization at F 0 [Chizat,
2018; Liu, 2020; Jacot, 2018]. (ii) If R(F 0) is too large, the result says nothing about the
convergence of gradient descent. However, it is still observed in practice that the training
dynamic often converges towards a global minimizer of the loss [Zhang, 2021]. Explaining
this phenomenon in a general setting remains a challenging open question, even for simple
linear models.

II.4.3 Convergence with finite width

While Theorems II.4 and II.5 describe local convergence results for the training of deep
ResNets with gradient descent and gradient Ćow, the strict positivity assumption requires
the space of residuals to be of very high dimension. Actually, typical examples of RKHSs
satisfying Assumption II.2 and having a strictly positive kernel in the sense of DeĄni-
tion II.3 would be Sobolev spaces Hν of regularity ν > d/2 + 2. Those are described
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by considering as feature map the Fourier coefficients ϕ(x) = (eıx⊤w)w∈Rd and as feature
space H = L2(ρν), where ρν ∈ P(Rd) is the probability distribution with density:

∀w ∈ R
d , ρν(w) ∝

(︄

1 +
∥w∥2

2ν

)︄ν

.

The associated kernel Kν is the translation-invariant kernel whose Fourier transform is ρν :

∀x, x′ ∈ R
d , Kν(x, x′) = kν(x, x′)Id with kν(x, x′) =

∫︂

Rd
eı(x−x′)⊤wdρν(w) . (II.32)

Note in particular that, taking the limit ν → +∞, one recovers a Gaussian kernel, which
we denote by K∞ = k∞Id. In any case, for every ν ∈ (d/2 + 2,+∞], the RKHS Hν has
inĄnite dimension.

In contrast, in standard ResNets, the space of residuals usually consists of a parametric
function space of large but Ąnite dimension. In the case of a linear parameterization, a
typical example would be a random feature model [Rahimi, 2007] consisting in a 2-layer
perceptron (Eq. (34)) whose hidden layer weights are Ąxed. For a width M ≥ 1 and
parameters θ ∈ R

d×M , the residuals are of the form:

∀x ∈ R
d , Fθ(x) =

√︃

2
M

θ · σ(W⊤x+ b) , (II.33)

where σ is some activation, W = (w1♣...♣wM ) ∈ R
d×M is a Ąxed weight matrix, whose

column are called features, and b = (bi)1≤i≤M ∈ R
M is some bias vector. In particular, if

considering the trigonometric activation σ = cos, i.i.d. features wi ∼ ρν for ν > d/2 + 2
and i.i.d. biases bi ∼ U([0, π]), it follows from Proposition II.4.1 that the space of residual
maps F described in Eq. (II.20) is the RKHS associated to the kernel:

∀x, x′ ∈ R
d , K̂ν(x, x′) = k̂ν(x, x′)Id , (II.34)

with

k̂ν(x, x′) =
2
M

M∑︂

i=1

cos(w⊤
i x+ bi) cos(w⊤

i x
′ + bi) .

Using the law of large numbers, we see after some calculations that:

k̂ν(x, x′) M→+∞−−−−−→ 2
∫︂

Rd×[0,π]
cos(w⊤x+ b) cos(w⊤x′ + b)dρν(w)db = kν(x, x′) .

Thus, this space of residuals, which we will from now-on denote by Ĥν , is a Ąnite-
dimensional approximation of Hν . In the rest of this section, we show that the con-
vergence results in Theorems II.4 and II.5 hold for residuals in Ĥν provided the width M
is sufficiently large w.r.t. the number of samples.

We start by showing that the admissibility and strict-positivity assumptions are both
satisĄed by Ĥν , respectively almost surely and with great probability over the sampling
of random features. We will then conclude to convergence in Theorem II.6.

Lemma II.4.1. Let ν ∈ (d/2 + 2,+∞] and, for M ≥ 1, let F = Ĥν be the RKHS with
kernel K̂ν defined in Eq. (II.34). Then, almost surely, F satisfies Assumption II.2 with a
a constant κ̂ independent of M ≥ 1.
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Proof. Note that the feature map associated to the RKHS F = Ĥν is deĄned by:

∀x ∈ R
d , ϕ̂ν(x) =

√︃

2
M
σ
(︂

w⊤x+ b
⎡

∈ R
M .

In particular, since here σ = cos, we have supx ∥ϕ̂ν(x)∥ ≤
√

2 . Moreover, for x ∈ R
d:

Dϕ̂ν(x)⊤Dϕ̂ν(x) =
2
M

M∑︂

i=1

cos(w⊤
i x+ bi)2wiw

⊤
i ⪯ 2

M

M∑︂

i=1

∥wi∥2Id .

Since ν > d/2 + 1, ρν has Ąnite second-order moments and this sequence converges almost
surely by the law of large numbers. In particular, supx ∥Dϕ̂ν(x)∥ is almost surely bounded
w.r.t. M ≥ 1. Using that ν > d/2 + 2, a similar argument shows that supx ∥D2ϕ̂ν(x)∥ is
almost surely bounded w.r.t. M ≥ 1. This shows the result.

Lemma II.4.2. Let ν ∈ (d/2 + 2,+∞] and, for M ≥ 1, let F = Ĥν be the RKHS with
kernel K̂ν defined in Eq. (II.34). Consider a number of data sample N ≥ 1 and let K̂ν

and Kν be the kernel matrices associated to the kernels K̂ν and Kν respectively. Consider
ε, γ > 0 and R ≥ 1. There exists a constant C > 0 s.t. if M ≥ Cε−2N2(1 + log(R) + γ),
then with probability greater than 1 − e−γ, for any F ∈ L2([0, 1],F) s.t. ∥F∥L2([0,1],F) ≤ R
it holds:

∀s ∈ [0, 1] , λmin

(︂

K̂ν(x(s))
⎡

≥ λmin (Kν(x(s))) − ε ,

where x(s) = (xi(s))1≤i≤N are the solutions to the forward ODE Eq. (II.23).

Proof. Consider κ̂, independent of M ≥ 1, such that F = Ĥν satisĄes Assumption II.2
with constant κ̂. Then, for ∥F∥L2([0,1],F) ≤ R, it holds for every index i ∈ ¶1, ..., N♢ that
∥xi(s)∥ ≤ ∥xi(0)∥ + κ̂R for every s ∈ [0, 1]. Then using [Sriperumbudur, 2015, Thm.1],
there exists a constant C = C(d, ν) s.t.:

P

(︄

sup
∥F ∥

L2 ≤R
sup

1≤i,j≤N
sup

s∈[0,1]

/︂
/︂
/︂k̂ν(xi(s), xj(s)) − kν(xi(s), xj(s))

/︂
/︂
/︂ ≥ C(1 + log(R)) +

√
2γ√

M

)︄

≤ e−γ .

This gives the desired result by considering that λmin is N -Lipschitz continuous on the set
N ×N symmetric matrices.

As a consequence of the two above lemma, we recover convergence of gradient Ćow
and gradient descent for the training of the RKHS-NODE model deĄned in DeĄnition II.4
with residuals of the form Eq. (II.33), provided the width M is sufficiently large. Note
that, in the following theorem, one can distinguish between two kind of assumptions: the
assumption that the risk at initialization is sufficiently small, allowing the application of
the local convergence results in Theorems II.1 and II.2, and the assumption of a sufficiently
large number of random features, allowing for the RKHS Ĥν to recover the expressivity
property of Hν with great probability. In particular, taking the limit M → ∞, one
recovers that convergence hold with probability 1 when considering residuals in the inĄnite
dimensional space Hν .

Theorem II.6. Let ν ∈ (d/2 + 2,+∞] and, for M ≥ 1, let F = Ĥν be the RKHS with
kernel K̂ν defined in Eq. (II.34). Consider N ≥ 1 input data samples (xi)1≤i≤N ∈ (Rd)N

with data separation δ := mini̸=j ∥xi − xj∥ > 0. Consider the initialization F0 = 0 ∈
L2([0, 1],F). Then there exists a constant C > 0, s.t. for every γ > 0 the conclusions
of Theorems II.4 and II.5 apply with probability greater than 1 − e−γ if:
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• Sobolev / Matérn kernel (ν < +∞):

R(0) < C−1N−1δ2ν−d, and M ≥ CN2δ2d−4ν(1 + γ) ,

• Gaussian kernel (ν = +∞):

R(0) < C−1N−1δ−de−Cδ−2
, and M ≥ CN2δ2de+2Cδ−2

(1 + γ) .

Proof. The result follows from lower bounds on the conditioning of translation-invariant
kernels of the form Kν in Eq. (II.32) [Schaback, 1995]. We make the proof in the case of
Matérn kernels, that is for ν ∈ (d/2 + 2,+∞), but the arguments straightforwardly adapt
to the case of Gaussian kernels, i.e. ν = +∞.

For ν ∈ (d/2 + 2,+∞), Schaback [Schaback, 1995] gives that, for a data separation
δ′ > 0, a lower bound on the conditioning of the kernel Kν is:

λKν (δ′) ≥ C−1
1 (δ′)2ν−d ,

where C1 = C1(d, ν). Let κ̂ be the constant provided by Lemma II.4.1. Consider R = 1
and ε = 1

2C
−1(δe−κ̂)2ν−d in Lemma II.4.2. Then there exists a constant C2 = C2(d, ν)

such that, for every γ > 0, if M ≥ C2δ
2d−4νN2(1 + γ), with probability greater than

1 − e−γ , for every F ∈ L2([0, 1],F) s.t. ∥F∥L2([0,1],F) ≤ 1 it holds:

λmin

(︂

K̂ν(x(s))
⎡

≥ λmin (Kν(x(s))) − ε ≥ 1
2
C−1

1 e−(2ν−d)κ̂δ2ν−d ,

where x(s) = (xi(s))1≤i≤N are the solutions to the forward ODE Eq. (II.23). As a conse-
quence, the risk R satisĄes the (R,m)-P-č property of DeĄnition II.1 around the initial-
ization F = 0 with R = 1 and m = C−1

3 N−1δ2ν−d for some constant C3 = C3(d, ν). The
condition on R(0) then allows applying Theorem II.1 for the convergence of gradient Ćow
or Theorem II.1 for the convergence of gradient descent.

II.5 The case of SHL residuals

In the above Section II.4, we derived convergence results for the training of deep ResNets
or NODEs whose residuals are linearly parameterized. We study here the case where
residuals are single-hidden-layer (SHL) perceptrons of the form in Eq. (34). For M ≥ 1,
weight matrices U,W ∈ R

d×M and bias vector b ∈ R
M , a SHL perceptron of width M is

described by:

∀x ∈ R
d , F(U,W,b)(x) =

1
M
Uσ(W⊤x+ b) ,

where σ : R → R is an activation function applied component-wise. In particular, it is
similar to the random feature model (Eq. (II.33)) previously considered in Section II.4
with the notable difference that both outer weights in U and inner weights in W, b are
learned parameters.

Note that we consider the mean-Ąeld scaling factor 1/M . With this choice of scaling,
the SHL architecture is an instance of Eq. (II.2) which we deĄne by setting the parameter
space Θ = R

d × R
d × R and the map:

ψ : ((u,w, b), x) ∈ Θ × R
d ↦→ uσ(w⊤x+ b) . (II.35)
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Indeed, if (ui)1≤i≤M and (wi)1≤i≤M are the columns of U and W respectively then for
every x ∈ R

d:

F(U,W,b)(x) =
1
M

M∑︂

i=1

uiσ(w⊤
i x+ bi) .

We will generically make the following assumption on the activation σ to ensure that the
results of Chapter I on existence and uniqueness of the gradient Ćow dynamic still hold
when considering the basis function ψ.

Assumption II.3. The activation σ : R → R is a twice continuously differentiable func-
tion with a uniformly bounded derivative. Defining C = C(σ) := ♣σ(0)♣ + ∥σ′∥∞, we then
have for (x, θ) ∈ R

d × Θ:

∥ψ(θ, x)∥ ≤ C(1 + ∥x∥)(1 + ∥θ∥2) ,

∥Dθψ(θ, x)∥ ≤ C(1 + ∥x∥)(1 + ∥θ∥) , (II.36)

∥Dxψ(θ, x)∥ ≤ C∥θ∥2 .

Thus, this assumption ensures that Assumptions I.1 to I.3 are satisfied. It does not however
imply Assumptions I.A and I.B. Still we are able to show that Theorems I.3 and I.4 both
hold for SHL architectures (c.f. Propositions I.A.1 and I.A.2 in Section I.A).

Remark II.5.1. Assumption II.3 is in particular satisfied for the popular choices that
are σ = tanh or any smooth approximation of ReLU such as GeLU or Swish, but con-
sidering the ReLU activation itself is expected to create two kinds of issues. First, the
non-differentiability of ReLU at 0 could create singularities in the continuity equation. As
a consequence, while existence of solutions to the gradient flow equation (Definition I.3)
might still hold, one should not expect those solutions to be unique (Theorem I.4). Then,
and perhaps most importantly, those solutions might not coincide with curves of maxi-
mal slope. Indeed, a cornerstone of our analysis is Theorem I.2, identifying gradient flow
curves (Definition I.3) with curves of maximal slopes for the risk (Definition I.5). This
result requires minimal regularity on ψ and allows showing existence and uniqueness of
gradient flow curves in Section I.3.4.

Following the lines of Section II.3, our proof strategy to show convergence of gradient
Ćow for the training of deep ResNets with SHL residuals will be to study the conditioning
of the associated Neural Tangent Kernel (NTK) during training. Recall the deĄnition
Eq. (II.12) of the tangent kernel K associated to the architecture deĄned by ψ and to
some parameterization µ ∈ P2(Θ):

∀x, x′ ∈ R
d , K[µ](x, x′) :=

∫︂

Θ
Dθψ(θ, x)Dθψ(θ, x′)⊤dµ(θ) . (II.37)

In the case of the SHL architecture deĄned by Eq. (II.35), the associated kernel can be
decomposed into two parts. For µ ∈ P2(Θ) we have K[µ] = k1[µ]Id + K2[µ] where we
deĄne for every x, y ∈ R

d:

k1[µ](x, y) :=
∫︂

Rd×Rd×R

σ(w⊤x+ b)σ(w⊤y + b)dµ(u,w, b) , (II.38)

K2[µ](x, y) :=
∫︂

Rd×Rd×R

σ′(w⊤x+ b)σ′(w⊤y + b)(x⊤y + 1)(u⊗ u)dµ(u,w, b) .
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Observing that both k1[µ] and K2[µ] deĄne positive kernels over R
d we have that K[µ] ≥

k1[µ]Id in the sense of positive kernels. Therefore λmin(K1[µ(.♣s),xµ(s)]) provides a natural
lower bound for λmin(K[µ(.♣s),xµ(s)]) where, similarly to Eq. (II.13) the kernel matrix
K

1[µ, z] ∈ R
N×N is deĄned for a point cloud z = (zi)1≤i≤N and for µ ∈ P2(Θ) as:

K
1[µ, z] :=

(︂

k1[µ](zi, zj)
⎡

1≤i,j≤N
∈ R

N×N .

In Theorem II.7, we will rely on the conditioning of the kernel k1 during training to ensure
convergence of gradient Ćow.

II.5.1 Comparison with the case of a linear parameterization

An important improvement of this section w.r.t. the analysis performed in Section II.4 is
that we consider a more realistic setting where residuals are 2-layer neural networks whose
hidden layer weights are learned.

Leveraging the linearity of ψ w.r.t. the outer layer weights, one can replace u with its
conditional expectation w.r.t. the inner layer weights (w, b). For a parameterization µ ∈
P2(Θ), the residual is then equivalently represented by the marginal µ2 of µ w.r.t. (w, b)
Ů the feature distribution Ů and by the conditional expectation u(w, b) = Eµ[u♣w, b] ∈
L2(µ2):

∀x ∈ R
d , Fµ(x) =

∫︂

Θ
uσ(w⊤x+ b)dµ(u,w, b) =

∫︂

Rd×R

u(w, b)σ(w⊤x+ b)dµ2(w, b) .

Such a residual belongs to the RKHS associated with the feature space Hµ = L2(µ2) and
the feature map ϕ : x ↦→ σ(w⊤x+b). The associated kernel is k1[µ], which as in Eq. (II.21)
reads:

∀x, x′ ∈ R
d , k1[µ](x, x′) =

⟨︁
ϕ(x), ϕ(x′)

/︄

L2(µ2) =
∫︂

Rd×R

σ(w⊤x+ b)σ(w⊤x′ + b)dµ2(w, b) .

Thus, Ąxing the inner weight distribution µ2 one would recover the setting of Section II.4,
with residuals in a RKHS independent of the parameterization. In contrast, in Theo-
rem II.7, the distribution of the inner layer weights evolves during training. Tracking
evolution of the feature distribution in deep neural networks is however a difficult the-
oretical problem. In Theorem II.7 we will overcome this issue by assuming the risk at
initialization is sufficiently small for the training dynamic to stay close from some ŞniceŤ
feature distribution. We will quantify this condition w.r.t. the number of data sample N
in Corollary II.5.1 but, as a consequence of not being able to track the learning of the
feature distribution, we will ask for the risk at initialization to scale as N−3 in contrast
to N−1 in Theorem II.6. This gap motivates a detailed analysis of the evolution of the
feature distribution in shallow architectures which will be the content of Chapter III.

Mathematically, training of inner weights also materializes as a change of metric on the
space of residual mappings which is no longer isometric to its parameter space. Here the
NTK in fact decomposes as a sum of two terms: k1 corresponds to gradients w.r.t. linear
parameters while K2 corresponds to gradients w.r.t. nonlinear parameters. The space of
residuals is described by the so-called ŞBarron spaceŤ

B :=
{︃

F : x ↦→
∫︂

uσ(w⊤x+ b)dµ(u,w, b) : µ ∈ P2(R × R
d × R)

}︃

.

In the case σ = ReLU, E and Wojtowytsch [E, 2022] show that B can be endowed with a
Banach norm:

∀F ∈ B , ∥F∥B := inf
{︃∫︂

♣u♣(∥w∥ + ♣b♣)dµ : µ ∈ P2(R × R
d × R) , F = Fµ

}︃

.
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However, if it satisĄes enjoyable approximation properties such as density in the space of
continuous functions [Cybenko, 1989], this Banach space is generically not separable nor
reĆexive.

II.5.2 Convergence of NODEs with SHL residuals

We show here a local convergence result for the training of NODEs with gradient Ćow in
the case of SHL residuals. Theorem II.7 here assumes the risk at initialization is already
sufficiently small and we will show in Section II.5.3 that this assumption can be quantiĄed
explicitly when specifying the activation and the initial parameterization.

First, we show the conditioning of the kernel k1 deĄned in Eq. (II.38) is well behaved
w.r.t. to the metric WCOT

2 on the parameter set PLeb
2 ([0, 1] × Θ).

Lemma II.5.1. Assume σ satisfies Assumption II.3. Then the map

µ ↦→
∫︂ 1

0
λmin(K1[µ(.♣s),xµ(s)])ds

is locally-Lipschitz continuous on (PLeb
2 ([0, 1] × Θ) , WCOT

2 ). Moreover there exists some
constant C such that if µ, µ′ are such that E2(µ), E2(µ′) ≤ E then :

\︄
\︄
\︄
\︄

∫︂ 1

0
λmin(K1[µ,xµ]) −

∫︂ 1

0
λmin(K1[µ′,xµ′ ])

\︄
\︄
\︄
\︄ ≤ NCeCE2(µ0)WCOT

2 (µ, µ′) .

Proof. Let C = C(σ) be the constant appearing in Eq. (II.36) and let R ≥ 0 be such that
Supp(D) ⊂ B(0, R). We have by Proposition I.1.1 that for µ ∈ PLeb

2 ([0, 1] × Θ) and for
x ∈ Supp(Dx) the Ćow veriĄes:

∀s ∈ [0, 1] , ∥xµ(s)∥ ≤ eC(1+E2(µ))(R+ C(1 + E2(µ))) ≤ C1e
C1E2(µ) ,

where C1 = C1(R, σ). Using the previous bound on the trajectories as well as the bounds
in Eq. (II.36) we see following the proof of Lemma I.3.2 that if E2(µ), E2(µ′) ≤ E then for
every s ∈ [0, 1]:

∥xµ(s) − xµ′(s)∥ ≤ eCE(1 + C1e
C1E)

√
2 + 4EWCOT

2 (µ, µ′) ≤ C2e
C2EWCOT

2 (µ, µ′) ,

where C2 = C2(R, σ). Also, it follows from the assumptions on σ that, for Ąxed µ ∈ P2(Θ),
the map (x, y) ∈ R

2d ↦→ k1[µ](x, y) is locally Lipschitz and, for any x, x′, y, y′ ∈ R
d,

\︄
\︄
\︄k1[µ](x, y) − k1[µ](x′, y′)

\︄
\︄
\︄ ≤ C2E2(µ)(1 + ∥x′∥ + ∥y∥)(∥x− x′∥ + ∥y − y′∥) .

For Ąxed x, y ∈ R
d, the map µ ∈ P2(Θ) ↦→ k1[µ](x, y) is also locally lipschitz and using As-

sumption II.3 we have that if E2(µ), E2(µ′) ≤ E then for some constant C4:

∀x, y ∈ R
d ,

\︄
\︄
\︄k1[µ](x, y) − k1[µ′](x, y)

\︄
\︄
\︄ ≤ C4(1 + ∥x∥ + ∥y∥)(1 +

√
E)W2(µ, µ′) .

Compiling the previous inequalities we have that if E is such that E2(µ), E2(µ′) ≤ E then:

∥K1[µ,xµ] − K
1[µ′,xµ′ ]∥∞ ≤ C5e

C5EWCOT
2 (µ, µ′)

where C5 = C5(R, σ) and ∥.∥∞ is the supremum norm on matrices. Finally, the result
follows from the N -Lipschitz continuity of the map S ↦→ λmin(S) on the space of N × N
symmetric matrices provided with ∥.∥∞.
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The following result gives sufficient conditions for the convergence of the gradient Ćow
towards a global minimizer of the risk in the case of a NODE with SHL residuals.

Theorem II.7. Assume ψ is of the form Eq. (II.35) with an activation σ satisfying As-
sumption II.3 and that ℓ satisfies Assumption II.1. Then for any µ0 ∈ PLeb

2 ([0, 1] × Θ)
there exists a positive constant C = C(E2(µ0)) s.t. if

λ0 :=
∫︂ 1

0
λmin(K1[µ0(.♣s),xµ0(s)])ds > 0 and R(µ0) < CN−3λ3

0 , (II.39)

then any gradient flow (µt)t≥0 starting from µ0 satisfies:

R(µt) ≤ R(µ0) exp(−Cλ0

N
t) , and µt

t→∞−−−→ µ∞ ∈ PLeb
2 ([0, 1] × Θ) .

Proof. Let C1 be the universal constant appearing in Lemma II.5.1 and consider the
radius R = min

{︂

1, 1
2NC1

λ0e
−C1(

√
E2(µ0)+1)2

}︂

. Then we have that for every µ ∈ B(µ0, R),

E2(µ) ≤ (
√︁

E2(µ0) + 1)2 and hence by the local Lipschitz property of:

∫︂ 1

0
λmin(K1[µ,xµ]) ≥ λ0

2
.

Then, as a consequence of Eq. (II.15), we obtain that R satisĄes the (R,m)-P-č property
of DeĄnition II.2 around µ0 with m = N−1e−C2λ0 and C2 = C2(E2(µ0)) is a constant
depending on µ0. Combined with Theorem II.3 we obtain that the condition in Eq. (II.39)
is sufficient for the gradient Ćow initialized at µ0 to converge towards a global minimizer
of the risk.

Note that by Lemma II.5.1, Eq. (II.15), and Assumption II.3 we can take the constant
C in Eq. (II.39) to be of the form C = C3e

−C3E2(µ0) for some constant C3.

II.5.3 Examples of activations and quantitative convergence results

As one can see in the previous Theorem II.7, the better the conditioning of the kernel
matrix, the better the constants in the local P-č property, and hence the easier it is to
satisfy the condition for convergence. This conditioning depends on the choice of activation
and initialization and it is important to keep in mind that the P-č property is not expected
to hold around any initialization. For example, there is a saddle at every initialization µ0

with feature distribution µ2
0 = δ(w,b)=0, whenever σ(0) = σ′(0) = 0. However, in general,

the feature distribution µ2 having dense support is a sufficient condition to ensure strict
positivity. The following proposition is a direct consequence of [Sun, 2019, Thm.III.4]
and [Carmeli, 2010, Cor.4.3].

Proposition II.5.1. Assume σ has linear growth and is not a polynomial. Then if the
feature distribution µ2 ∈ P2(Rd × R) has dense support in R

d × R, the kernel k1[µ2] is
strictly positive.

In the following, we provide examples of activations σ and initializations µ0 for which
the kernel matrix is well-conditioned. Moreover, in the case of the trigonometric activation
function σ = cos, quantitative lower bounds on the conditioning of the kernel matrix allow
us to give quantitative conditions for convergence of the gradient Ćow.
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Identity (or FixUp) initialization It will be particularly convenient to consider ini-
tial parameterization of the form µ0 = Leb([0, 1]) ⊗ δ0 ⊗ µ2

0 for some µ2
0 ∈ P2(Rd × R),

i.e. parameterization whose disintegration µ0(.♣s) = δ0 ⊗ µ2
0 is independent of s ∈ [0, 1]

and has support in ¶0♢ × R
d × R. Such an initialization has been proposed for ResNets

in [Zhang, 2018] and is shown to be associated with robust training and good generaliza-
tion performances. Moreover, note that such an initialization is particularly natural for
NODEs: in this case Fµ0 is identically 0 and the associated NODE Ćow is the identity. As
a consequence the kernel matrix K

1[µ0] is independent of s and can be expressed as the
block matrix:

K
1[µ0] =

(︂

k1[µ0](xi, xj)
⎡

1≤i,j≤N
,

only depending on the feature distribution µ2
0 and on the input data distribution.

Positively homogeneous activation with uniform distribution of the features
on the sphere The kernel k1[µ] has been particularly studied in the case of a positively
homogeneous activation σ [Cho, 2009; Bach, 2017b]. Motivated by applications in machine
learning, a popular choice for such activation is the Rectified Linear Unit (ReLU):

ReLU : x ↦→ max ¶x, 0♢

However, for σ = ReLU, the associated basis function ψ would only satisfy Assumptions I.1
and I.2 and the only choice of positively homogeneous σ satisfying Assumption II.3 would
be the trivial choice σ = Id.

Nonetheless, whatever the choice of activation σ, Eq. (II.38) still deĄnes a positive
kernel k1

µ over Rd. Properties of this kernel in the case where σ is a positively homogeneous
activation have been extensively investigated in the literature. In the case of σ = ReLU the
previous Proposition II.5.1 can be improved thanks to the homogeneity of the activation:

Proposition II.5.2. Assume σ = ReLU. Then if the feature distribution µ2 ∈ P2(Rd ×R)
has dense support in the sphere S

d, the associated kernel k1[µ2] is strictly positive.

Proof. The result is a direct application of [Sun, 2019, Prop.III.5] and [Carmeli, 2010,
Cor.4.3].

Remark II.5.2. In the case σ = ReLUα with some non-negative integer α, [Cho, 2009]
provides an explicit computation of k1 as a so-called arc-cosine kernel in the case µ2 =
U(Sd) is the uniform distribution on the sphere. Properties of these kernels and of the
corresponding RKHSs have been studied in [Bach, 2017a]. It is for example shown that
the induced RKHS is the Sobolev Hs of order s = d/2 + α+ 1.

Trigonometric activation with strictly positive feature distribution An impor-
tant case is also the choice of the trigonometric activation σ = cos for which, considering
µ ∈ P2(Θ), Eq. (II.2) gives:

∀x ∈ R
d , Fµ(x) =

∫︂

Rd×Rd×R

u cos(w⊤x+ b)dµ(u,w, b) ,

and the deĄnition k1[µ] in Eq. (II.38) gives:

∀x, y ∈ R
d , k1[µ](x, y) =

∫︂

Rd×R

cos(w⊤x+ b) cos(w⊤y + b)dµ2(w, b) .
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In the case where µ2 = µw ⊗ U([0, π]) for some probability measure µw ∈ P2(Rd) this last
expression can be simpliĄed into:

k1[µ](x, y) =
1
2

∫︂

Rd
cos(w⊤(x− y))dµw(w) . (II.40)

That is k1[µ] is a positive translation-invariant kernel over R
d whose Fourier Transform is

µw. It is a well-known theorem of Bochner (see [Wendland, 2004, Thm.6.6]) that having
a non-negative Fourier Transform is a necessary and sufficient condition for a continuous
function to deĄne a positive translation-invariant kernel. Moreover, for some initial feature
distributions, lower bounds on the conditioning of the kernel matrix as a function of the
data separation are given in [Schaback, 1995].

Corollary II.5.1. Let ψ be of the form Eq. (II.35) with activation σ = cos. Assume
the input data points

{︁
xi
}︁

1≤i≤N are located in the ball B(0, R) of radius R > 0 and have

separation δ := mini̸=j ∥xi − xj∥ > 0. Consider the initialization µ0 = Leb([0, 1]) ⊗ µ for
some weight distribution µ ∈ P2(Θ). Then the assumptions of Theorem II.7 are satisfied
if:

• Sobolev / Matérn kernel µ = δ0 ⊗µw ⊗U([0, π]) with µw(w) ∝ (1+∥w∥2)−ν for some

ν > d/2 + 2 and R(µ0) < CN−3δ6(ν−d/2), for some constant C = C(R, ν, d).

• Gaussian kernel µ = δ0 ⊗ µw ⊗ U([0, π]) with µw(w) ∝ exp(−∥w∥2

2ρ2 ) for some ρ > 0

and R(µ0) < CN−3δ−3de−Cδ−2
, for some constant C = C(R, ρ, d).

• Random features: Finally assume µ0 = Leb([0, 1])⊗µ̂ where µ̂ = M−1∑︁M
i=1 δ(ui,wi,bi)

and (ui, wi, bi) are sampled i.i.d. from a distribution µ ∈ P2(Θ) s.t. Leb([0, 1]) ⊗ µ
satisfies the assumptions of Theorem II.7. Then for every ε > 0 there exists Mε ≥ 0
s.t. the assumptions of Theorem II.7 are satisfied with probability greater than 1 − ε
(over the sampling of ¶(ui, wi, bi)♢1≤i≤M ) whenever M ≥ Mε.

Proof. This is a consequence of results on the conditioning of translation-invariant kernel
of the form Eq. (II.40).

• Sobolev / Matérn kernel: using Eq. (II.40) the RKHS associated to k1[µ] corresponds
to the Sobolev space Hν(Rd) and [Schaback, 1995] gives that there exists a constant
C = C(ε, d) s.t.: λmin(K1[µ,x]) ≥ C−1δ2ν−d.

• Gaussian kernel: using Eq. (II.40) the kernel k1[µ] is the gaussian kernel given by
k1[µ](x, y) = exp(−1

2ρ
2∥x − y∥2) and [Schaback, 1995] gives that there exists a

constant C = C(ρ, d) s.t. λmin(K1[µ,x]) ≥ C−1δ−de−Cδ−2
.

• Random features: the assumptions of Theorem II.7 are satisĄed with high probability
when M tends to inĄnity as all the involved quantities in Eq. (II.39) are continuous
w.r.t. the weight distribution µ ∈ P2(Θ).

Note that, in order to obtain convergence in the above Corollary II.5.1, we assume
the risk at initialization scales like N−3δ3(2ν−d), which is the cube of the scaling required
in Theorem II.6 when training only linear parameters. This bad scaling is a consequence
of Lemma II.5.1, giving a worst case estimate of the conditioning of the tangent kernels
during training if the feature distribution became degenerate. In contrast, one would
expect training with gradient Ćow to lead to the learning of meaningful features, thus
improving on the conditioning of the tangent kernels.
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Remark II.5.3. In this section we have leveraged the conditioning of the kernel matrix
K

1, that is the square norm of the gradient w.r.t. the outer weights u, to show a Polyak-
Łojasiewicz inequality holds along the gradient flow. One might ask to what extent the
kernel K2 which takes into account the norm of the gradient w.r.t. the weights (w, b)
might help improve on our convergence result. In fact, this kernel plays a negligible role
in our analysis for the following reasons:

We consider a “Fixup” initialization where the outer weights u are initialized to 0 at
every layer. Initially proposed in [Zhang, 2018], this kind of initialization is shown to have
favorable properties when training ResNets without normalization layer. Observing that
K2 is quadratic w.r.t. u, we have in this case that K2 = 0 and ∂tK

2 = 0 at t = 0. Thus,
the kernel K2 can only significantly improve the convergence result for large times in the
gradient flow and cannot provide us with a good condition number at the beginning of the
flow.

In addition, following the lines of Proposition 4.2, one could show the kernel matrix K
2

(defined analogously as the kernel matrices K and K
1) is locally Lipschitz w.r.t. µ with a

Lipschitz constant scaling linearly with N , under additional mild hypotheses on the measure
µ. Moreover, Theorem 4.2 ensures that during gradient flow the weight distribution will
stay in a ball of radius R ≃ λ0/N around the weight distribution at initialization. Thus
λmin(K2[µ]) will be at most of order λ0, which is the same order as λmin(K1[µ]).

As a consequence of these two arguments, the local convergence result cannot be ex-
plained by the kernel K2.

II.6 Ensuring convergence with lifting and scaling

The conditions derived in Sections II.4 and II.5 for convergence of the gradient Ćow notably
asks for the loss at initialization to be sufficiently low, a condition which is difficult to check
in practice. We conclude the present chapter by showing how this condition can always be
enforced, that is how, for a given training dataset, one can modify the ResNet architecture
in such a way that the convergence conditions are satisĄed. The modiĄcation we propose is
inspired by the work of Chizat, Oyallon, and Bach [Chizat, 2019] and consists in embedding
the data in a higher dimensional space and performing a rescaling.

As before, we consider an empirical data distribution D = 1
N

∑︁N
i=1 δxi,yi , with data

(xi, yi) ∈ R
d × R

d′
. Consider also respectively the embedding and projection matrices:

A := (Idd, 0d,d′)⊤ ∈ R
(d+d′)×d, B := (0d′,d, Idd′) ∈ R

d′×(d+d′) .

Using the matrix A we embed the input variables xi ∈ R
d in the space R

d+d′
by deĄning

zi := Axi. We then consider the NODE model of DeĄnition I.1 with either:

• the linear parameterization of the residuals described in Section II.4, that is ψ of the
form Eq. (II.18),

• residuals that are SHL perceptrons as described in Section II.5, that is ψ of the
form Eq. (II.35).

For an input zi = Axi and a parameterization µ ∈ PLeb
2 ([0, 1] × Θ) we denote by zi

µ the
associated Ćow deĄned by Eq. (I.6). Also, for a scaling factor α > 0, we consider the
modiĄed loss function ℓα deĄned by:

∀(z, y) ∈ R
d+d′ × R

d′
, ℓα(z, y) :=

1
2

∥αBz − y∥2 .
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We consider training the parameter µ ∈ PLeb
2 ([0, 1] × Θ) by performing gradient Ćow for

the risk Rα deĄned as:

Rα(µ) :=
1
N

N∑︂

i=1

ℓα(zi
µ(1), yi) .

Note that, by construction, ℓα satisĄes the P-č inequality ∥∇xℓ
α(x, y)∥2 ≥ 2α2ℓ(x, y).

Thus, analogously to Eq. (II.15), we obtain the following P-č inequality for Rα:

♣∇Rα♣2 (µ) ≥ 2α2e−C

N

⎤∫︂ 1

0
λmin(K[µ(.♣s), zµ(s)])ds

⎣

Rα(µ) , (II.41)

where zµ is the point cloud (zi
µ)1≤i≤N , the kernel matrix K is deĄned by Eq. (II.13) and

C = C(E2(µ)) is a constant depending on µ. Together with Theorem II.7, the above
inequality implies that gradient Ćow converges towards a minimizer of the risk whenever
α is sufficiently big.

Proposition II.6.1. Assume one of the following condition if satisfied:

• In the case of a linear parameterization of the residuals, assume that the associated
RKHS has a strictly positive kernel in the sense of Definition II.3. Moreover consider
the initialization µ0 = Leb([0, 1]) × δ0 ∈ PLeb

2 ([0, 1] × Θ).

• In the case of SHL residuals, consider the initialization µ0 = Leb([0, 1]) ⊗ δ0 ⊗ µ2
0

for some µ2
0 ∈ P2(Rd+d′+1) s.t. λ0 := λmin(K1[µ0, z]) > 0, where K

1 is defined
in Eq. (II.38).

Then there exists α0 > 0 s.t. if α > α0 then the gradient flow initialized at µ0 converges
towards a global minimizer of Rα.

Proof. Using Lemma II.5.1 in the case of SHL residuals or Proposition II.4.4 in the case
of RKHS residuals, we know a local P-č inequality is satisĄed around µ0. Then note
that, as at initialization Rα(µ0) = N−1∑︁N

i=1 ∥yi∥2 is independent of α and as increasing
α increases the P-č in Eq. (II.41), the convergence condition in Eq. (II.10) is necessarily
satisĄed for α sufficiently large.

II.7 Numerical results

We derived in this chapter theoretical results showing that deep ResNets or NODEs trained
with gradient descent are able to interpolate the training dataset. The goal of this sec-
tion is to verify those predictions numerically and to quantify how much our NODE
models with RKHS and SHL residuals are able to generalize on unseen data. This is
also useful to compare the performances of our models with those of standard ResNet
architectures (which for example integrate batch normalization). We implemented our
model in Pytorch [Paszke, 2017] and trained it on two image classiĄcation datasets,
MNIST [LeCun, 2010] and CIFAR10 [Krizhevsky, 2009]. Source code is available at
https://github.com/rbarboni/FlowResNets.

Classification task In the context of classiĄcation problem with K classes, the output
dimension of the model is d′ = K and targets y ∈ R

K are one-hot vectors encoding the
target classes. In both MNIST and CIFAR10, the number of classes is K = 10. We
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consider evaluating the model using the Cross Entropy loss ℓ deĄned in Eq. (28). For a
prediction z and a target one-hot vector label y ∈ R

K we have:

ℓ(z, y) = CrossEntropy(z, y) := − log

(︄∑︁K
j=1 yje

zj

∑︁K
j=1 e

zj

)︄

.

Note that ℓ does not satisfy Assumption II.1, however, it does satisfy locally a modiĄcation
of the Polyak-čojasiewicz inequality. Indeed, assuming without loss of generality that
y = e1 is the indicator of class 1, then ∇z1ℓ(z, y) = 1 − e−ℓ(z,y), leading to

∥∇zℓ(z, y)∥2 ≥ (1 − e−ℓ(z,y))2 ≥
(︄

1 − e−ℓ0

ℓ0

)︄2

ℓ(z, y)2 ,

when ℓ(z, y) ≤ ℓ0.

Training As in Section II.3, our training dataset are constituted of a Ąnite (large) num-
ber N of data samples. Then for a predictor F : Rd → R

C with parameters θ ∈ Θ the
empirical risk reads:

R(θ) :=
1
N

N∑︂

i=1

ℓ(Fθ(xi), yi) .

We consider training NODE models with Stochastic Gradient Descent (SGD) for the min-
imization of this training risk. Note that while the convergence results in Sections II.4
and II.5 only apply for full batch gradient descent, several similar convergence results un-
der the P-č assumption hold for stochastic optimization methods [Karimi, 2016]. Finally,
the performance of the models are assessed by the Top-1 error on a set of test data.

II.7.1 Experiments on MNIST

We implemented the NODE model in DeĄnition I.1 with RKHS and SHL residuals on
Pytorch using the torchdiffeq package [Chen, 2018] and performed experiments on the
MNIST dataset [LeCun, 2010].

Implementation We implement the NODE model in DeĄnition I.1 with residuals that
are 2-layer convolutional neural networks. This corresponds to a modiĄcation of the
residuals originally considered in [He, 2016a] where the Ąnal nonlinearity and batch nor-
malizations are removed.

Given a depth D ≥ 1 the trained parameters consist of convolution matrices Wd ∈
R

C×Cint×3×3 and Ud ∈ R
Cint×C×3×3 for d ∈ ¶0, ..., D♢, with C the number of channels of

the input image and Cint some number of channels for the hidden layers. The residuals
are then deĄned at discrete time steps ¶d/D♢0≤d≤D by:

Fd/D(x) := Wd ⋆ ReLU(Ud ⋆ x) ,

where x ∈ R
C×nw×nh is the input signal and ⋆ is the discrete convolution operator deĄned

in Eq. (32). When the inner convolutional Ąlters Uk are Ąxed, this corresponds to the
RKHS residuals considered in Section II.4. On the opposite, when the Uk are learned,
this is similar to the SHL residuals considered in Section II.5. Then, for any s ∈ [0, 1], the
residual at time s is deĄned by affine interpolation. For an input signal x ∈ R

C×n×n:

Fs(x) := Fd/D(x) + (tD − d)
(︂

F(d+1)/D(x) − Fd/D(x)
⎡

,
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with k = ⌊sD⌋. The forward pass through the network consists in integrating the ODE
in Eq. (I.5) with the residuals F = (Fs)s∈[0,1] using the torchdiffeq.odeint method
from Chen et al. [Chen, 2018]. For an input signal x ∈ R

C×n×n the output of the NODE
is given by:

NODE(Wd,Ud)1≤d≤D
:= torchdiffeq.odeint(F, x, [0, 1]) .

Hyperparameter tuning. Several hyperparameters can affect the training.

• The convolution matrices Ud: as detailed in Section II.4, the way the weights Ud

are sampled determines the RKHS of residuals and has thus a signiĄcant impact on
training. For the sake of simplicity we choose to sample the coefficients of Ud as i.i.d.
Gaussians.

• The initialization of (Wk): the weights of the convolution matrices Wk are initialized
to 0. This is a standard choice when considering NODEs without normalization
layers [Zhang, 2018].

• The integration method: torchdiffeq.odeint allows the user to choose an integra-
tion method. We observed an explicit midpoint method to offer a good trade-off
between performance and numerical stability w.r.t. other Ąxed-steps methods such
as explicit Euler or RK4.

• The number of layers D: we tested our model for D ∈ ¶5, 10, 20♢. This parameter
controls the total number of parameters of the model.

• Pre- and postprocessing: We consider pre- and postprocessing the signal with small
neural networks A and B respectively. While MNIST is composed of gray-scale images
of size 28 × 28 with 1 channel, the purpose of this is to downsample the image while
adjusting the number of channels C ≥ 1. As explained in Section II.6, rising the
number of channels is expected to ease the training problem. To isolate the effect of
training the NODE, both A and B are Ąxed during training but we consider different
level of pretraining of the concatenation B ◦ A, corresponding to the NODE when
initialiazed with Wd = 0. In any case, we see that training the NODE improves on
the performance of the simple concatenation B ◦ A.

Results. Fig. II.1 shows the evolution of the performances of the NODEs with both
RKHS and SHL residuals while trained on the MNIST dataset. One can observe in
both cases that the training risk converges to 0 at a linear rate, supporting the results
of Section II.4 and Section II.5. Decay of the risk is also directly related to the decay of the
classiĄcation error showing the NODE models exhibit generalization abilities. Without
pretraining of A and B (Fig. II.1a), the models start with random guesses (10% accuracy)
and achieve up to 98% accuracy on the test set for RKHS residuals and up-to 99.5%
accuracy for SHL residuals. When A and B are pretrained (Fig. II.1b), the NODE still
improves on the starting accuracy: in this setting more than 99% accuracy is reached for
both RKHS and SHL residuals. While there is a difference between the performance of
NODEs with RKHS and SHL residuals one can thus observe here that it is not signiĄcant
when inner layers of the residuals are sampled appropriately. One can see the effect of
varying the depth D of the model and observe that deeper model seem to have poorer
performances. We explain this by the fact that deeper models are harder to train.
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II.7.2 Experiments on CIFAR10

Implementation. For experiments on the CIFAR10 dataset, we did not rely on numer-
ical integration of the NODE using torchdiffeq but instead use a ResNet architecture
inspired from ResNet18 [He, 2016a].

As before, residual blocks are simpliĄed by removing the Ąnal non-linearity and the
batch-normalization. For an input image x ∈ R

C×n×n the output of a residual is:

Fd(x) = Wd ⋆ ReLU(Ud ⋆ x),

where Ud ∈ R
Cint×C×3×3, Wd ∈ R

C×Cint×3×3 are convolution matrices, C is the number of
channels of the input image and Cint is the number of channels of the hidden layer. Also,
while ResNet18 consists of 4 blocks each containing 2 residual layers, we keep 2 of our
residuals in the Ąrst, second and fourth block but stack an arbitrary number D of residual
layers in the third block. Thereby, we refer to this third block as the NODE block.

Initialization The weights of the convolutional Ąlters Wd are initialized at 0, corrre-
sponding to the initialization proposed in [Zhang, 2018]. Also, the weights of the convo-
lutional Ąlters Ud are initialized as i.i.d. Gaussians and rescaled by a C−1/2

int factor.

Results. Fig. II.2 reports the training of our ResNet model on the CIFAR10 dataset.
Fig. II.2a reports evolution of the training risk and classiĄcation error when inner weights
Ud are Ąxed (RKHS residuals) and is to be compared with Fig. II.2b, showing the same
quantities when hidden weights are learned (SHL residuals). In particular, one can observe
that the training risk is reduced to nearly 0 at the end of training with SGD, as predicted
in Sections II.4 and II.5 for gradient descent. This reduction of the training risk goes with
an augmentation of the accuracy. Our experiments show that similar performances can
be achieved with RKHS or SHL residuals: both ResNets achieve up to 88% accuracy on
the test dataset. As a comparison, the ResNet18 original architecture can be trained to
achieve up to 94% accuracy in a similar setting.

Finally, Fig. II.2 also compares the performances of the model depending on the number
of layers inside the NODE block. One observes signiĄcantly different behavior when there
is no NODE (1 layer) and one there is (10 and 20 layers): more layers are related to better
performances both on the train dataset and on the test dataset and both when hidden
layers are trained or not. However, one sees that the improvement related to adding
more layers is limited: performances with 10 and 20 layers are very similar and a NODE
block with 1 layer already achieves 82% accuracy with RKHS residuals and 84% accuracy
with SHL residuals. This hints towards the fact that our discrete ResNet model indeed
converges towards a NODE when the depth increases.
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II.8 Conclusion

Relying on the mathematical framework previously developed in Chapter I, we showed in
this chapter that convergence of mean-Ąeld models of ResNets can be proved by using a
Polyak-čojasiewicz inequality. This inequality is satisĄed locally around well-chosen ini-
tializations for which the residuals have sufficiently (but possibly Ąnitely) many features,
ensuring their expressivity. As a consequence, assuming the risk is already sufficiently
small at those initializations, the gradient Ćow provably converges towards a global min-
imizer of the risk with a linear convergence rate. For practical examples of architectures
Ů such as random feature models [Rahimi, 2007] or SHL perceptrons Ů and parameter
initializations, we also quantiĄed explicitly the convergence condition as a function of the
number of data points.

This is the Ąrst convergence result of this type for mean-Ąeld models of ResNets
with unregularized risk as previous works only showed results of optimality under the
assumption of convergence. Moreover, we showed through numerical experiments that
deep ResNets or NODEs trained with gradient descent are indeed amenable to zero train-
ing risk while still being able to generalize on test data.

We point out some limitations and possible extensions of these results:

• We make regularity assumptions on the basis function ψ that might be improved on.
In particular, Assumption I.3 assumes ψ to be at least continuously differentiable
which does not allow us to consider SHL residuals with ReLU activations. This
assumption might be weakened, for example by using the recently introduced notion
of conservative gradient [Bolte, 2021].

• We only considered in our convergence analysis the case of an empirical data distribu-
tion D = 1

N

∑︁N
i=1 δ(xi,yi). This assumption is crucial as the P-č constant in Eq. (II.15)

scales as N−1 and become degenerate for large N . It would therefore be interesting
to extend our analysis to the case of a data distribution with density.

• An important aspect of our convergence analysis is to only leverage information
about gradients w.r.t. the outer weights of the residuals (denoted by u) to obtain
the Polyak-čojasiewicz inequality. In doing so, we are unable to provide information
about the behavior of the feature distribution during training and unable to ensure
that gradient Ćow will escape the Şkernel regimeŤ.

Quantifying in what extent feature learning helps the training of neural networks is
indeed an active area of research. In this direction, we will perform in Chapter III
a detailed analysis of the evolution of the feature distribution during the training of
simpler shallow architectures.
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III.1 Introduction

Machine learning methods based on artificial neural networks have recently experienced
a signiĄcant increase in popularity due to their efficiency in solving numerous supervised
or unsupervised learning tasks. This success owes to their capacity to perform feature
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learning, that is to extract meaningful representations from the data during the training
process [Goodfellow, 2016, Chap. 15], standing in contrast with kernel methods for which
feature representations are designed by hand and Ąxed during training [Hofmann, 2008].
Indeed, we have observed in Sections II.4 and II.5 that the learning of appropriate feature
representations at each layer plays a fundamental role in the training of deep architectures.
Moreover, feature learning is also believed to play an important role in the generalization
performance of neural networks. For example, adaptivity to low-dimensional representa-
tions of the data can prevent the curse of dimensionality [Bach, 2017a; Ghorbani, 2020].

However, the process through which features are learned remains largely misunder-
stood. Indeed, adaptivity of the representations comes in neural networks at the price
of a nonlinear parameterization, making the training dynamic more difficult to analyze.
SpeciĄcally, for overparameterized neural network architectures where the dimension of the
parameter space greatly exceeds the number of training samples, recent works have put
forward the crucial role played by the choice of scaling w.r.t. the number of parameters in
the training dynamic [Chizat, 2019; Liu, 2020; Yang, 2021]. For single-hidden-layer neural
networks, the Şkernel regimeŤ, corresponding to a scaling of 1/

√
M where M is the width,

has been identiĄed as a scaling for which the model is well-approximated by its lineariza-
tion around initialization, therefore reducing to a kernel method [Jacot, 2018]. Relying
on the good conditioning of the ŞNeural Tangent Kernel (NTK)Ť (Eq. (38)), this regime
provides convergence of gradient descent towards a global minimizer of the risk at a linear
rate [Allen-Zhu, 2019; Du, 2019; Lee, 2019; Zou, 2020]. However, this regime has also
been shown to suffer from a Şlazy trainingŤ behavior preventing signiĄcant modiĄcation of
the feature distribution and associated to poor generalization guarantees [Chizat, 2019].

In contrast, another line of work has been focused on the Şmean-ĄeldŤ regime (Eq. (39))
corresponding to a scaling of 1/M for which the neural network is parameterized by a
probability distribution over the space of weights [Chizat, 2018; Mei, 2019; Rotskoff, 2019;
Sirignano, 2020]. While such a choice of scaling has been shown to enable nonlinear feature
learning behaviors [Yang, 2021], existing convergence results are primarily qualitative,
lacking explicit convergence rates. To bridge this gap, we are interested in this chapter
in the dynamic of the feature distribution in the training of mean-Ąeld models of shallow
neural network architectures. We study more particularly a variable projection or two-
timescale learning strategy which allows reducing the learning problem to the training of
the feature distribution.

III.1.1 Mean-field neural networks and two-timescale learning

We consider in this chapter shallow neural networks with a parameter space that decom-
poses as Θ = R × Ω where R is the space of linear parameters and Ω is the space of
nonlinear parameters of the model. In the following, we will assume Ω to be either the
n-dimensional torus Tn = R

n/Zn, or a closed, bounded and convex domain of Rn. Follow-
ing Eq. (36), such shallow neural networks can be expressed as a sum of basis functions
of the form:

∀(u, ω) ∈ R × Ω, ∀x ∈ R
d, ψ((u, ω), x) = uϕ(ω, x) ,

where ϕ : Ω × R
d → R, is some feature map. For an integer M ≥ 1, the obtained single-

hidden-layer (SHL) neural network of width M with inner weights ¶ωi♢1≤i≤M ∈ ΩM and
outer weights ¶ui♢1≤i≤M ∈ R

M is the map:

F¶(ωi,ui)♢ : x ∈ R
d ↦→ 1

M

M∑︂

i=1

uiϕ(ωi, x) ∈ R , (III.1)
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taking inputs in the input space R
d and returning values in the output space R. Follow-

ing Eq. (39), using the interchangeability of the indices and the normalisation factor 1/M ,
the above model can then be reparameterized in terms of the empirical distribution of the
inner weights ¶ωi♢1≤i≤M . Given an arbitrary probability distribution µ ∈ P(Ω) on the
space of inner weights and a measurable map u ∈ L1(µ) we deĄne:

Fµ,u : x ∈ R
d ↦→

∫︂

Ω
u(ω)ϕ(ω, x)dµ(ω) ∈ R . (III.2)

In particular, for the empirical distribution µ̂ = 1
M

∑︁M
i=1 δωi

and outer weights û(ωi) = ui

we recover the Ąnite width SHL Fµ̂,û = F¶(ωi,ui)♢. Such a Şmean-ĄeldŤ model of neural
network has been proposed by several authors to study the training of neural networks at
arbitrary large width [Chizat, 2018; Mei, 2019; Rotskoff, 2019; Sirignano, 2020].

Supervised learning As in Chapters I and II we consider a supervised learning frame-
work where training a neural network consists in minimizing a training risk associated to
the evaluation of the model on some training data. Precisely, we consider in this chapter a
univariate regression setting where the neural network weights are trained for minimizing
the mean square error with a target signal Y ∈ L2(ρ) evaluated on training data with
distribution ρ ∈ P(Rd). However, in contrast with Chapters I and II we add here a
supplementary regularization term on the linear parameters of the model.

For a regularization strength λ > 0 and µ ∈ P(Ω), u ∈ L1(µ) we deĄne the training
risk as:

Rλ(µ, u) :=
1
2

∥Fµ,u − Y ∥2
L2(ρ) + λ∥u∥2

L2(µ) , (III.3)

where we assume Rλ(µ, u) = +∞ if u /∈ L2(µ). Training the neural network then amounts
to Ąnding parameters (µ, u) ∈ arg min Rλ.

Example of applications Note that the mean-Ąeld neural network model of Eq. (III.2)
can be seen as a linear model acting on (signed) measures. Indeed, for µ ∈ P(Ω) and
u ∈ L1(µ), we have Fµ,u = Φ ⋆ (uµ) where for every Ąnite Borel measure ν ∈ M(Ω) we
deĄne:

Φ ⋆ ν :=
∫︂

Ω
ϕ(ω, .)dν(ω) . (III.4)

This structural property is in strong contrast with the ODE based models considered
in Chapters I and II and will be crucial to our analysis in this chapter. Also, minimization
of functionals of the form in Eq. (III.3) with linear models acting on the space of measures
have numerous applications depending on the choice of the feature map ϕ.

• Two-layer perceptron: The perceptron model deĄned in Eq. (34) is arguably the
prototypical example of a neural network. It consists here in considering a parameter
space Ω ⊂ R

d+1 and a feature map ϕ : (ω, x) ↦→ σ(ω⊤x̄) where x̄ = (x, 1) ∈ R
d+1 and

σ : R → R is some nonlinear activation function such as the Rectified Linear Unit
(ReLU) or hyperbolic tangent. Owing to their great expressivity [Cybenko, 1989],
this class of models is ubiquitous in applications where an unknown signal is to be
recovered from data observations.

• Radial Basis Function (RBF) neural networks and signal deconvolution: RBF neu-
ral networks [Pereyra, 2006; Karamichailidou, 2024] is an example of a simple ar-
chitecture in which the feature map consists of a translation invariant kernel k i.e.
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Ω ⊂ R
d and ϕ : (ω, x) ↦→ k(ω−x). The network Fµ,u then implements a convolution

with the kernel k and minimization of the risk Rλ amounts to solve a form of decon-
volution problem. This has important applications in signal processing where one
wants to recover an unknown signal given noisy or Ąltered observations [De Castro,
2012; Duval, 2015].

Training with gradient descent and two-timescale learning In supervised learn-
ing, minimization of the training risk is usually performed using Ąrst order optimiza-
tion methods such as gradient descent or stochastic variants on the neural network’s
weights [Bottou, 2018].

We consider here the two-timescale version of gradient descent described in Eq. (47).
For a SHL of Ąnite width M ≥ 1 with weights ¶(ωi, ui)♢1≤i≤M ∈ (Ω ×R)M the associated
risk is R̂λ(¶(ωi, ui)♢1≤i≤M ) := Rλ(µ̂, û), where µ̂ = 1

M

∑︁M
i=1 δωi

and û(ωi) = ui. For an
initialization ¶(ω0

i , u
0
i )♢1≤i≤M , a step-size τ > 0 and a timescale parameter η > 0, the

two-timescale gradient descent dynamic reads:

∀k ≥ 0, ∀i ∈ ¶1, ...,M♢,
∏︂

⨄︂

⋃︂

ωk+1
i = ωk

i −Mτ∇ωi
R̂λ(¶(ωk

i , u
k
i )♢1≤i≤M ) ,

uk+1
i = uk

i − ηMτ∇ui
R̂λ(¶(ωk

i , u
k
i )♢1≤i≤M ) .

(III.5)

For the purpose of theoretical analysis we study here the limit of the gradient descent
algorithm when the step-size τ tends to 0. For an initialization ¶(ωi(0), ui(0))♢1≤i≤M , this
gradient flow dynamic reads:

∀i ∈ ¶1, ...,M♢,
∏︂

⨄︂

⋃︂

d
dtωi(t) = −M∇ωi

R̂λ(¶(ωi(t), ui(t))♢1≤i≤M ) ,

d
dtui(t) = −ηM∇ui

R̂λ(¶(ωi(t), ui(t))♢1≤i≤M ) .
(III.6)

Note the role of the timescale parameter η > 0 controlling the ratio of learning timescales
between inner and outer weights. When η < 1 the outer-weights ui are learned more
ŞslowlyŤ than the inner-weights ωi and conversely, when η > 1 the outer-weights ui are
learned more ŞquicklyŤ than the inner-weights ωi. In particular, the limiting training
dynamics when η → +∞ correspond (formally) to the case where the outer weights are
learned ŞinstantaneouslyŤ, that is, at each time t ≥ 0, we have

¶ui(t)♢1≤i≤M ∈ arg min
u∈RM

R̂λ(¶(ωi(t), ui)♢1≤i≤M ) .

Such limiting dynamics correspond to the variable projection algorithm described in Eq. (48).

Variable Projection The Variable Projection (VarPro) algorithm performs elimination
of the linear variable u and enables here reducing the training of a neural network to the
sole problem of learning the feature distribution. Introduced in [Golub, 1973] for the
minimization of separable nonlinear least squares problems, such a strategy has proven
to be efficient in various applications [Golub, 2003; Osborne, 2007] including the training
of neural networks [Sjoberg, 1997; Pereyra, 2006; Newman, 2021; Karamichailidou, 2024].
A reason for this popularity is that partial optimization over one variable can lead to a
better conditioning of the Hessian [Sjoberg, 1997; Vialard, 2019].

Exploiting here the linearity w.r.t. the outer weights in the deĄnition of F , it is con-
venient to read a neural network’s output F¶(ωi,ui)♢(x) = 1

M

∑︁
uiϕ(ωi, x) as a linear com-

bination of the features ¶ϕ(ωi, x)♢M
i=1. From this point of view, neural networks should be

compared to kernel methods for which the features are built in advance and Ąxed during
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training, whereas only the weights of the linear combination are learned [Hofmann, 2008].
In contrast, both inner weights ¶ωi♢M

i=1 and outer weights ¶ui♢M
i=1 of a neural network

are usually trained. In the following, we refer to the parameters ω ∈ Ω as the neural
network’s features and to µ ∈ P(Ω) as the feature distribution. More generally in the
mean-Ąeld limit, for µ ∈ P(Ω) and u ∈ L1(µ), we have:

Fµ,u =
∫︂

Ω
ϕ(ω, .)u(ω)dµ(ω) = Φµ · u , (III.7)

where we introduced the feature operator Φµ : u ∈ L1(µ) ↦→ ∫︁

Ω u(ω)ϕ(ω, .)dµ(ω) ∈ L2(ρ).
One can thus notice that the problem of minimizing the risk Rλ belongs to the class
of separable nonlinear least squares problems as, by deĄnition, for a Ąxed inner weights
distribution µ ∈ P(Ω):

Rλ(µ, u) =
1
2

∥Φµ · u− Y ∥2
L2(ρ) + λ∥u∥2

L2(µ) .

Thus the problem of minimizing Rλ w.r.t. u is a ridge regression problem which can be
efficiently numerically solved by inverting a linear system. For λ > 0, there exists a unique
solution uλ[µ] ∈ arg minu∈L2(µ) Rλ(µ, u) given by uλ[µ] := (Φ⊤

µ Φµ + 2λ)−1Φ⊤
µ Y . Plugging

this in Rλ gives rise to a reduced risk which we deĄne for any µ ∈ P(Ω) by:

Lλ(µ) :=
1
λ

Rλ(µ, uλ[µ]) = min
u∈L2(µ)

1
2λ

∥Φµ · u− Y ∥2
L2(ρ) + ∥u∥2

L2(µ) . (III.8)

This deĄnition also extends to the limiting case λ → 0+ by considering:

L0(µ) := min
Φµ·u=Y

∥u∥2
L2(µ) . (III.9)

where the inĄmum is taken to be +∞ whenever the signal Y is not in the range of Φµ. In
the case where Y ∈ Range(Φµ), this minimization problem admits a unique solution and
L0(µ) = ∥u†[µ]∥2

L2(µ), where u†[µ] = Φ†
µ ·Y and Φ†

µ is the generalized pseudo-inverse of Φµ

restricted to L2(µ).
The VarPro algorithm consists here in performing gradient descent over the reduced

risk Lλ. For a neural network of Ąnite width M ≥ 1 with features ¶ωi♢1≤i≤M ∈ ΩM , the
associated reduced risk is L̂λ(¶ωi♢1≤i≤M ) := Lλ(µ̂), where µ̂ is the empirical distribution
µ̂ = 1

M

∑︁M
i=1 δωi

. For an initialization ¶ω0
i ♢1≤i≤M ∈ ΩM and a step-size τ > 0, the VarPro

dynamic reads:

∀k ≥ 0, ∀i ∈ ¶1, ...,M♢, ωk+1
i = ωk

i −Mτ∇ωi
L̂λ(¶ωk

i ♢1≤i≤M ) .

As before, the gradient flow of L̂λ
f is the continuous counterpart of gradient descent when

the step-size τ tends to 0. For an initialization ¶ωi(0)♢1≤i≤M ∈ ΩM , it is deĄned for every
time t ≥ 0 as the solution ¶ωi(t)♢1≤i≤M ∈ ΩM to the ODE:

∀i ∈ ¶1, ...,M♢, d
dt
ωi(t) = −M∇ωi

L̂λ(¶ωi(t)♢1≤i≤M ) . (III.10)

Note that the above gradient can be efficiently calculated numerically once optimization
on the outer weights ui has been performed, for example by means of standard automatic
differentiation libraries. Indeed, if ¶ui(t)♢1≤i≤M ∈ arg minu∈RM R̂λ(¶(ωi(t), ui)♢1≤i≤M ),
then by the envelope theorem ∇ωi

R̂λ(¶(ωi(t), ui(t))♢1≤i≤M ) = λ∇ωi
L̂λ(¶ωi(t)♢1≤i≤M ).

For the same reason, the above dynamic can be seen, at least formally, as the limit of
the gradient Ćow dynamic Eq. (III.6) over the (unreduced) risk R̂λ when the timescale
parameter η tends to +∞. Thus, we equivalently refer to Eq. (III.10) as the VarPro
gradient flow or as the two-timescale regime of gradient flow.
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Wasserstein gradient flows and ultra-fast diffusions Relying on the mathematical
framework provided by theory of gradient Ćows in the space of probability measures [Am-
brosio, 2008b; Santambrogio, 2017], we show in Section III.4 that the dynamic of the
feature distribution when trained with gradient Ćow for the minimization of the reduced
risk Lλ is solution to an advection PDE of the form:

∂µt − div(µt∇Lλ[µt]) = 0 ,

for some nonlinear velocity Ąeld ∇Lλ
f [µt]. We study in Section III.5 the asymptotics of

this equation when the training time t tends to +∞ and the regularization strength λ
tends to 0+. We are more particularly interested in the case where the signal Y itself can
be exactly represented by a neural network. We consider the following assumption:

Assumption III.1 (Teacher student setup).
Let Φ⋆ be defined by Eq. (III.4). We assume that,

(i) there exists a finite measure ν̄ ∈ M(Ω) s.t. Y = Φ ⋆ ν̄,

(ii) the operator Φ⋆ : M(Ω) → L2(ρ) is injective.

In this case, we refer to ν̄ ∈ M(Ω) as the teacher measure and to µ̄ := ♣ν̄♣/∥ν̄∥TV ∈ P(Ω)
as the teacher (feature) distribution.

In such a Şteacher-studentŤ framework, we are interested in determining to what extent
the teacher feature distribution can be learned by the student neural network. Observe
that, under Assumption III.1, L0 can be simply expressed in terms of the χ2-divergence

between the teacher feature distribution µ̄ and µ. By deĄnition χ2(µ̄♣µ) =
∫︁

Ω

\︄
\︄
\︄

dµ̄
dµ − 1

\︄
\︄
\︄

2
dµ

and it follows from Eq. (III.17) that:

L0(µ) =

∫︂

Ω

\︄
\︄
\︄
\︄

dν̄

dµ

\︄
\︄
\︄
\︄

2

dµ = ∥ν̄∥2
TV

(︄
∫︂

Ω

\︄
\︄
\︄
\︄

dµ̄

dµ
− 1

\︄
\︄
\︄
\︄

2

dµ+ 1

)︄

= ∥ν̄∥2
TV(χ2(µ̄♣µ) + 1) .

Then, following Eq. (50), the Wasserstein gradient Ćow of L0 corresponds to a nonlinear
diffusion equation of the form:

∂tµ = div

⎤

µ̄∇
⎤
µ

µ̄

⎣m⎣

, (III.11)

with m < 0 and µ̄ ∈ P(Ω), referred to as ultra-fast diffusion equation [Iacobelli, 2019b].
Note that this class of nonlinear diffusion equations stands out from the class of linear
diffusion and porous medium equations (corresponding to the case m ≥ 1 [Vázquez, 2006;
Vázquez, 2007]) by the fact that the exponent m is negative and the diffusivity µm−1 is
singular at 0. In [Iacobelli, 2019a; Caglioti, 2018; Iacobelli, 2019b], the study of solutions
to Eq. (III.11) is motivated by the convergence analysis of algorithms for the quantization
of measures. In particular, Iacobelli, Patacchini, and Santambrogio [Iacobelli, 2019b]
show the well-posedness of Eq. (III.11) on the d-dimensional torus or on bounded convex
domains with Neumann boundary conditions and prove convergence of solutions towards
the stationary state µ̄ in L2. We prove in Theorem III.5 that Wasserstein gradient Ćows of
our reduced risk Lλ converge towards solutions of the ultra-fast diffusion equation when
the regularization strength λ vanishes.

Remark III.1.1. Some remarks about Assumption III.1:
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• At fixed λ > 0, the teacher-student assumption that Y = Φ⋆ ν̄ is not restrictive since
one can always replace Y by its orthogonal projection on the set ¶Φ ⋆ ν, ν ∈ M(Ω)♢,
thereby only modifying Lλ by subtracting a constant term. However, this assumption
becomes crucial in the limit λ → 0+ to ensure the feasibility of the optimization
problem in Eq. (III.14).

• The injectivity assumption on Φ⋆ ensures uniqueness of the reference measure ν̄. In
the limit where λ → 0+, this allows rewriting L0 only in terms of a divergence between
ν̄ and µ (Eq. (III.17)). In the case λ > 0, Lλ is an infimal convolution between this
divergence and a kernel discrepancy (Eq. (III.18)) and the injectivity assumption
ensures this discrepancy is a distance on the space of measures (Lemma III.A.1).
It will be useful in Section III.5 to prove convergence of Wasserstein gradient flows
of Lλ to solutions of the ultra-fast diffusion equation. In the case of a two-layer
perceptron, the feature map is of the form ϕ((w, b), x) = σ(w⊤x+b) and the injectivity
assumption is satisfied as soon as σ is not a polynomial and the data distribution
has full support on R

d ([Sun, 2019, Thm. III.4]).

III.1.2 Contributions and related works

Contributions This chapter studies the convergence of the VarPro algorithm Ů or
two-timescale regime of gradient descent Ů for the training of mean-Ąeld models of neural
networks. Precisely, we study the dynamic of the feature distribution µ ∈ P(Ω) when
trained with gradient Ćow for the minimization of the reduced risk Lλ, for λ ≥ 0. In
the teacher-student scenario deĄned by Assumption III.1, we establish guarantees for the
convergence of µ towards the teacher feature distribution µ̄:

• In the case λ = 0, we show in Section III.4 that the training dynamic corresponds
to an ultra-fast diffusion equation. Relying on the work of Iacobelli, Patacchini, and
Santambrogio [Iacobelli, 2019b], this allows stating convergence towards the teacher
feature distribution µ̄ (Theorem III.3), with a linear convergence rate.

• At Ąxed λ > 0, we establish in Theorem III.4 convergence of µ towards the teacher
feature distribution µ̄ with an algebraic rate.

• In the limit λ → 0+, we show that, under regularity assumptions, the dynamic of
the feature distribution µ converges locally uniformly in time to the solution of the
ultra-fast diffusion equation with weights µ̄ (Theorem III.5).

• Finally, we show in Section III.6 that numerical results on low-dimensional learning
problems with synthetic data are well-aligned with our theory. Overall, these exper-
iments indicate that, when the regularization is sufficiently low, the VarPro dynamic
indeed enters an Şultra-fast diffusion regimeŤ where the student feature distribution
converges to the teacher’s at a linear rate. We also show with experiments on CI-
FAR10 that the VarPro algorithm can be adapted to the training of more complex
architectures such as ResNets and achieves generalization on supervised learning
problems with large datasets.

Convergence analysis for the training mean-field neural networks Several works
have studied the convergence of gradient based methods for the training of neural network
models similar to Eq. (III.1) with the mean-Ąeld scaling 1

M . Chizat and Bach [Chizat,
2018] show that, for two layer neural networks with a homogeneous activation, if gradient
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Ćow on the weights distribution converges then it converges towards a global minimizer
of the risk. Rotskoff et al. [Rotskoff, 2019] show a similar result for a modiĄcation of the
gradient Ćow dynamic where a supplementary Şbirth-deathŤ term is added.

Several works have also analyzed the convergence of noisy gradient descent, or Langevin
dynamic, for the training of mean-Ąeld models of two layer neural networks [Chizat, 2022;
Mei, 2019; Nitanda, 2022; Hu, 2021; Suzuki, 2023]. Thanks to the addition of an entropic
regularization term, these works provide a convergence rate for the sampling of an invariant
weight distribution.

Two-timescale learning While two-timescale learning strategies have a broad range
of applications in the Ąelds of stochastic approximation and optimization [Borkar, 1997;
Borkar, 2008], there has been a recent interest in these methods for the training of neural
networks [Marion, 2023a; Berthier, 2024; Wang, 2024; Bietti, 2023; Takakura, 2024].
SpeciĄcally, Berthier, Montanari, and Zhou [Berthier, 2024] study the training of two-
layer neural networks and exhibit a separation of timescales and different learning phases
whose respective sizes depend on the timescale parameter η. Marion and Berthier [Marion,
2023a] study two-timescale gradient descent for a simple model of 1-dimensional neural
network and show that the teacher network is recovered as soon as both the number of
neurons of the student and the timescale parameter are sufficiently large. Bietti, Bruna,
and Pillaud-Vivien [Bietti, 2023] consider a multi-index regression problem. Relying on
the assumption of high dimensional Gaussian data, they consider a linear layer composed
with a nonparameteric model whose projection can be computed in the Hermite basis.
They show this instance of the VarPro algorithm results in a saddle-to-saddle dynamic on
the linear layer and establish guarantees for the recovery of the teacher model.

Finally, Takakura and Suzuki [Takakura, 2024] and Wang, Mousavi-Hosseini, and
Chizat [Wang, 2024] study the training of mean-Ąeld models of neural networks in the
two-timescale limit with noisy gradient descent. In contrast with these works, we do not
consider here additional entropic or L2-regularization on the feature weights.

Wasserstein gradient flows of statistical distances Under our Assumption III.1,
Eq. (III.18) shows Lλ is an inĄmal convolution of statistical divergences between the fea-
ture distribution µ and the teacher ν̄, interpolating between the χ2-divergence χ2(ν̄♣µ) Ů
or more generally a f -divergence Df (ν̄♣µ) Ů when λ → 0+ and a (squared) kernel discrep-
ancy MMD(ν̄, µ)2 when λ → ∞. In the case λ → ∞, gradient Ćows of MMD-discrepancies
and applications to sampling were studied in several works [Arbel, 2019; Sejdinovic, 2013;
Hertrich, 2023a; Hertrich, 2023b; Hertrich, 2024; Boufadène, 2023]. Those Ćows are known
to get trapped in local minima but discrepancies associated to non-smooth kernels have
been observed to behave better in terms of convergence [Hertrich, 2023b; Hertrich, 2024].
In the case of the coulomb kernel, Boufadène and Vialard [Boufadène, 2023] prove that the
discrepancy loss admits no spurious local minima and that the discrepancy Ćow converges
towards the target measure under regularity assumptions.

In the intermediate regime λ ∈ (0,∞), several other works have also proposed regu-
larization of f -divergences based on the inĄmal convolution with a kernel distance. For
Glaser, Arbel, and Gretton [Glaser, 2021], the KL Approximate Lower bound Estimator
(KALE) kernelizes the variational formulation of the KL-divergence and for Chen et al.
[Chen, 2024] the (De)-regularized Maximum Mean Discrepancy (DrMMD) kernelizes the
χ2-distance. More generally, the work of Neumayer, Stein, and Steidl [Neumayer, 2024]
studied kernelized variational formulations Ů or ŞMoreau envelopes in a RKHSŤ Ů of
f -divergences. Similar to our Lemma III.3.3, they showed Γ-convergence of these func-

126



III.2. Reduced risk associated to the VarPro algorithm

tionals towards the generating f -divergence when the regularization parameter λ tends
to 0. They also studied numerically the convergence of the associated Wasserstein gra-
dient Ćow towards the target distribution. The most notable difference between these
regularized distances and the functional Lλ appearing in this chapter is that (w.r.t. [Neu-
mayer, 2024, eq. (14)]) the role of the target ν̄ and parameter µ, over which optimization
is performed, are interchanged. In other words, we consider optimizing over a statistical
discrepancy which is the ŞreverseŤ of the one considered by Neumayer, Stein, and Steidl
[Neumayer, 2024] and for this reason, though the mathematical tools to analyze it might
be similar, the gradient Ćow dynamics will a priori have different behaviors.

Mathematical preliminaries and notations In the following, Ω will either be the
n-dimensional torus or a closed bounded convex domain of R

n, for some n ≥ 1. We
denote by M(Ω) the set of Ąnite Borel measures over Ω and by P(Ω) the subset of M(Ω)
consisting of probability measures. We will denote by π ∈ P(Ω) the uniform distribution
over Ω. For a measure ν ∈ M(Ω), ♣ν♣ is its total variation measure and ∥ν∥TV is the
total variation of ν. For p ∈ [1,+∞), we denote by Wp the Wasserstein-p distance deĄned
in Eq. (51). For probability measures µ, µ′ ∈ P(Ω),

Wp(µ, µ′) := min
γ∈Γ(µ,µ′)

⎤∫︂

Ω×Ω
∥ω − ω′∥2dγ(ω, ω′)

⎣1/p

,

where Γ(µ, µ′) ⊂ P(Ω × Ω) is the set of couplings between µ and µ′ deĄned in Eq. (52).
Standard references on the properties of the Wasserstein distance are the textbooks of Vil-
lani [Villani, 2009] and Santambrogio [Santambrogio, 2015]. If not otherwise speciĄed,
M(Ω) and P(Ω) are endowed with the topology of narrow convergence, that is the weak-*
topology of M(Ω) in duality with continuous functions. Importantly, because Ω is com-
pact, this topology on P(Ω) is equivalent to the Wp-topology for any p ∈ [1,+∞) and
P(Ω) is compact.

For an integer k ≥ 0 and for s ∈ (0, 1], we denote by Ck,s(Ω) (or just Ck,s) the Hölder
space of k-times continuously differentiable real-valued functions over Ω with s-Hölder kth-
derivative. We denote by ∥.∥Ck,s the Hölder norm on Ck,s(Ω). For a probability measure
ρ ∈ P(Rd) and p ∈ [1,+∞], we denote by Lp(ρ, Ck,s) the space of measurable functions
ϕ : Ω × R

d → R s.t. ϕ(., x) ∈ Ck,s(Ω) for dρ-a.e. x ∈ Ω and

∥ϕ∥Lp(ρ,Ck,s) :=

⎤∫︂

Rd
∥ϕ(., x)∥p

Ck,sdρ(x)

⎣1/p

< +∞ .

We will often use that, if ϕ ∈ L2(ρ, Ck,s) and α ∈ L2(ρ), then the Bochner integral
∫︁

Rd ϕ(., x)α(x)dρ(x) is in Ck,s with:
/︂
/︂
/︂
/︂

∫︂

Rd
ϕ(., x)α(x)dρ(x)

/︂
/︂
/︂
/︂

Ck,s

≤ ∥ϕ∥L2(ρ,Ck,s)∥α∥L2(ρ) .

III.2 Reduced risk associated to the VarPro algorithm

We study in this chapter a VarPro algorithm or two-timescale regime of gradient descent
for the training of neural networks. This strategy amounts to performing gradient descent
on the reduced risk deĄned as the result of a partial minimization on a regularized version
of the risk.
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III.2.1 Primal formulation of the reduced risk

Whereas regularizing the risk with the Euclidean square norm of the weights is a popular
practice, the variable projection procedure can be used with other kinds of regularization.
Generally, for a convex function f : R → R and a regularization strength λ > 0 we consider
for µ ∈ P(Ω) and u ∈ L1(µ):

Rλ
f (µ, u) :=

1
2

∥Fµ,u − Y ∥2
L2(ρ) + λ

∫︂

Ω
f(u)dµ =

1
2

∥Φµ · u− Y ∥2
L2(ρ) + λ

∫︂

Ω
f(u)dµ ,

(III.12)

where we assume Rλ
f (µ, u) = +∞ if f(u) is not integrable w.r.t. µ. As before we consider

the reduced risk obtained by minimizing Rλ
f w.r.t. the outer weights u. For every µ ∈ P(Ω)

we deĄne:

Lλ
f (µ) := min

u∈L1(µ)

1
λ

Rλ
f (µ, u) = min

u∈L1(µ)

1
2λ

∥Φµ · u− Y ∥2
L2(ρ) +

∫︂

Ω
f(u)dµ , (III.13)

and this deĄnition extends to the limiting case λ → 0+ by considering:

L0
f (µ) := min

Φµ·u=Y

∫︂

Ω
f(u)dµ . (III.14)

In the following, we always assume that ϕ ∈ L2(ρ, C0(Ω)) (Assumption III.3). This
in particular implies that, for any µ ∈ P(Ω), the map Φµ : L1(µ) → L2(ρ) is weakly
continuous. We also consider the following assumption on the regularization function:

Assumption III.2. The function f : R → R ∪ +∞ is nonnegative, strictly convex and
superlinear i.e. such that lim±∞

f(t)
♣t♣ = +∞.

By Lemma III.2.1, this is sufficient to ensure the existence of a unique minimizer

uλ
f [µ] ∈ arg min Rλ

f (µ, u) ,

when λ > 0, and

u0
f [µ] ∈ arg min

Φµ·u=Y

∫︂

Ω
f(u)dµ ,

when λ = 0. Of particular interest in this chapter and more precisely in Section III.4 is
the case where f(t) = ♣t♣r/(r−1) for some r > 1. In this case we denote the corresponding
reduced risk by Lλ

r . In particular, for r = 2 we recover the ŞL2-regularizedŤ reduced risk
deĄned in Eq. (III.8) and Eq. (III.9).

Lemma III.2.1. Assume Assumption III.2 holds. Then, for every µ ∈ P(Ω), the func-
tional

If : u ∈ L1(µ) ↦→
∫︂

Ω
f(u)dµ

is strictly convex, weakly lower semicontinuous and has weakly compact sublevel sets. In
particular, Eq. (III.13) (and Eq. (III.14) if feasible) admits a unique minimizer uλ

f [µ].

Proof. Clearly If is strictly convex. Weak lower semicontinuity is a classical consequence
of the fact that If is convex and strongly lower semicontinuous (using Fatou’s lemma),
hence its epigraph is convex and strongly closed and hence also weakly closed. For weak
compacity of sublevel sets, if (un)n≥0 is a sequence s.t.

∫︁

Ω f(un)dµ ≤ C for every n ≥ 0,
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then using that f has super-linear growth, for every ε > 0 there exists a T ≥ 0 s.t.
♣t♣ ≤ εf(t) for every ♣t♣ ≥ T and for every n ≥ 0:

∫︂

♣un♣≥T
♣un♣dµ ≤ ε

∫︂

f(un)dµ ≤ εC .

Thus the sequence (un)n≥0 is uniformly integrable and admits a weakly converging sub-
sequence by Dunford-Pettis theorem.

III.2.2 Partial minimization on the space of measures

The reduced risk can also be obtained as the result of partial minimization of a convex
functional over the space of measures. Whereas we have previously separated the role of
the outer weights u and of the feature distribution µ in Eq. (III.2), our neural network
model can equivalently be seen as a linear operator acting on the space M(Ω) of Ąnite
measures on Ω.

For µ ∈ P(Ω) and u ∈ L1(µ), we have by deĄnition of Φ⋆ in Eq. (III.4) and of Φµ

in Eq. (III.7) that ϕµ · u = Φ ⋆ ν where ν ∈ M(Ω) is s.t. dν = udµ. Also
∫︂

Ω
f(u)dµ =

∫︂

Ω
f(

dν
dµ

)dµ = Df (ν♣µ) ,

where, for f satisfying Assumption III.2, Df is the divergence deĄned by:

∀(ν, µ) ∈ M(Ω) × P(Ω), Df (ν♣µ) :=

∮︂ ∫︁

Ω f( dν
dµ)dµ if ν ≪ µ,

+∞ otherwise.
(III.15)

In particular, in the case where f is an entropy function and ν ∈ P(Ω) is a probability
measure, Df (ν♣µ) is the standard Csiszàr f -divergence [Liero, 2018]. Performing a change
of variable, one can thus deĄne the functional Lλ

f as the value resulting from a minimization
problem over the space of measures. For µ ∈ P(Ω), minimizing over ν ∈ M(Ω) instead of
u ∈ L1(µ), we get:

Lλ
f (µ) =

∏︂

⋁︂⨄︂

⋁︂⋃︂

min
ν∈M(Ω)

1
2λ∥Φ ⋆ ν − Y ∥2 + Df (ν♣µ) if λ > 0,

min
ν∈M(Ω)

ιΦ⋆ν=Y + Df (ν♣µ) if λ = 0.
(III.16)

As presented in Assumption III.1, of particular interest is the case where the signal
Y itself can be exactly represented by a neural network, that is Y = Φ ⋆ ν̄, for some
ν̄ ∈ M(Ω). Then in the case λ = 0, using the injectivity of Φ⋆, ν̄ is the only feasible
solution in Eq. (III.16) and we obtain:

L0
f (µ) =

∫︂

Ω
f(

dν̄

dµ
)dµ = Df (ν̄♣µ) . (III.17)

In the case λ > 0, Lλ
f can be interpreted as the inĄmal convolution between a Maximum

Mean Discrepancy (MMD) and the divergence Df . Indeed, naturally associated to the data
distribution ρ ∈ P(Rd) and to the feature map ϕ is a structure of Reproducing Kernel
Hilbert Space (RKHS) of functions on Ω. We refer to Section III.A for results on the
theory of RKHSs we use in this chapter. The RKHS H is deĄned in Eq. (III.47), and
corresponds to the kernel κ : Ω × Ω → R deĄned by:

∀ω, ω′ ∈ Ω, κ(ω, ω′) :=

∫︂

Ω
ϕ(ω, x)ϕ(ω′, x)dρ(x) .
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It then follows from the deĄnition of κ and H that, under Assumption III.1, the data
attachment term in Eq. (III.16) can be interpreted as a kernel distance between ν and ν̄.
By Eq. (III.49) we have ∥Φ ⋆ (ν − ν̄)∥L2(ρ) = MMDκ(ν, ν̄) where MMDκ is the Maximum
Mean Discrepancy (MMD) with kernel κ [Muandet, 2017; Gretton, 2012]. For λ > 0, the
functional Lλ

f can then be expressed for every µ ∈ P(Ω) as:

Lλ
f (µ) = min

ν∈M(Ω)

1

2λ
MMD2

κ(ν, ν̄) + Df (ν♣µ) . (III.18)

This last formulation of the functional Lλ
f resembles the notion of Moreau envelope in a

RKHS of the divergence Df introduced by Neumayer, Stein, and Steidl [Neumayer, 2024].
This notion encompasses the particular cases of De-regularized MMD studied in [Chen,
2024] and KL Approximate Lower bound Estimator studied in [Glaser, 2021]. Nonetheless,
w.r.t. [Neumayer, 2024, eq. (14)], the role of the target measure ν̄ and of the optimized
measure µ are here interchanged, which is expected to play an important role in the
gradient Ćow dynamic.

III.2.3 Dual formulation of the reduced risk

In Eqs. (III.13) and (III.14), the objectives Lλ
f and L0

f are expressed as the value of a
minimization problem over the outer weights u. Taking the dual of those minimization
problems, Lλ

f and L0
f can be expressed as the value of a maximization problem over the

dual variable α ∈ L2(ρ). In contrast with the primal formulation Eq. (III.13), the dual
formulation of Proposition III.2.1 has the advantage of conveniently expressing Lλ

f for both
λ > 0 and λ = 0 as the value of an optimization problem over the space L2(ρ) which is
independent of µ.

Proposition III.2.1 (Dual representation). Let Assumption III.2 hold and consider µ ∈
P(Ω). Then we have for λ > 0:

Lλ
f (µ) = max

α∈L2(ρ)
−
∫︂

Ω
f∗(Φ⊤α)dµ+ ⟨α, Y ⟩L2(ρ) − λ

2
∥α∥2

L2(ρ) , (III.19)

where f∗ is the Legendre transform of f and Φ⊤ : L2(ρ) → C0(Ω) is defined by:

∀α ∈ L2(ρ), Φ⊤α :=

∫︂

Rd
ϕ(., x)α(x)dρ(x) .

The supremum in Eq. (III.19) is attained at some αλ
f [µ] ∈ L2(ρ) and for uλ

f [µ] ∈ L1(µ)
the optimizer in Eq. (III.13) it holds:

λαλ
f [µ] = Φµ · uλ

f [µ] − Y and f(uλ
f [µ]) + f∗(Φ⊤αλ

f [µ]) = uλ
f [µ](Φ⊤αλ

f [µ]) . (III.20)

Moreover, Eq. (III.19) also holds in the case λ = 0 under Assumption III.1.

When λ > 0, this result yields a convenient reformulation of the functional Lλ
f . For

µ ∈ P(Ω), αλ
f [µ] ∈ L2(ρ) being the maximizer in Eq. (III.19) and uλ

f [µ] ∈ L1(µ) the
minimizer in Eq. (III.13), we have:

Lλ
f (µ) =

λ

2

/︂
/︂
/︂αλ

f [µ]
/︂
/︂
/︂

2

L2(ρ)
+

∫︂

Ω
f(uλ

f [µ])dµ . (III.21)
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Proof. Consider µ ∈ P(Ω) and λ > 0. First, by deĄnition of Φ⊤ we have for every
α ∈ L2(ρ) and every u ∈ L1(µ) that

∫︁

Ω(Φ⊤α)udµ = ⟨α,Φµ · u⟩L2(ρ) i.e. Φ⊤ is the adjoint
of Φµ : L1(µ) → L2(µ). Also, it follows from the assumption on f that the map If : u ∈
L1(µ) ↦→ ∫︁

Ω f(u)dµ is a convex, weakly lower semicontinuous functional whose Legendre
transform is given for h ∈ L∞(µ) by:

I∗
f (h) = sup

u∈L1(µ)

∫︂

Ω
hudµ−

∫︂

Ω
f(u)dµ =

∫︂

Ω
f∗(h)dµ ,

with f∗ the Legendre transform of f and where the supremum is attained for u ∈ L1(µ)
satisfying the duality relation f(u) + f∗(h) = uh [Rockafellar, 1968, Thm. 2]. Similarly,
for u ∈ L1(µ) we have:

sup
α∈L2(ρ)

− ⟨α,Φµ · u− Y ⟩L2(ρ) − λ

2
∥α∥2

L2(ρ) =
1

2λ
∥Φµ · u− Y ∥2

L2(ρ) .

where the supremum is reached at α = λ (Φµ · u− Y ) when λ > 0. Moreover, the
functional α ↦→ 1

2λ∥α∥2
L2(ρ) being continuous, we can apply [Rockafellar, 1967, Thm. 3]

and Eq. (III.19) holds by strong duality. The optimums are attained in both Eq. (III.13)
and Eq. (III.19) and thus Eq. (III.20) expresses the optimality conditions.

Finally, for the case λ = 0, when Assumption III.1 holds we have by Eq. (III.16) that
L0

f (µ) = Df (ν̄♣µ). Also, the assumptions on f ensures dom(f∗) = R and using [Rockafel-
lar, 1971, Thm. 4] we obtain:

Lλ
f (µ) = Df (ν̄♣µ) = sup

h∈C0(Ω)

∫︂

Ω
hdν̄ −

∫︂

Ω
f∗(h)dµ .

The result follows as the injectivity of Φ⋆ ensures Range(Φ⊤) is dense in C0(Ω) (Lemma III.A.1).

Observing that Φ⊤ deĄnes a partial isometry from L2(ρ) to the RKHS H (Eq. (III.47)),
a similar dual formulation of Lλ

f also holds in duality with H.

Proposition III.2.2. Let Assumption III.2 and Assumption III.1 hold and consider µ ∈
P(Ω). Then we have for λ ≥ 0:

Lλ
f (µ) = sup

h∈H
−
∫︂

Ω
f∗(h)dµ+

∫︂

Ω
hdν̄ − λ

2
∥h∥2

H , (III.22)

where f∗ is the Legendre transform of f . For λ > 0, the supremum in Eq. (III.22) is
attained at some hλ

f [µ] ∈ H and for νλ
f [µ] ∈ L1(µ) the optimizer in Eq. (III.18) it holds:

λhλ
f [µ] = Φ⊤Φ ⋆ (νλ

f [µ] − ν̄) and f(
dνλ

f [µ]

dµ
) + f∗(hλ

f [µ]) = hλ
f [µ]

dνλ
f [µ]

dµ
. (III.23)

Proof. The formula Eq. (III.22) is directly deduced from Eq. (III.19) and the character-
ization of the RKHS H in Eq. (III.47). Also Eq. (III.23) is a rewritting of Eq. (III.20)
since νλ

f [µ] ∈ M(Ω) and hλ
f [µ] ∈ H are related to uλ

f [µ] ∈ L1(µ) and αλ
f [µ] ∈ L2(ρ) by

dνλ
f [µ] = uλ

f [µ]dµ and hλ
f [µ] = Φ⊤αλ

f [µ] .
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III.2.4 Kernel learning in the case of quadratic regularization

The case of a quadratic regularization is of particular interest since the partial optimization
problem over u admits a closed-form solution which can be efficiently obtained numerically
by solving a linear system. In this case, the task of minimizing the reduced risk is equivalent
to solving a Multiple Kernel Learning problem [Bach, 2004].

For the L2-regularization f(t) = ♣t♣2, the reduced risk Lλ
2 [µ] is the value of the ridge

regression problem in Eq. (III.8) and for λ > 0, the optimizer is given by

uλ
2 [µ] = (Φ⊤

µ Φµ + 2λ)−1Φ⊤
µ Y ,

where Φ⊤
µ : L2(ρ) → L2(µ) is the adjoint of the operator Φµ restricted to L2(µ). Also, the

dual problem in Eq. (III.19) here reads:

Lλ
2(µ) = sup

α∈L2(ρ)
−1

2
⟨α, (Kµ + 2λ)α⟩L2(ρ) + ⟨α, Y ⟩L2(ρ) ,

where Kµ : L2(ρ) → L2(ρ) is the self-adjoint operator deĄned by Kµ = ΦµΦ⊤
µ . The

supremum is attained at αλ
2 [µ] = (Kµ + 2λ)−1Y and by Eq. (III.21) we obtain for every

µ ∈ P(Ω):

Lλ
2(µ) =

1
2

˜︁

Y, (Kµ + 2λ)−1Y
˜︂

L2(ρ)
. (III.24)

This is the optimal value of the kernel ridge regression problem with kernel Kµ, where Kµ

is parameterized by the feature distribution µ. Moreover this parameterization is linear
w.r.t. µ ∈ P(Ω) since, considering for ω ∈ Ω the rank the rank-one self-adjoint operator
k(ω) := ϕ(ω, .) ⊗ ϕ(ω, .), we have:

Kµ =
∫︂

Ω
k(ω)dµ(ω) .

Therefore, minimizing the reduced risk Lλ
2 over the feature distribution µ amounts to

Ąnding the best kernel for solving the ridge regression problem in Eq. (III.8) among convex
combinations of ŞsimpleŤ basis kernels (k(ω))ω∈Ω i.e. a Multiple Kernel Learning task.
Other convex optimization strategies for solving such task have been studied in [Lanckriet,
2004; Bach, 2004].

III.3 Properties of minimizers of the reduced risk

Before turning to the analysis of gradient methods for the minimization of the reduced
risk Lλ

f in Sections III.4 and III.5, we study here variational properties of Lλ
f .

III.3.1 Existence and uniqueness of minimizers

We Ąrst investigate existence and uniqueness of minimizers of Lλ
f . Importantly, we use

here that Lλ
f is obtained as the result of a partial minimization. Namely, for λ ≥ 0 and

µ ∈ P(Ω), we have from Eq. (III.16) that Lλ
f (µ) = minν∈M(Ω) Eλ

f (ν, µ), where Eλ
f is deĄned

for ν ∈ M(Ω) and µ ∈ P(Ω) by:

Eλ
f (ν, µ) :=

∏︂

⨄︂

⋃︂

Df (ν♣µ) + 1
2λ∥Φ ⋆ ν − Y ∥2 if λ > 0,

Df (ν♣µ) + ιΦ⋆ν=Y if λ = 0.
(III.25)
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In particular, it follows from variational formulations of f -divergences that Df is (jointly)
convex and lower semicontinuous w.r.t. its arguments (ν, µ) ∈ M(Ω) × P(Ω) [Rockafellar,
1971, Thm. 4]. The following Lemma III.3.1 uses this fact to establish convexity and
lower semicontinuity of Lλ

f , implying the existence of minimizers. We then discuss cases
in which Lλ

f has in fact a unique minimizer.

Lemma III.3.1. Assume f satisfies Assumption III.2. Then, for λ ≥ 0, Lλ
f : P(Ω) → R

is a convex, lower semicontinuous function (w.r.t. the narrow convergence on M(Ω)).

Proof. By the deĄnition of the divergence Df in Eq. (III.15) and by [Rockafellar, 1971,
Thm. 4], we have for every (ν, µ) ∈ M(Ω) × P(Ω):

Df (ν♣µ) = sup
h∈C0(Ω)

∫︂

Ω
hdν −

∫︂

Ω
f∗(h)dµ .

Thus Df is a (jointly) convex and lower semicontinuous function as a supremum of (jointly)
convex and lower semicontinuous functions. As a consequence, for λ ≥ 0, Eλ

f is also
(jointly) convex and lower semicontinuous. The convexity of Lλ

f = minν Eλ
f (ν, .) follows as

partial minimization preserves convexity. Also, if (µn)n≥0 is a sequence in P(Ω) converging
narrowly to some µ ∈ P(Ω), then we have Lλ

f (µn) = Eλ
f (νn, µn) for some νn ∈ M(Ω).

Without loss of generality one can assume Lλ
f (µn) is bounded, thus Df (νn♣µn) and then

∥νn∥TV are bounded as f is superlinear. Then, up to extraction of a subsequence, (νn)
converges narrowly to ν ∈ M(Ω) and we get by lower semicontinuity of Eλ

f :

lim inf
n→∞

Lλ
f (µn) = lim inf

n→∞
Eλ

f (νn, µn) ≥ Eλ
f (ν, µ) ≥ Lλ

f (µ) ,

which shows that Lλ
f is lower semicontinuous.

The above result implies the existence of minimizers of the reduced risk Lλ
f for every

λ ≥ 0 but it does not establish uniqueness and Lλ
f may, a priori, have several minimizers.

However, there are cases in which uniqueness can be ensured. We give two examples:

• In the teacher-student setup where Assumption III.1 holds, if ν̄ is a positive measure
with m̄ = ν̄(Ω) > 0 and if f is nonnegative, strictly convex and s.t. f(m̄) = 0 then the
teacher feature distribution µ̄ = ν̄/m̄ is the unique minimizer of Lλ

f , whatever λ ≥ 0.
Indeed, from Eq. (III.18) we have that Lλ

f (µ̄) = 0 and Lλ
f (µ) > 0 for every µ ̸= µ̄.

With these assumptions, we prove in Theorem III.4 that the gradient Ćow of Lλ
f

converges towards the teacher feature distribution µ̄ with an algebraic convergence
rate.

• For general data Y , relying on a variational characterization of the total variation,
the following Lemma III.3.2 establishes uniqueness of a minimizer to Lλ

r in the case
the regularization is of the form f(t) = ♣t♣r for some r > 1.

Lemma III.3.2. Let λ ≥ 0 and assume f(t) = ♣t♣r for some r > 1. Then Lλ
r admits a

unique minimizer µ̄λ
r ∈ P(Ω).

Proof. We use arguments similar to the one of [Wang, 2024, Prop. 3.3]. By duality
infµ∈P(Ω) Lλ

r (µ) = infν∈M(Ω) Gλ
r (ν) where Gλ

r is deĄned for ν ∈ M(Ω) by:

Gλ(ν) :=

∮︂

∥ν∥r
TV + 1

2λ∥Φ ⋆ ν − Y ∥2 if λ > 0,
∥ν∥r

TV + ιΦ⋆ν=Y if λ = 0,
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where we used the variational representation ∥ν∥r
TV = infµ∈P(Ω)

∫︁

Ω

\︄
\︄
\︄

dν
dµ

\︄
\︄
\︄

r
dµ (the case r = 2

is used in [Wang, 2024; Lanckriet, 2004]). Indeed, for measures ν ∈ M(Ω) and µ ∈ P(Ω)
s.t. ν ≪ µ we have:

∫︂

Ω

\︄
\︄
\︄
\︄

dν
dµ

\︄
\︄
\︄
\︄

r

dµ =
∫︂

Ω

⎤
dµ
d♣ν♣

⎣1−r

d♣ν♣.

The Lagrangian of the convex problem infµ
∫︁

Ω

(︂
dµ
d♣ν♣

⎡1−r
d♣ν♣ is given by:

J (µ, γ) =
∫︂

Ω

⎤
dµ
d♣ν♣

⎣1−r

d♣ν♣ + γ

⎤∫︂

Ω
dµ− 1

⎣

.

The optimality condition gives that dµ
d♣ν♣ is constant and the minimum is attained for

µ = ♣ν♣/∥ν∥TV, giving
∫︁

Ω

\︄
\︄
\︄

dν
dµ

\︄
\︄
\︄

r
dµ = ∥ν∥r

TV. Finally, the map ν ↦→ ∥ν∥r
TV is strictly

convex so that Gλ
r admits a unique minimizer ν̄λ

r ∈ M(Ω), thus Lλ
r has also a unique

minimizer µ̄λ
r ∈ P(Ω) and we have the duality relation µ̄λ

r = ♣ν̄λ
r ♣/∥ν̄λ

r ∥TV. Notably, in
the case where Assumption III.1 holds and λ = 0, we have ν̄0

r = ν̄ and µ̄0
r = µ̄ for every

r > 1.

III.3.2 Convergence of minimizers

Of particular interest to us is the case λ = 0 for which minimizers of L0
f are related to the

teacher measure ν̄ by Eq. (III.17). However, in practice, minimization of Lλ
f is easier in

the presence of a regularization parameter λ > 0. For this reason, we are interested in the
asymptotic behavior of minimizers of Lλ

f when λ → 0+.
We show here, when λ → 0+, that any converging sequence of minimizers to Lλ

f con-
verges to some minimizer of L0

f . In particular, if L0
f has a unique minimizer µ̄0 then any

sequence of minimizers to Lλ
f converges to µ̄0. This result is a consequence of the follow-

ing Lemma III.3.3 which states the Γ-convergence of the functionals Lλ
f to L0

f . We refer
to [Santambrogio, 2023, Chap. 7] for an introduction to Γ-convergence. This is in par-
ticular stronger than pointwise convergence and is the appropriate notion of convergence
for studying the behavior of minimizers. In the case where Assumption III.1 holds and
Lλ

f admits the representation Eq. (III.18), a similar result was established by Neumayer,
Stein, and Steidl [Neumayer, 2024], with a notable difference being here that we prove
Γ-convergence w.r.t. the variable µ instead of ν̄.

Lemma III.3.3 (Γ-convergence). Assume Assumptions III.1 and III.2 hold, ϕ ∈ L2(ρ, C0,1)
and f∗ ∈ C0,1

loc (R). Then the family of functionals (Lλ
f )λ>0 Γ-converges towards L0

f as

λ → 0+ in the sense that for every sequence (λn)n≥0 converging to 0+ and every µ ∈ P(Ω)
it holds:

(i) for every sequence (µn)n≥0 converging narrowly to µ,

lim inf
n→+∞

Lλn

f (µn) ≥ L0
f (µ)f ,

(ii) there exists a sequence (µn)n≥0 converging narrowly to µ s.t.

lim sup
n→+∞

Lλn

f (µn) ≤ L0
f (µ) .
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Proof. For the second part of the result it suffices to consider the constant sequence
µn = µ for every n ≥ 0. Indeed, it then directly follows from the deĄnition of Lλ

f and
L0

f in Eq. (III.13) and Eq. (III.14) that Lλ
f (µ) ≤ L0

f (µ) for every λ > 0.
To prove the Ąrst part of the deĄnition, consider a sequence (µn)n≥0 converging nar-

rowly to µ in P(Ω). By the dual formulation of L0
f in Eq. (III.19), we can also consider a

sequence (αk)k≥0 in L2(ρ) such that:

−
∫︂

Ω
f∗(Φ⊤αk)dµ+ ⟨αk, Y ⟩ k→∞−−−→ L0

f (µ) .

Then, by the dual formulation of Lλ
f in Eq. (III.19), for every n, k ≥ 0:

Lλn(µn) ≥ −
∫︂

Ω
f∗(Φ⊤αk)dµn + ⟨αk, Y ⟩ − λn

2
∥αk∥2

L2ρ

= −
∫︂

Ω
f∗(Φ⊤αk)d(µn − µ) − λn

2
∥αk∥2

L2ρ −
∫︂

Ω
f∗(Φ⊤αk)dµ+ ⟨αk, Y ⟩

≥ −
/︂
/︂
/︂f∗(Φ⊤αk)

/︂
/︂
/︂

C0,1
W1(µn, µ) − λn

2
∥αk∥2

L2ρ −
∫︂

Ω
f∗(Φ⊤αk)dµ+ ⟨αk, Y ⟩ .

But then, since W1(µn, µ) → 0 and λn → 0, one can Ąnd an increasing sequence (kn)n≥0

s.t.:

λn∥αkn
∥2

L2(ρ)
n→+∞−−−−−→ 0 and

/︂
/︂
/︂f∗(Φ⊤αkn

)
/︂
/︂
/︂

C0,1
W1(µn, µ) n→+∞−−−−−→ 0 .

Thus Lλn

f (µn) ≥ L0
f (µ) + o(1) for every n ≥ 0 and the result follows.

It is a direct consequence of the above Γ-convergence result that the limit when λ → 0+

of a sequence of minimizers of Lλ
f is a minimizer of L0

f [Santambrogio, 2023, Prop. 7.5]. In
the case where Lλ

f has a unique minimizer µ̄0
f , this implies every sequence of minimizers

of Lλ
f converges to µ̄0

f when λ → 0+.

Proposition III.3.1 (Convergence of minimizers). Assume the result of Lemma III.3.3

holds. For every λ > 0, consider µ̄λ
f ∈ arg min Lλ

f and assume µ̄λ
f

λ→0+

−−−−→ µ. Then

µ ∈ arg min L0
f . Notably, if L0

f has a unique minimizer µ̄0
f , then µ̄λ

f
λ→0+

−−−−→ µ̄0
f .

III.4 Training with gradient flow

In the rest of this chapter we consider the optimization over the feature distribution
µ ∈ P(Ω) for the minimization of the reduced risk Lλ

f , for λ ≥ 0. SpeciĄcally, we consider
a gradient flow algorithm. In the case of a Ąnite number of features ¶ωi♢1≤i≤M ∈ ΩM such
gradient Ćow is deĄned as the solution of the equation:

∀i ∈ ¶1, ...,M♢ , d

dt
ωi(t) = −M∇ωi

L̂λ
f (¶ωi(t)♢1≤i≤M ) (III.26)

where L̂λ
f (¶ωi♢1≤i≤M ) := Lλ

f (µ̂) and µ̂ is the empirical distribution µ̂ = 1
M

∑︁M
i=1 δωi

. More
generally, in terms of the feature distribution µ ∈ P(Ω), the above equation corresponds
to a Wasserstein gradient flow over the functional Lλ

f , namely:

∂tµt − div

(︄

µt∇
δLλ

f

δµ
[µt]

)︄

= 0, on (0,∞) × Ω, (III.27)
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where for µ ∈ P(Ω),
δLλ

f

δµ [µ] is the Fréchet differential of Lλ
f at µ [Santambrogio, 2015,

Def. 7.12]. Importantly, Jordan, Kinderlehrer, and Otto [Jordan, 1998] have shown that
Wasserstein gradient Ćows can be obtained as limits of proximal update schemes when the
discretization step tends to 0. Here, the curve (µt)t≥0 is the limit of the piecewise-constant
curve with values (µτ

k)k≥0 where, given a time-step τ > 0 and an initialization µτ
0 ∈ P(Ω),

the sequence (µτ
k)k≥0 is deĄned recursively by:

∀k ≥ 0, µτ
k+1 ∈ arg min

µ∈P(Ω)
Lλ

f (µ) +
1
2τ

W2(µ, µτ
k)2 . (III.28)

We study in this section the well-posedness of the above Wasserstein gradient Ćow equation
by distinguishing the case where λ > 0 and the case λ = 0. In the latter case, we show the
Wasserstein gradient Ćow corresponds to a weighted ultra-fast diffusion equation [Iacobelli,
2019b].

III.4.1 Wasserstein gradient flows in the case λ > 0

In the case where λ > 0, the presence of the regularization induces sufficient regularity on
the objective to study the training dynamic through the lens of classical results from the
theory of gradient Ćows in the Wasserstein space [Ambrosio, 2008b; Santambrogio, 2017].
In particular, one can derive the gradient Ćow equation leveraging the dual representation
of Lλ

f . Indeed, Eq. (III.19) expresses Lλ
f as a maximum over linear functionals, and thus

by the envelope theorem one can formally differentiate Lλ
f w.r.t. µ and obtain the Fréchet

differential:

δLλ
f

δµ
[µ](ω) = −f∗(Φ⊤αλ

f [µ])(ω) ,

with αλ
f [µ] ∈ L2(ρ) the maximizer in Eq. (III.19). We show that the gradient Ąeld of this

potential indeed deĄnes a notion of ŞgradientŤ for the functional Lλ
f w.r.t. the Wasserstein

topology on P(Ω).
Locally absolutely continuous curves (µt)t∈[0,1] in the space P(Ω), equipped with the

Wasserstein distance W2, are characterised as solutions to a continuity equation:

∂tµt + div(µtvt) = 0 on (0,+∞) × Ω (III.29)

for some velocity Ąeld v such that ∥vt∥L2(µt) ∈ L1
loc((0,+∞)) [Santambrogio, 2015, Thm.

5.14]. This equation has to be understood in the sense of distributions, that is in duality
with the set C∞

c ((0,+∞) × Ω) of smooth compactly supported test functions, i.e.:
∫︂ 1

0

∫︂

Ω
(∂tφ+ ⟨∇φ, vt⟩) dµtdt = 0, ∀φ ∈ C∞

c ((0,+∞) × Ω) . (III.30)

The following result shows that the functional Lλ
f (µt) is differentiable along those curves

and expresses its derivative in terms of the gradient Ąeld ∇ δLλ
f

δµ .

Lemma III.4.1 (Wasserstein chain rule for Lλ
f ). Assume ϕ ∈ L2(ρ, C1), f satisfies As-

sumption III.2 with f∗ ∈ C1
loc(R) and consider λ > 0. Let (µt)t∈(0,+∞) be a locally abso-

lutely continuous curve in P(Ω) solution of the continuity equation Eq. (III.30) for some
velocity field v such that ∥vt∥L2(µt) ∈ L1

loc((0,+∞)). Then (Lλ
f (µt))t∈(0,+∞) is locally ab-

solutely continuous and for a.e. t′, t ∈ (0,+∞):

Lλ
f (µt′) − Lλ

f (µt) =
∫︂ t′

t

˜︁

∇Lλ
f [µs], vs

˜︂

L2(µs)
ds ,
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where for µ ∈ P2(Ω) the velocity field ∇Lλ
f [µ] ∈ L2(µ) is defined by:

∀ω ∈ Ω, ∇Lλ
f [µ](ω) := −∇

(︂

f∗(Φ⊤αλ
f [µ])

⎡

(ω) ,

with αλ
f [µ] the maximizer in Eq. (III.19).

Proof. Consider the dual formulation of Lλ
f in Eq. (III.19). For every µ ∈ P(Ω) we have:

Lλ
f (µ) = sup

α∈L2(ρ)
Vα(µ) − λ

2
∥α∥2 + ⟨α, Y ⟩ ,

where for α ∈ L2(ρ) we deĄned:

Vα(µ) := −
∫︂

Ω
f∗(Φ⊤α)(ω)dµ(ω) .

In particular, at Ąxed α ∈ L2(ρ), it follows from the assumptions on ϕ and f∗ that
the potential f∗(Φ⊤α) is in C1(Ω) with ∥f∗(Φ⊤α)∥C1 ≤ C(∥α∥L2(ρ)) for some continuous
function C. Thus, by properties of the continuity equation, Vα(µt) is absolutely continuous
and its derivative is given for a.e. t ∈ (0,+∞) by:

d
dt

Vα(µt) = −
∫︂

Ω

˜︁

∇f∗(Φ⊤α), vt

˜︂

dµt .

Moreover, for µ ∈ P(Ω), using Eq. (III.21) and the fact that Lλ
f ≤ 1

2λ∥Y ∥2
L2(ρ) + f(0) (by

taking u = 0 in Eq. (III.13)) we have at the optimum in Eq. (III.19) that

∥αλ
f [µ]∥L2(ρ) ≤ λ−1

(︂

∥Y ∥2
L2(ρ) + λf(0)

⎡1/2
=: Rλ .

Thus, Lλ
f is equivalently deĄned by restricting the supremum to α ∈ L2(ρ) such that

∥α∥L2(ρ) ≤ Rλ. For such α we have
\︄
\︄
\︄

d
dtVα(µt)

\︄
\︄
\︄ ≤ C ′ for some constant C ′ = C ′(f∗, λ)

independent of α. Thus we can apply the envelope theorem in [Milgrom, 2002, Thm. 2],
which shows the desired result.

The preceding result has deĄned a notion of gradient Ąeld for the functional Lλ
f . One

can thus deĄne gradient Ćows of Lλ
f for the W2 metric as the curves solution to the

continuity equation:

∂tµt − div(µt∇Lλ
f [µt]) = 0 on (0,∞) × Ω. (III.31)

We make the following deĄnition:

Definition III.1 (Gradient Ćow of Lλ
f ). Let µ0 ∈ P2(Ω). We say (µt)t≥0 is a gradient

flow for Lλ
f starting at µ0 if it is a locally absolutely continuous curve on (0,+∞) s.t.

limt→0+ µt = µ0 and if it satisfies the continuity equation Eq. (III.31) in the sense of
distribution, i.e.:

∫︂ ∞

0

∫︂

Ω

(︂

∂tφ− ∇φ · ∇Lλ
f [µt]

⎡

dµtdt = 0, ∀φ ∈ C∞
c ((0,+∞) × Ω) . (III.32)
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Remark III.4.1 (Boundary conditions). Note that, in the case where Ω is a closed,
bounded, smooth and convex domain, our definition Eq. (III.30) of solutions to the con-
tinuity equation enforces no-flux conditions on the boundary ∂Ω. Indeed we consider test
function φ ∈ C∞

c ((0, 1)×Ω) that can be supported on the whole domain Ω (which is always
assumed closed). Thus, Eq. (III.30) enforces ⟨µtvt, n⃗⟩ = 0 in the sense of distribution,
where n⃗ is the outer normal vector to the boundary ∂Ω.

In case of the gradient flow equation Eq. (III.32), this boundary condition is for example
satisfied if one assumes ⟨∇ωϕ(ω, x), n⃗⟩ = 0 for every x ∈ R

d and every ω ∈ ∂Ω. Another
way of ensuring the no-flux condition is to remove the outer part of the gradient field ∇Lλ

f

on the boundary ∂Ω, which can be performed by clipping the features.

Well-posedness of the gradient flow equation To show the well-posedness of gra-
dient Ćows, we rely on convexity properties of the functional Lλ

f . Indeed, by the dual
formulation in Eq. (III.19), we can express Lλ

f as a supremum over semiconvex function-
als. As a consequence, the Lemma III.4.2 below shows that, for λ > 0, Lλ

f is semiconvex
along (generalized) geodesics of the Wasserstein space (see [Ambrosio, 2008b, Def. 9.2.4]
for the deĄnition of generalized geodesics). However, note that such an argument can not
be extended to the case λ = 0 since the semiconvexity constant blows-up when λ → 0+.
For example, in the case f(t) = ♣t♣2 this constant scales as λ−2.

Lemma III.4.2 (Geodesic semiconvexity). Assume ϕ ∈ L2(ρ, C1,1), f satisfies Assump-
tion III.2 with f∗ ∈ C1,1

loc (R) and let λ > 0. Then Lλ
f is C-semiconvex along (generalized)

geodesics for some constant C = C(f∗, λ).

Proof. Consider the dual formulation of Lλ
f in Eq. (III.19). For every µ ∈ P(Ω) we have:

Lλ
f (µ) = sup

α∈L2(ρ)
−
∫︂

Ω
f∗(Φ⊤α)(ω)dµ(ω) − λ

2
∥α∥2 + ⟨α, Y ⟩ .

Then, at Ąxed α ∈ L2(ρ), it follows from the assumptions on ϕ that Φ⊤α ∈ C1,1(Ω) with

∥Φ⊤α∥C1,1 ≤ ∥α∥L2(ρ)∥ϕ∥L2(ρ,C1,1) .

Then, from the assumptions on f∗, the composition f∗(Φ⊤α) is also in C1,1(Ω) and by
[Ambrosio, 2008b, Prop.9.3.2] the functional µ ↦→ ∫︁

Ω f
∗(Φ⊤α)dµ is C-semiconvex along

generalized geodesics for some constant C = C(f∗, ∥α∥L2(ρ)∥ϕ∥L2(ρ,C1,1)). Moreover, simi-
larly as in the proof of Lemma III.4.1, one can restrict the deĄnition of Lλ

f to the supremum
over α ∈ L2(ρ) with ∥α∥L2(ρ) ≤ Rλ. The result then follows by taking a supremum over
(uniformly) semiconvex functionals.

The semiconvexity of Lλ
f along generalized geodesics ensures the existence and unique-

ness of gradient Ćows in the sense of DeĄnition III.1.

Theorem III.1 (Well-posedness of the gradient Ćow equation for λ > 0). Assume the
assumptions of Lemma III.4.2 hold. Then for any λ > 0 and any initialization µ0 ∈
P2(Ω) there exists a unique gradient flow for Lλ

f starting from µ0 in the sense of Defini-

tion III.1. Moreover, if (µt)t≥0, (µ′
t)t≥0 are gradient flows for Lλ

f with respective initializa-
tions µ0, µ

′
0 ∈ P(Ω) then for every t ≥ 0:

W2(µt, µ
′
t) ≤ eCtW2(µ0, µ

′
0) ,

for some constant C = C(f∗, λ).
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Proof. The chain rule formula established in Lemma III.4.1 shows that for every µ ∈ P(Ω)
the vector Ąeld Lλ

f [µ] is a strong subdifferential of Lλ
f in the sense of [Ambrosio, 2008b, Def.

10.3.1 and eq. (10.3.12)]. Existence, uniqueness and contractivity properties of the gradi-
ent Ćow then follow from the geodesic semiconvexity of Lλ

f established in Lemma III.4.2
and the application of [Ambrosio, 2008b, Def. 11.2.1]

Finally, it is a classical property of weak solutions to continuity equations that gradient
Ćows of Lλ

f can be represented in terms of push-forward by a Ćow map.

Proposition III.4.1. Let the assumptions of Lemma III.4.2 hold. Then, for any λ > 0
and any initialization µ0 ∈ P2(Ω), the gradient flow (µt)t≥0 of Lλ

f starting from µ0 satisfies
µt = (Xt)#µ0 for every t ≥ 0, where (Xt)t≥0 is the flow-map solution of the ODE:

∀t ≥ 0,
d
dt
Xt = −∇Lλ

f [µt] ◦Xt, with X0 = IdΩ .

In particular, if (ωi(t))t≥0 for i ∈ ¶1, ...,M♢ are solutions to Eq. (III.26) then the empirical
distribution µ̂t := 1

M

∑︁M
i=1 δωi(t) is a gradient flow for Lλ

f in the sense of Definition III.1
and thus ωi(t) = Xt(ωi(0)) for i ∈ ¶1, ...,M♢ and t ≥ 0.

Proof. For every t ≥ 0, similarly as in the proof of Lemma III.4.1, we have that the dual
variable is bounded by ∥αλ

f [µt]∥L2(ρ) ≤ Rλ and from the assumption on the regularity of
ϕ it follows that:

∥f∗(Φ⊤αλ
f [µt])∥C1,1 ≤ C .

for some constant C = C(f∗, λ). Then by deĄnition ∇Lλ[µt] = −∇f∗(Φ⊤αλ
f [µt]) ∈ C0,1

and the Ąrst part of the result follows from classical results of ODE theory [Hale, 2009]
and on representation of solutions to continuity equations [Ambrosio, 2008b, Thm. 8.1.8].
For the second part of the result, it suffices to remark that, by the deĄnition of L̂λ

f and
∇Lλ

f , for ¶ωi♢1≤i≤M ∈ ΩM and j ∈ ¶1, ...,M♢:

M∇ωj
L̂λ(¶ωi♢1≤i≤M ) = ∇Lλ

f [µ̂](ωj) , (III.33)

where µ̂ = 1
M

∑︁M
i=1 δωi

. Therefore, by Eq. (III.26) we have that for any test function
φ ∈ C∞

c ((0,∞) × Ω):

0 =
1
M

M∑︂

i=1

∫︂ ∞

0

d
dt
φ(t, ωi(t))dt =

∫︂ ∞

0

∫︂

Ω

(︂

∂tφ− ∇φ · ∇Lλ
f [µ̂t]

⎡

dµ̂tdt ,

meaning (µ̂t)t≥0 is a gradient Ćow for Lλ
f according to DeĄnition III.1.

Particle approximation In the case where λ > 0, associating the contraction rate of
the gradient Ćow obtained in Theorem III.1 with classical results on the approximation of
measures by empirical distributions we obtain an approximation result for the minimiza-
tion of Lλ

f with a Ąnite number of features. For conciseness, we only state the result in
the case d ≥ 3, but similar results hold for d ∈ ¶1, 2♢.

Corollary III.4.1 (Particle approximation). Let the assumptions of Lemma III.3.1 hold
and let d ≥ 3. Consider some initialization µ0 ∈ P(Ω) and, for some N ≥ 0, denote
by µ̂0 := N−1∑︁N

i=1 δωi
the empirical measure where ¶ωi♢1≤i≤N are i.i.d. samples of µ0.

For λ > 0, let (µλ
t )t≥0 and (µ̂λ

t )t≥0 be the gradient flow of Lλ
f starting from µ0 and µ̂0
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respectively. Then there exists a constant A = A(d,Ω) s.t. for every t ≥ 0 and every
ε > 0:

P

(︂

W1(µ̂λ
t , µ

λ
t ) ≥ ε

⎡

≤ A

ε
N−1/deCt ,

where C = C(f∗, λ) is the constant in Theorem III.1.

Proof. Using [Fournier, 2015, Thm. 1] we obtain at initialization t = 0:

E

[︂

W1(µ̂λ
0 , µ

λ
0)
]︂

≤ AN−1/d

for some constant A = A(d,Ω) > 0 depending on the dimension and on the domain Ω.
Then using the contraction rate in Theorem III.1 we have a constant C = C(f∗, λ) > 0
such that for every t ≥ 0:

E

[︂

W1(µ̂λ
t , µ

λ
t )
]︂

≤ AN−1/deCt .

The result then follows by applying Markov’s inequality.

III.4.2 Wasserstein gradient flows in the case λ = 0 and ultra-fast diffu-

sions

We now consider the limit of the proximal scheme Eq. (III.28) when the step size τ tends
to 0 and λ is set to 0. We focus on the case where Assumption III.1 holds and the
regularization is of the form f(t) = ♣t♣r/(r − 1) for some r > 1 and recall that we use the
shortcut L0

r := L0
f . Then, following Eq. (III.17), we have for µ ∈ P(Ω):

L0
r(µ) =

1
r − 1

Dr(ν̄♣µ) =
1

r − 1

∫︂

Ω

\︄
\︄
\︄
\︄

dν̄

dµ

\︄
\︄
\︄
\︄

r

dµ =
∥ν̄∥r

TV

r − 1

∫︂

Ω

\︄
\︄
\︄
\︄

dµ̄

dµ

\︄
\︄
\︄
\︄

r

dµ . (III.34)

The Ąrst variation of L0
r w.r.t. µ is formally given by δL0

r

δµ [µ](ω) = −∥ν̄∥r
TV

(︂
µ̄
µ

⎡r
and

thus, following Eq. (III.27), the Wasserstein gradient Ćow of L0
r is formally deĄned as the

solution to the continuity equation:

∂tµt = −∥ν̄∥r
TVdiv

⎤

µt∇
⎤
µ̄

µt

⎣r⎣

. (III.35)

Moreover, calculating formally, ∇
(︂

µ̄
µ

⎡r
= r µ̄

µ∇
(︂

µ̄
µ

⎡r−1
and Eq. (III.35) can be written

equivalently:

∂tµt = −r∥ν̄∥r
TVdiv

(︄

µ̄∇
⎤
µ̄

µt

⎣r−1
)︄

.

When the target distribution is uniform, i.e. with density µ̄ = 1, this corresponds to a
nonlinear diffusion equation of the form Eq. (III.11) with the coefficient m = 1 − r < 0,
that is an ultra-fast diffusion. Such an equation, with general inhomogeneous weights µ̄
was studied in [Iacobelli, 2019a; Caglioti, 2018; Iacobelli, 2019b] in the context of particle
algorithms for Ąnding an optimal quantization of the measure µ̄. We rely particularly here
on the work of Iacobelli, Patacchini, and Santambrogio [Iacobelli, 2019b] which establishes
the well-posedness of Eq. (III.35) as well as the convergence of the solution µt towards the
target measure µ̄. We consider the following deĄnition of solutions for Eq. (III.35):
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Definition III.2 (Gradient Ćow of L0
r (Def. 1.1 in [Iacobelli, 2019b])). Let µ0 ∈ P(Ω)

admit a density µ0 ∈ Lr+2(Ω). We say (µt)t≥0 is a weak solution of Eq. (III.35) or a
gradient flow for L0

r starting from µ0 if it is a narrowly continuous curve in P(Ω) with
limt→0+ µt = µ0, s.t.

∫︂ ∞

0

∫︂

Ω

⎤

∂tφ− ∥ν̄∥r
TV∇φ · ∇

⎤
µ̄

µt

⎣r⎣

dµtdt = 0, ∀φ ∈ C∞
c ((0,∞) × Ω) . (III.36)

and satisfying:

⎤
µt

µ̄

⎣r−1

∈ L2
loc((0,∞),H1(Ω)),

µ̄

µt
∈ L2

loc((0,∞),H1(Ω)) .

Existence and uniqueness of solutions In [Iacobelli, 2019b], the authors establish
the existence and uniqueness of gradient Ćows for the functional L0

r . More precisely, they
show that, under appropriate assumptions on the initialization µ0 and on the target µ̄,
the iterates of the proximal scheme in Eq. (III.28) converge towards a curve (µt)t≥0 that
is a gradient Ćow of the functional L0

r in the sense of DeĄnition III.2.

Theorem III.2 ([Iacobelli, 2019b, Thm. 1.2]). Assume µ0 and µ̄ are absolutely continuous
and have bounded log-densities. Then there exists a unique weak solution of Eq. (III.35)
starting from µ0 in the sense of Definition III.2.

Convergence towards the target distribution In the case λ = 0, Iacobelli, Pat-
acchini, and Santambrogio [Iacobelli, 2019b] establish a linear convergence rate of the
weighted ultra-fast diffusion Eq. (III.35) towards the target distribution µ̄. Precisely, they
show convergence in the L2-sense of the density µt towards the target density µ̄. We state
their result in the following theorem.

Theorem III.3 ([Iacobelli, 2019b, Thm. 1.4]). Assume µ0 and µ̄ are absolutely con-
tinuous and have bounded log-densities. For µ0 ∈ P(Ω), let (µt)t≥0 be a weak solution
of Eq. (III.35) starting from µ0 in the sense of Definition III.2. Then the log-density of µt

is bounded, uniformly over t ≥ 0, and there exists a constant C = C(Ω, µ̄, µ0) > 0 s.t. for
every t ≥ 0 it holds:

∥µ̄− µt∥L2(Ω) ≤ Ce−Ct .

For completeness, we give here some of the key arguments of the proof of the above The-
orem III.3 in the case where r = 2. In this case, we have for every µ ∈ P(Ω):

L0
2(µ) = ∥ν̄∥2

TV

∫︂

Ω

\︄
\︄
\︄
\︄

dµ̄

dµ

\︄
\︄
\︄
\︄

2

dµ = ∥ν̄∥2
TV

(︂

χ2(µ̄♣µ) + 1
⎡

, (III.37)

where χ2 is the chi-square divergence. The following Lemma III.4.3 establishes the de-
sired linear convergence rate for the proximal scheme deĄned in Eq. (III.28) with the
loss L0

2. The result in continuous time then follows from the lower semicontinuity of the
χ2-divergence as the curve (µt)t≥0 is obtained by taking the limit of the discrete process
(µτ

k)k≥0 when the discretization time τ tends to zero.
From a technical perspective, the proof of Lemma III.4.3 relies on a Poincaré inequality

satisĄed by µt. It is indeed well-known that such inequality controls the convergence rate
of Fokker-Planck equations towards their stationary distribution in χ2-distance [Pavliotis,
2014, Thm. 4.4]. This can for example be used to prove the convergence of sampling
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algorithms such as Langevin Monte Carlo [Chewi, 2024; Chewi, 2020]. In our case, the
ultra-fast diffusion Eq. (III.35) is to be interpreted as a Wasserstein gradient Ćow for L0

2,
which, by the above Eq. (III.37), is the reverse χ2-divergence between µt and µ̄ and the
convergence rate is controlled by the Poincaré constant of µt. This rate may thus a priori
evolve and vanish during training but, crucially, [Iacobelli, 2019b, Lem. 2.4] shows that
it is here a property of solutions to the ultra-fast diffusion equation that the log-density
ratio ∥ log

(︂
µ̄
µt

⎡

∥∞ decreases with time. As a consequence, it is sufficient to assume that
the log-density is bounded at initialization to obtain a control over the Poincaré constant
of µt, for t ≥ 0, by a classical perturbation argument [Ané, 2000, Thm. 3.4.1].

Lemma III.4.3. Assume µ0 and µ̄ are absolutely continuous with bounded log-densities.
Let τ > 0 and let (µτ

k)k≥0 be the sequence defined by Eq. (III.28) with λ = 0, f(t) = ♣t♣2
(r = 2) and initialization µτ

0 = µ0 ∈ P(Ω). Then there exists a constant C > 0 s.t.:

∀k ≥ 0, χ2(µ̄♣µτ
k) ≤ (1 + Cτ)−kχ2(µ̄♣µ0) .

Proof. From [Iacobelli, 2019b, Thm.2.1 and Lem.2.4] we know the sequence (µτ
k)k≥0 is

uniquely deĄned. Moreover µτ
k is absolutely continuous w.r.t. Lebesgue measure and their

exists a constant C = C(µ̄, µ0) > 0 s.t. the log-densities log(µτ
k) satisfy:

∀k ≥ 0, ∥log(µτ
k)∥∞ ≤ C .

Then, at step k ≥ 0, we get from the expression of L0
2 in Eq. (III.37) and from the

optimality condition in Eq. (III.28) (see e.g. [Santambrogio, 2015, Prop.7.20]) that:

−∥ν̄∥2
TV

(︄

µ̄

µτ
k+1

)︄2

+
φ

τ
= cte, almost everywhere on Ω,

where φ is the Kantorovitch potential from µτ
k+1 to µτ

k. Also this potential is necessarily
Lipschitz, hence a.e. differentiable and so is ν̄/µτ

k+1. Then from the deĄnition of µ0,τ
k+1 we

have:

L0
2(µτ

k) − L0
2(µτ

k+1) ≥ 1

2τ
W2(µτ

k+1, µ
τ
k)2

=
1

2τ

∫︂

Ω
♣∇φ♣2 dµτ

k+1

=
τ∥ν̄∥2

TV

2

∫︂

Ω

/︂
/︂
/︂
/︂
/︂
/︂

∇
(︄

µ̄

µτ
k+1

)︄2
/︂
/︂
/︂
/︂
/︂
/︂

2

dµτ
k+1 ,

where we used the deĄnition of the potential φ and the optimality condition. Using that
µτ

k+1 has log-density bounded by C = C(µ̄, µ0) and that the domain Ω satisĄes a Poincaré
inequality with constant CP = CP (Ω), it follows from a classical perturbation argument
that µτ

k+1 satisĄes a Poincaré inequality with constant e2CCP (Ω) [Ané, 2000, Thm. 3.4.1].
As a consequence:

∫︂

Ω

/︂
/︂
/︂
/︂
/︂
/︂

∇
(︄

µ̄

µτ
k+1

)︄2
/︂
/︂
/︂
/︂
/︂
/︂

2

dµτ
k+1 ≥ 4e−4C

∫︂

Ω

/︂
/︂
/︂
/︂
/︂
∇
(︄

µ̄

µτ
k+1

)︄/︂
/︂
/︂
/︂
/︂

2

dµτ
k+1

≥ 4C−1
P e−6C

⎛

∐︂

∫︂

Ω

(︄

µ̄

µτ
k+1

)︄2

dµτ
k+1 − 1

⎞

ˆ︁

= 4C−1
P e−6C∥ν̄∥−2

TV

(︂

L0
2(µτ

k+1) − ∥ν̄∥2
TV

⎡

,
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where ∥ν̄∥2
TV = inf L0

2. Combining this with the previous inequality Ąnally gives:
(︂

1 + 2τC−1
P e−6C

⎡ (︂

L0
2(µτ

k+1) − inf L0
2

⎡

≤ L0
2(µτ

k) − inf L0
2 ,

and inductively:

∀k ≥ 0, L0
2(µτ

k) − inf L0
2 ≤

(︂

1 + 2τC−1
P e−6C

⎡−k (︂

L0
2(µ0) − inf L0

2

⎡

.

By the deĄnition of L0
2 in Eq. (III.37), this is the desired result.

Remark III.4.2 (Dependence of the convergence rate w.r.t. the dimension). It follows
from the proof that the convergence rate C in Lemma III.4.3 scales linearly with CP (Ω)−1

where CP (Ω) is the Poincaré constant of the domain Ω. For bounded, Lipschitz and convex
domains of R

n or for the flat torus T
n, this constant is in particular independent of

the dimension n [Payne, 1960]. Therefore, the correspondence between the training of
neural networks in the two-timescale regime and solutions to ultra-fast diffusions points
towards the fact that gradient methods, with suitable hyperparameter scaling, are amenable
to efficient feature learning in the training of neural networks, without suffering from
the curse of dimensionality [Donoho, 2000]. Note however that the convergence rate C
in Lemma III.4.3 is exponentially bad in the log-density ratio ∥ log(µ̄/µ0)∥∞. In particular
the convergence rate does not hold in case the teacher feature distribution is supported on
a finite number of atoms.

III.5 Convergence of gradient flow

The main purpose of this chapter is to study in what extent the gradient Ćow dynamics
deĄned DeĄnitions III.1 and III.2 allow recovering the teacher feature distribution µ̄ asso-
ciated to the observed signal Y in Assumption III.1. Whereas Theorem III.3 shows con-
vergence of the gradient Ćow of L0

f , that is solutions to the ultra-fast diffusion Eq. (III.35),
such dynamics are hardly numerically tractable in practice due to the absence of the regu-
larization parameter λ. For this reason we are interested here in the asymptotic behavior
of the gradient Ćow of Lλ

f in the case where λ > 0. A difficulty is that, in the case λ = 0,
the proof of Theorem III.3 relies on the implicit behavior of Eq. (III.35) which preserves
the density of solutions. Such a behavior is a priori not expected to hold when λ > 0. As a
consequence, the results in this section hold under supplementary regularity assumptions
on the solutions to Eq. (III.31).

III.5.1 Algebraic convergence rate

At Ąxed λ > 0, we are able to obtain convergence towards the minimizer µ̄λ
f of Lλ

f under
mild regularity assumptions on solutions to the gradient Ćow Eq. (III.31). SpeciĄcally, for
a probability measure µ ∈ P(Ω) and a function h ∈ C1 we deĄne the weighted Sobolev
seminorm of h as:

∥h∥Ḣ1(µ) :=

⎤∫︂

Ω
∥∇h∥2dµ

⎣1/2

.

Then, for a measure ν ∈ M(Ω) s.t.
∫︁

Ω dν = 0, the negative weighted Sobolev seminorm
∥ν∥Ḣ−1(µ) is deĄned by duality with Ḣ1(µ):

∥ν∥Ḣ−1(µ) := sup
∥h∥

Ḣ1(µ)≤1

∫︂

Ω
hdν .
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The following Theorem III.4 states convergence of Lλ
f towards 0 with an algebraic conver-

gence rate provided ∥µt − ν̄
m̄∥Ḣ−1(µt) stays bounded along the gradient Ćow. As discussed

below, since the domain Ω is compact, this assumption is satisĄed for example when both
distribution have bounded log-densities. The arguments are similar to the one presented
in [Glaser, 2021], where the authors consider an inĄmal convolution between a kernel dis-
crepancy and the KL-divergence. Importantly, the obtained convergence rate depends on
the bound on ∥µt − ν̄

m̄∥Ḣ−1(µt) but is independent of λ > 0.

Theorem III.4. Let Assumption III.1 hold. Consider λ > 0 and some initialization µ0 ∈
P(Ω). Let (µt)t≥0 be the gradient flow of Lλ

f starting from µ0 in the sense of Eq. (III.31).
Assume that:

• ν̄ is a positive measure and f is s.t. min f = f(m̄) = 0 where m̄ := ν̄(Ω) > 0.

• the gradient flow (µt)t≥0 is s.t. ∥ ν̄
m̄ − µt∥Ḣ−1(µt) is bounded, uniformly over t ≥ 0.

Then there exists a constant C > 0 s.t. for any t ≥ 0:

Lλ
f (µt) ≤

(︂

Lλ
f (µ0)−1 + Ct

⎡−1
.

In particular, µt converges to µ̄ = ν̄/m̄ when t tends to +∞.

Proof. Note that it follows from the assumptions on f and ν̄ that inf Lλ
f = 0 and that

this inĄmum is attained only for µ = ν̄/m̄. Thus, the last statement on the convergence
of µt follows from the convergence of Lλ

f (µt) to 0 and from the lower semicontinuity of Lλ
f

(see Section III.3).
To obtain the convergence rate, consider µ ∈ P(Ω) and note that by Eq. (III.19) we

have Lλ
f (µ) = maxα K(α, µ), where for every α ∈ L2(ρ):

K(α, µ) :=

∫︂

Ω
(Φ⊤α)dν̄ −

∫︂

Ω
f∗(Φ⊤α)dµ− λ

2
∥α∥2

L2(ρ) ,

where f∗ is the Legendre transform of f . Let us denote by αλ = αλ
f [µ] the maximizer of

K(α, µ). Then, using the convexity of f∗, we have for every ω ∈ Ω:

f∗(0) + ∂f∗(0)(Φ⊤αλ)(ω) ≤ f∗((Φ⊤αλ)(ω)) .

Also by assumption ∂f(m̄) = 0 and hence by properties of the Legendre transform
∂f∗(0) = m̄. Also f∗(0) = −f(m̄) = 0 and after integrating w.r.t. ν̄ :

∫︂

Ω
(Φ⊤αλ)dν̄ ≤

∫︂

Ω
f∗(Φ⊤αλ)

dν̄

m̄
.

Then, replacing α by αλ in K and using the previous inequality:

Lλ
f (µ) = K(αλ, µ) ≤

∫︂

Ω
f∗(Φ⊤αλ)d(

ν̄

m̄
− µ) ≤

/︂
/︂
/︂f∗(Φ⊤αλ)

/︂
/︂
/︂

Ḣ1(µ)
∥ ν̄
m̄

− µ∥Ḣ−1(µ) .

Also, by the gradient Ćow equation Eq. (III.31), the dissipation of Lλ
f along the gradient

Ćow curve (µt)t≥0 is given for every t ≥ 0 by:

d

dt
Lλ

f (µt) = −
∫︂

Ω

/︂
/︂
/︂∇(f∗(Φ⊤αλ

t ))
/︂
/︂
/︂

2
dµt = −

/︂
/︂
/︂f∗(Φ⊤αλ

t )
/︂
/︂
/︂

2

Ḣ1(µt)
,
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where αλ
t = αλ

f [µt] maximizes K(α, µt). Thus using the previous inequality on Lλ
f (µt) and

that ∥ ν̄
m̄ − µt∥Ḣ−1(µt) is bounded, uniformly over t ≥ 0, we get for every t ≥ 0:

d
dt

Lλ
f (µt) ≤ −C−1Lλ

f (µt)2 ,

for some constant C > 0. The desired convergence rate follows from this inequality by
applying a Grönwall lemma.

Let us comment on the assumptions of Theorem III.4. The second assumption specif-
ically, is automatically satisĄed in case ν̄ has bounded density and µt has bounded log-
density, uniformly over t ≥ 0. Indeed, for µ ∈ P(Ω) having a lower-bounded log-density,
we have that the weighted Sobolev seminorm ∥.∥Ḣ1(µ) is lower-bounded by the classical
Sobolev seminorm ∥.∥Ḣ1(π), where we recall that π is the (normalized) Lebesgue measure
over Ω. Precisely, if π ≪ µ and dπ/dµ ≤ C1 then for every f ∈ C1:

∥f∥Ḣ1(π) ≤ C1∥f∥Ḣ1(µ) .

In this case, the weighted negative Sobolev seminorm ∥.∥Ḣ−1(µ) is upper-bounded by the
seminorm ∥.∥Ḣ−1(π) and for every ν ∈ M(Ω) with

∫︁

Ω dν = 0 we have:

∥ν∥Ḣ−1(µ) ≤ C1∥ν∥Ḣ−1(π) .

Moreover, this last quantity can be estimated by the Wasserstein distance. Indeed, for
probability measures having bounded log-densities, the Wasserstein distance W2 is equiva-
lent to the negative Sobolev seminorm ∥.∥Ḣ−1(π). If µ, ν ∈ P(Ω) are such that dµ

dπ ,
dν
dπ ≤ C2

for some constant C2 > 0 we have [Santambrogio, 2015, Lem. 5.33 and Thm. 5.34]:

∥µ− ν∥Ḣ−1(π) ≤ C
1/2
2 W2(µ, ν) .

Finally, the Wasserstein distance W2(µ, ν) is always bounded by diam(Ω) which is Ąnite,
hence ensuring the second assumption of Theorem III.4 is satisĄed.

III.5.2 Convergence to ultra-fast diffusion.

The algebraic convergence rate stated in the above Theorem III.4 in the case λ > 0 stands
in contrast with the faster linear convergence stated in Theorem III.3 in the case λ = 0. For
this reason, we are interested in comparing the gradient Ćow dynamics with and without
regularization.

Below we assume f(t) = ♣t♣r/(r − 1) for some r > 1 and Theorem III.5 shows local
uniform in time convergence of gradient Ćows of Lλ

r to gradient Ćows of L0
r , i.e. solutions to

the ultra-fast diffusion equation Eq. (III.34), when the regularization strength λ vanishes.
To obtain such a result we assume regularity on the density ratio dν̄

dµλ
t

. Namely, we assume

that the Legendre-conjugate ∂f( dν̄
dµλ

t

) stays bounded in the RKHS H, deĄned as the image

of the convolution operator Φ⊤ : L2(ρ) → C0(Ω) (Eq. (III.47)). Using classical results
from the theory of inverse problems, such a source condition ensures the dual variable
α ∈ L2(ρ) stays uniformly bounded for λ > 0 (Lemma III.5.1). Therefore, provided H is
sufficiently regular, such a regularity assumption ensures compactness of the Wasserstein
gradient ∇Lλ

r [µt] = ∇f∗(Φ⊤αλ
t ) in C1 and allows passing to the limit in Eq. (III.32) to

obtain Eq. (III.36).
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Theorem III.5. Assume Assumption III.1 hold with ν̄ a positive measure with bounded
log-density, f(t) = ♣t♣r/(r − 1) for some r > 1 and the assumptions of Theorem III.1
and Theorem III.2 are satisfied. Consider some initialization µ0 ∈ P(Ω) s.t. µ0 has
bounded log-density. For λ ≥ 0, let (µλ

t )t≥0 be the gradient flow of Lλ
r , starting from µ0 in

the sense of Definition III.1 (when λ > 0) and Definition III.2 (when λ = 0). Moreover,
for H defined by Eq. (III.47), assume H is compactly embedded in C1(Ω) and ∂f( dν̄

dµλ
t

) is

bounded in H, locally uniformly over t ≥ 0 and uniformly over λ > 0. Then for any T ≥ 0:

lim
λ→0+

sup
t∈[0,T ]

W2(µ0
t , µ

λ
t ) = 0 .

Proof. For λ > 0, the curves (µt)
λ are gradient Ćows for the functionals Lλ

r and classical
computations show that for every t, s ≥ 0:

W2(µλ
t , µ

λ
s )2 ≤ ♣t− s♣

\︄
\︄
\︄Lλ

r (µλ
t ) − Lλ

r (µλ
s )
\︄
\︄
\︄ ≤ ♣t− s♣L0

r(µ0) ,

where we used that the functionals Lλ
r converge pointwise from below to L0

r . Thus, for
T ≥ 0, the sequence (µλ

t )t∈[0,T ] is uniformly equicontinuous with value in the compact
space P(Ω) and Arzela-Ascoli’s theorem ensures the existence of a subsequence λn → 0+

s.t.:

(µλ
t )t∈[0,T ]

n→∞−−−→ (µt)t∈[0,T ] ∈ C0([0, T ],P(Ω)) .

To prove the result one needs to identify µt with µ0
t and the supplementary regularity

assumptions on µλ
t are sufficient for this purpose. Let us Ąx some t ∈ [0, T ] and denote by

uλ
t = uλ

f [µλ
t ] the minimizer in Eq. (III.13), νλ

t ∈ M(Ω) the minimizer in Eq. (III.18) s.t.
dνλ

t

dµλ
t

= uλ
t and αλ

t ∈ L2(ρ) the maximizer in Eq. (III.19).

Then for every λ > 0, since µ0 has bounded log-density we have by the Ćow-map
representation in Proposition III.4.1 that µλ

t has bounded log-density. Also, since ν̄ is
positive with bounded log-density and Φ⋆ is injective, we have that u†

t := dν̄
dµλ

t

is the unique

solution to Eq. (III.14). But then, by the characterization of the RKHS H in Theorem III.6,
we have that Φ⊤ : L2(ρ) → H is a partial isometry and the assumption that ∂f( dν̄

dµλ
t

) ∈ H
is equivalent to a source condition of the form Eq. (III.38). Hence by Lemma III.5.1, the
dual variable αλ

t is bounded in L2(ρ), uniformly over λ > 0, which implies that, up to
extraction of a subsequence, Φ⊤αλ

t converges to some ht in C1(Ω).

Also for every λ > 0, by the duality relations in Eq. (III.20), we have dνλ
t

dµλ
t

= ∂f∗(Φ⊤αλ
t )

and hence Ů recalling that f(t) = ♣t♣r/(r− 1) for some r > 1 Ů dνλ
t

dµλ
t

→ ∂f∗(ht) in C0(Ω).

Since Lλ
r (µλ

t ) ≤ L0
r(µ0) is bounded we have by Eq. (III.18) that νλ

t → ν̄ narrowly and then
for every φ ∈ C0(Ω):

∫︂

Ω
φdνλ

t =

∫︂

Ω
φ

dνλ
t

dµλ
t

dµλ
t

λ→0+

−−−−→
∫︂

Ω
φdν̄ =

∫︂

Ω
φ∂f∗(ht)dµt .

This shows that ν̄ is absolutely continuous w.r.t. µt and that dν̄
dµt

= ∂f∗(ht). By duality,

this is equivalent to ht = ∂f( dν̄
dµt

), which shows that Φ⊤αλ
t converges to ht in C1(Ω).

Finally, using the gradient Ćow equation in Eq. (III.32), the previously described con-
vergence of Φ⊤αλ

t is sufficient to have for every test function φ ∈ C∞
c ((0, T ) × Ω):

∫︂ T

0

∫︂

Ω

⎤

∂tφt − 1

2
∇φt · ∇f∗(Φ⊤αλ

t )

⎣

dµλ
t dt = 0

λ→0+

−−−−→
∫︂ T

0

∫︂

Ω

⎤

∂tφt − 1

2
∇φt · ∇f∗(∂f(

dν̄

dµt
))

⎣

dµtdt = 0 .
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Since f(t) = ♣t♣r/(r − 1) for some r > 1 the above equation is equivalent to Eq. (III.36)
which shows µt is the weak solution starting from µ0 of the ultra-fast diffusion equa-
tion Eq. (III.34) according to DeĄnition III.2, that is µt = µ0

t .

The proof of the above Theorem III.5 relies on the following result on solutions to in-
verse problems with nonlinear regularization [Benning, 2018]. The following Lemma III.5.1
is similar to [Iglesias, 2018, Prop. 3].

Lemma III.5.1. Assume f satisfies Assumption III.2 and Assumption III.1 holds. For
µ ∈ P(Ω), let u† ∈ L1(µ) be a solution of Eq. (III.14). We say u† satisfies a source
condition if there exists α ∈ L2(ρ) s.t.

Φ⊤α ∈ ∂f(u†) in L1(µ). (III.38)

Then in this case, noting α† ∈ L2(ρ) the α of minimal norm satisfying the above source
condition, we have for every λ > 0:

∥αλ
f [µ]∥L2(ρ) ≤ ∥α†∥L2(ρ) and αλ

f [µ] λ→0+

−−−−→ α† ,

where αλ
f [µ] is the solution to Eq. (III.19).

Proof. Let u† ∈ L1(µ) and α† ∈ L2(ρ) be as in the statement. By the source condi-
tion Eq. (III.38) we have in L1(µ):

−f∗(Φ⊤α†) + (Φ⊤α†)u† ≥ f(u†)

and integrating w.r.t. µ and using that
∫︁

Ω(Φ⊤α†)u†dµ =
˜︁

α†, Y
˜︂

L2(ρ)
we obtain:

−
∫︂

Ω
f∗(Φ⊤α†)dµ+

˜︁

α†, Y
˜︂

L2(ρ)
≥
∫︂

Ω
f(u†)dµ = inf

Φµ·u=Y

∫︂

Ω
f(u)dµ .

Thus, α† achieves the supremum in Eq. (III.19) with λ = 0 and we have for any α ∈ L2(ρ):

−
∫︂

Ω
f∗(Φ⊤α†)dµ+

˜︁

α†, Y
˜︂

L2(ρ)
≥ −

∫︂

Ω
f∗(Φ⊤α)dµ+ ⟨α, Y ⟩L2(ρ) .

Moreover, for λ > 0, noting αλ := αλ
f [µ], we have by deĄnition:

−
∫︂

Ω
f∗(Φ⊤αλ)dµ+

˜︁

αλ, Y
˜︂

L2(ρ)
− λ

2
∥αλ∥2

L2(ρ)

≥ −
∫︂

Ω
f∗(Φ⊤α†)dµ+

˜︁

α†, Y
˜︂

L2(ρ)
− λ

2
∥α†∥2

L2(ρ) .

Substracting the two previous inequalities and simplifying gives:

∥αλ∥L2(ρ) ≤ ∥α†∥L2(ρ) .

Thus αλ is bounded, uniformly over λ > 0. For the convergence part, note that since it
is bounded in L2(ρ) it converges weakly to some α0 ∈ L2(ρ). Also, taking the optimality
condition for αλ, we obtain for every α ∈ L2(ρ):

−
∫︂

Ω
f∗(Φ⊤αλ)dµ+

˜︁

αλ, Y
˜︂

L2(ρ)
− λ

2
∥αλ∥2

L2(ρ)

≥ −
∫︂

Ω
f∗(Φ⊤α)dµ+ ⟨α, Y ⟩L2(ρ) − λ

2
∥α∥2

L2(ρ) ,
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and taking the limit when λ → 0+ leads to:

−
∫︂

Ω
f∗(Φ⊤α0)dµ+

˜︁

α0, Y
˜︂

L2(ρ)
≥ −

∫︂

Ω
f∗(Φ⊤α)dµ+ ⟨α, Y ⟩L2(ρ) ,

which shows α0 is also a maximizer of the dual problem Eq. (III.19) when λ = 0 and, as
a consequence, also satisĄes the source condition Eq. (III.38). But, by minimality of the
norm of α† and by weak lower semicontinuity of the norm we have:

∥α†∥L2(ρ) ≤ ∥α0∥L2(ρ) ≤ lim inf
λ→0+

∥αλ∥L2(ρ) ≤ ∥α†∥L2(ρ) ,

which shows that in fact αλ → α† strongly in L2(ρ).

III.6 Numerics

We report in this section numerical results. First, to assess the validity of our theory,
we tested the VarPro algorithm on simple low-dimensional examples with synthetic data:
experiments with a 1-dimensional feature space are detailed in Section III.6.1 and supple-
mentary experiments in 2-d are detailed in Section III.B. Those experiments indicate that,
when the regularization is sufficiently low, the VarPro dynamic indeed enters an ultra-fast
diffusion regime where the student feature distribution converges to the teacher’s at a
linear rate. Moreover, if the stepsize is sufficiently small, the VarPro dynamic can also be
efficiently approximated by a two-timescale learning strategy.

Finally, to investigate the large-scale applicability and generalization capabilities of
the VarPro algorithm, we tested it on an image classiĄcation problem with the CIFAR10
dataset [Krizhevsky, 2009] and compare its performances with other standard stochastic
optimization methods. Those results are detailed in Section III.6.2.

The code for reproducing the results is available at: https://github.com/rbarboni/

VarPro.

III.6.1 Single-hidden-layer neural networks with 1-dimensional feature

space

We tested the VarPro algorithm for the training of a simple SHL with features on the
1-dimensional sphere S

1. The feature space is here Ω = S
1, the data dimension is d = 2,

and the feature map is given by ϕ : (ω, x) ∈ S
1 × R

2 ↦→ ReLU(ω⊤x) where ReLU is the
Rectified Linear Unit activation. Recalling Eq. (III.1), we thus consider a SHL of width
M deĄned for inner weights ¶ωi♢M

i=1 ∈ (S1)M and outer weights ¶ui♢i=1 ∈ R
M by:

F¶(ωi,ui)♢ : x ∈ R
2 ↦→ 1

M

M∑︂

i=1

uiReLU(ω⊤
i x) . (III.39)

We consider a target signal Y that is given by a teacher network of width M̄ :

∀x ∈ R
2, Y (x) =

1

M̄

M̄∑︂

i=1

ReLU(ω̄⊤
i x) .

The teacher feature distribution is hence µ̄γ = 1
M̄

∑︁M̄
i=1 δω̄i

with i.i.d. features ω̄i ∼ µγ

where, for γ > 0, we consider µγ :=
(︂

2
3δω∗

1
+ 1

3δω∗
2

⎡

⋆ πγ . The target feature modes are
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Remark III.6.1. Note that, as explain above, for numerical stability, one can not consider
an arbitrarily large time-scale parameter η and we fix here η = λM . In this setting, the
ratio between the lerning rates of inner and outer weights is given by η

Mτ = λ
τ . Therefore,

we can only expect to be in the two-timescale regime, i.e. when the two-timescale gradient
descent is a good approximation of VarPro, if the stepsize τ is chosen s.t. τ ≪ λ.

We stress that, for low-regularization regimes, this can be numerically prohibitive and
VarPro, i.e. exact optimization of the outer weights at each step, can provide an efficient
alternative to gradient descent. Interestingly, we in fact observe in our case that, as
soon as τ ≫ λ and thus η ≫ Mτ (which for examples happens here for λ = 10−4), the
VarPro algorithm (Eq. (III.42)) efficiently learns the teacher feature distribution (see e.g.
Fig. III.5), whereas two-timescale gradient descent (Eq. (III.44)) does not converge.

In this setting we train SHLs of varying width using either the VarPro algorithm
(Eq. (III.42)) or the two-timescale gradient descent algorithm (Eq. (III.44)) and report
results in Fig. III.7. As predicted, one can observe the two dynamics are very close in the
case case of a sufficiently high regularization, here λ ≥ 10−2, for which we have η ≫ Mτ .
This supports the fact that, in this regime, the VarPro dynamic can be obtained as the
two-timescale limit of gradient descent. On the other hand, the two dynamics signiĄcantly
differ in the low regularization regime λ = 10−3 for which we have η = λM ≃ Mτ . In
this case, independently of the width M , the VarPro algorithm converges at a linear rate,
while two-timescale gradient descent is slower and even seems to introduce a bias in the
learned feature distribution. An explanation is that, in this regime, the two-timescale
gradient descent quickly deviates from the ultra-fast diffusion dynamic, which one can
observe in the last column of Fig. III.7. Overall, the most favorable setting seems to be
when λ = 10−2. Indeed, in this case η = λM ≫ τM s.t. two-timescale gradient descent
efficiently emulates the VarPro dynamic, while λ ≪ ∥Kµ∥op ≃ 0.5, the spectral norm of
tangent kernel, s.t. both dynamics beneĄt from the linear convergence rate of ultra-fast
diffusion (see also Fig. III.5).

III.6.2 VarPro for image classification on CIFAR10

We conclude this section by performing experiments on an image classiĄcation task with
the CIFAR10 dataset [Krizhevsky, 2009]. We thereby aim at testing the large scale appli-
cability of the VarPro algorithm. Note that applications of variable projection strategies
to the training of deep neural network architectures were also studied in [Newman, 2021].
However, such setting goes outside of the scope of the theory developed in this chapter as
the neural network can no longer be represented as a linear operator acting on measures.

We consider a residual neural network (ResNet) architecture with 20 layers and 0.27M
parameters, whose precise description can be found in [He, 2016a, Sec. 4.2]. This model
has a Euclidean parameter space Ω and for parameters ω ∈ Ω and images x ∈ R

3×32×32

it produces features which we denote by ResNet(ω, x) ∈ R
M , with M = 64. We consider

the last fully connected layer separately as a weight matrix U ∈ R
c×M with here c = 10

the number of classes. Overall, for parameters (ω,U) ∈ Ω × R
c×M and an input image

x ∈ R
3×32×32, the output of the model is given by:

F(θ,U)(x) :=
1
M
U · ResNet(ω, x) ∈ R

c .

To apply the VarPro algorithm we need to have an efficient way of computing the exact
projection of the linear parameters U . For this purpose and instead of a cross-entropy
loss, we consider here simply the square error between the outputs of our model and the
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true labels converted to one-hot vectors y ∈ ¶0, 1♢c. In this manner, the training risk for
a batch of data D and parameters (ω,U) ∈ Ω × R

c×M reads:

R̂λ
D(ω,U) :=

1
2#D♣

∑︂

(x,y)∈D

∥F(ω,U)(x) − y∥2 +
λ

2M
∥U∥2 . (III.45)

We then consider training our model with an adaptation of the SGD algorithm with
momentum described in Eqs. (45) and (46). For an initialization (ω0, U0) ∈ Ω × R

c×M , a
timestep τ > 0 and a momentum parameter m > 0 the training dynamic reads:

∀k ≥ 0,

∏︂

⨄︂

⋃︂

Uk+1 = mUk + (1 − m)Ūk ,

ωk+1 = ωk − Mτ
λ ∇ωR̂λ

Dk
(ωk, Uk+1) .

(III.46)

where Dk is the mini-batch at step k and Ūk is the corresponding projection of the outer
weights i.e. Ūk ∈ arg minU∈Rc×M R̂λ

Dk
(ωk, U). The introduction of the momentum param-

eter m > 0 is here to compensate the variability of the projection Ūk w.r.t. the sampling
of mini-batches at each step. Indeed, intuitively, for evaluation on test-data, rather than
having a classiĄer computed only on the last mini-batch, it is preferable to have an average
of the last computed classiĄers.

Experimental setting In practice, we Ąnd it effective to consider a regularization
strength λ = 10−3, a momentum m = 0.9 and a stepsize τ = 103. We consider dif-
ferent values of the batch size #D ∈ ¶64, 128, 256, 512, 1024♢. We train our model by
performing 110 passes over the training set, evaluating the model accuracy on the test set
in-between each pass. The stepsize is divided by 2 for the last 10 passes on the training
set. Note that this setting allows for a fair comparison of performances with the results
presented in [He, 2016a, Sec. 4.2] for the training of ResNets on the CIFAR10 dataset.
We also follow the same data-augmentation procedure.

Comparison with other stochastic optimization methods We compare the above
described VarPro algorithm (Eq. (III.46)) with other stochastic optimization methods for
the minimization of the training risk in Eq. (III.45). We compare with standard Stochastic
Gradient Descent (SGD) on the full parameterization (ω,U) ∈ Ω×R

c×M with momentum
m = 0.9 and stepsize τ = 10−3. We also compare with the Shampoo algorithm [Gupta,
2018] which is a preconditioned gradient method1 and set the learning rate to τ = 10−2.

Fig. III.8 reports the evolution of the training risk (Eq. (III.45)) along training. One
can observe that, in terms of minimization of the training risk, performances of VarPro
at convergence are similar to the one of SGD and better than Shampoo. Compared with
these last two methods, the convergence speed of VarPro however seems to be slower
during the Ąrst stages of training. Behavior of the methods w.r.t. the batch size is also
different. While the batch size has no or little inĆuence on the convergence speed of SGD or
Shampoo, one can observe that the VarPro algorithm tends to converge more slowly when
the batch size increases. Since this method is based on the exact resolution of a quadratic
minimization problem on each mini-batch at each step, an explanation is thus that this
subproblem becomes less well-conditioned when the size of the mini-batches increases.

Fig. III.8 reports the evolution of the top-1 accuracy of the model on the test set. All
optimization methods seems to achieve the same generalization performances on the test
set, that is more than 90% accuracy, which is in par with the 91.25% reported for the

1We used the implementation from https://github.com/moskomule/shampoo.pytorch
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III.7 Conclusion

In this chapter we have investigated the convergence of gradient based methods for the
training of mean-Ąeld models of shallow neural networks. To this end, we have adopted a
Variable Projection (VarPro) strategy, which eliminates the linear parameters and reduces
the training problem to the learning of the nonlinear features. Using tools from the theory
of Wasserstein gradient Ćows, we have shown theoretically that, when the regularization
strength λ vanishes, the training dynamic converges, under regularity assumptions, to
solutions of weighted ultra-fast diffusion PDEs (Theorem III.5). In such a low regulariza-
tion regime, this allows establishing convergence of the learned feature distribution to the
teacher’s at a linear rate (Theorem III.3). Moreover, in presence of regularization, we also
obtain a quantitative convergence result but with a slower algebraic rate (Theorem III.4).

Our theoretical predictions are supported by numerical results on simple experiments
with synthetic data. One can observe that, when the regularization strength λ is negligible
compared to the tangent kernel, the VarPro and ultra-fast diffusion dynamics are similar
and converge to the teacher feature distribution at a linear rate (Fig. III.5). Moreover,
if the time step is sufficiently small, this dynamic is also recovered with a simple two-
timescale gradient descent algorithm (Fig. III.7). Finally, experiments with a ResNet
architecture on the CIFAR10 dataset show that a VarPro strategy can be easily adapted
to the training of complex architectures on large datasets.

We conclude by mentioning possible future research directions:

• On a theoretical perspective, our convergence results in Section III.5 hold under
regularity assumptions on the training dynamic. It would be interesting to see if one
can relax or ensure these assumptions, possibly by strengthening Assumption III.1.

• We have considered here simple 2-layer neural network architectures but, as pointed
out in Chapter II, the learning of good nonlinear representations of the data also
plays an important role in the training of deep architectures such as ResNets or
Transformers [Gao, 2024]. It might thus be interesting to see in what extent the
mathematical framework developed in Chapter I could be extended to model two-
timescale approaches for the training of deeper architectures. Ultimately, an objec-
tive could to relax the convergence conditions obtained in Section II.5 by ensuring
the learning of good feature representations during training. A difficulty is that, in
deep architectures, separability of the regression problem w.r.t. linear and nonlinear
variables of each layer is lost due to composition.
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Appendices

III.A Positive definite kernels and RKHS

We recall in this section basic properties on the theory of Reproducing Kernel Hilbert
Spaces and refer to classical textbooks for a complete presentation of the topic [Steinwart,
2008; Schölkopf, 2002]. In this chapter we consider a mapping ϕ : Ω ×R

d → R as well as a
probability measure ρ ∈ P(Rd). This choice of ϕ and ρ determines a symmetric, positive
definite kernel [Steinwart, 2008, Def. 4.15] κ : Ω × Ω → R deĄned by:

∀ω, ω′ ∈ Ω, κ(ω, ω′) :=
∫︂

X
ϕ(ω, x)ϕ(ω′, x)dρ(x) =

⟨︁
ϕ(ω, .), ϕ(ω′, .)

/︄

L2(ρ) .

Thus, associated to κ is a (uniquely deĄned) structure of Reproducing Kernel Hilbert
Space (RKHS) H with scalar product ⟨., .⟩H, that is a Hilbert space of functions on Ω such
that [Steinwart, 2008, Def. 4.18]: (i) κ(ω, .) ∈ H for every ω ∈ Ω and (ii) the following
reproducing property holds:

∀h ∈ H, ω ∈ Ω, h(ω) = ⟨h, κ(ω, .)⟩H .

Following the deĄnition of κ, L2(ρ) is a feature space for H and ϕ a feature map [Steinwart,
2008, Def. 4.1]. Also, H can be isometrically identiĄed as a subspace of L2(ρ) and the
convolution with ϕ is a partial isometry [Steinwart, 2008, Thm. 4.21]. Precisely, we have

H =
{︃

h : Ω → R : ∃α ∈ L2(ρ) s.t. h =
∫︂

Rd
ϕ(., x)α(x)dρ(x)

}︃

and the RKHS norm on H satisĄes:

∀h ∈ H , ∥h∥H = inf
{︃

∥α∥L2(ρ) : h =
∫︂

Rd
ϕ(., x)α(x)dρ(x)

}︃

. (III.47)

In this chapter, we always work with the following minimal assumption on the feature
map ϕ:

Assumption III.3 (Assumption on ϕ).
The feature map ϕ is in L2(ρ, C0). In particular, it implies the kernel κ is continuous.

Kernel embeddings and kernel discrepancy between measures The above as-
sumption is sufficient to ensure H is included in C(Ω) and guarantees the existence of ker-
nel embeddings for Ąnite Borel measures [Muandet, 2017; Gretton, 2012]. For a measure
ν ∈ M(Ω) its kernel embedding Mκ(ν) is deĄned as the unique element of H satisfying:

∀h ∈ H,
∫︂

Ω
hdν = ⟨h,Mκ(ν)⟩H . (III.48)

Equivalently, the kernel embedding is given by the Bochner integralMκ(ν) =
∫︁

Ω κ(., ω)dν(ω) ∈
H. This embedding deĄnes a discrepancy between measures by seeing them as element
of the Hilbert space H. For two measures ν, ν ′ ∈ M(Ω) the Maximum Mean Discrepancy
(MMD) between ν and ν ′ is deĄned as [Muandet, 2017; Gretton, 2012]:

MMDκ(ν, ν ′) :=
/︂
/︂Mκ(ν) −Mκ(ν ′)

/︂
/︂

H .
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Alternatively, Assumption III.3 is sufficient to ensure the convolution Φ⋆ : M(Ω) → L2(ρ)
deĄned in Eq. (III.4) is a bounded operator and by construction we have:

MMDκ(ν, ν ′) =
⎤∫︂∫︂

Ω×Ω
κ(ω, ω′)d(ν − ν ′)(ω)d(ν − ν ′)(ω′)

⎣1/2

=
/︂
/︂Φ ⋆ (ν − ν ′)

/︂
/︂

L2(ρ) .

(III.49)

The discrepancy MMDκ is in particular a distance between measures whenever the kernel
κ is universal, that is when the associated RKHS H is dense in the space of continuous
functions on Ω [Micchelli, 2006; Sriperumbudur, 2011]. One can show this condition is
equivalent to an injectivity assumption on Φ⋆.

Lemma III.A.1 (see also [Micchelli, 2006, Prop. 1]). Let ϕ satisfy Assumption III.3.
Then Φ⋆ : M(Ω) → L2(ρ) is injective if and only if H is dense in the space C0(Ω) of
continuous functions over Ω. In this case, MMDκ is a distance on M(Ω).

Proof. The fact the MMD is a distance on M(Ω) when Φ⋆ is injective directly follows
from Eq. (III.49). For the direct implication, assume Φ⋆ is injective and consider some
measure ν ∈ H⊥ i.e. such that for every h ∈ H we have

∫︁
hdν = 0. Then by the

characterisation in Eq. (III.47) we have for every α ∈ L2(ρ):

0 =
∫︂

Ω

⎤∫︂

Rd
ϕ(ω, x)α(x)dρ(x)

⎣

dν(ω) = ⟨α,Φ ⋆ ν⟩L2(ρ) .

Hence Φ ⋆ ν = 0, implying ν = 0 and thus that H⊥ = ¶0♢ i.e. H is dense in C0(Ω) by
Hahn-Banach theorem. For the converse implication, assume that H is dense in C0(Ω) and
consider some ν ∈ M(Ω) s.t. Φ ⋆ ν = 0. Then for α ∈ L2(ρ) we have ⟨α,Φ ⋆ ν⟩L2(ρ) = 0
and by similar calculations this implies ν ∈ H⊥ i.e. ν = 0.

Kernel and integral operator In this chapter we have used properties of the RKHS
H seen as a subspace of the Hilbert space L2(µ) for probability measures µ ∈ P(Ω). For
such a probability measure µ ∈ P(Ω), it indeed follows from Assumption III.3 that H is
compactly embedded in L2(µ) [Steinwart, 2012, Lem. 2.3]. Also, the kernel deĄnes an
integral operator Jµ : L2(µ) → L2(µ) given by:

∀f ∈ L2(µ) , Jµ · f =
∫︂

Ω
k(., ω)f(ω)dµ(ω) .

Then Jµ is a compact, self-adjoint and positive operator and, by the spectral theorem, it
can be diagonalized in an orthonormal basis (ei)i≥0 of L2(µ) with associated eigenvalues
(λi)i≥0 s.t. λ1 ≥ λ2 ≥ ... ≥ 0. In particular, Jµ = Φ⊤

µ Φµ with Φµ : L2(µ) → L2(ρ) the
feature operator deĄned in Eq. (III.7), thus (

√
λi)i≥0 are the (right) singular values of Φµ

(which is a compact operator) and, if Φ⋆ is injective, then λi > 0 for every i ≥ 0. Mercer’s
theorem gives a representation of the kernel κ and of the associated RKHS H in terms of
this eigenvalue decomposition [Steinwart, 2008, Thm. 4.51].

Theorem III.6 (Mercer representation of RKHSs). Assume Φ⋆ is injective and let µ ∈
P(Ω) be a probability measure with full support on Ω. Consider (λi)i≥0 and (ei)i≥0 the
eigenvalue decomposition of the operator Jµ. Then we have:

∀ω, ω′ ∈ Ω × Ω , κ(ω, ω′) =
∑︂

i≥0

λiei(ω)ei(ω′) ,
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where the convergence is absolute and uniform over Ω × Ω. Moreover

H =

∏︂

⨄︂

⋃︂

∑︂

i≥0

ai

√︁

λiei : (ai)i≥0 ∈ ℓ2(N)

⎫

⋀︂

⋂︂

is the RKHS associated to the kernel κ and the scalar product ⟨., .⟩H is given for every
f =

∑︁

i≥0 ai

√
λi and g =

∑︁

i≥0 bi

√
λi by ⟨f, g⟩H =

∑︁

i≥0 aibi.

III.B Radial basis function neural network on the 2-dimensional

torus

We performed numerical experiments to test the performance of the VarPro algorithm
for the training of Radial Basis Function (RBF) neural networks. Notably, due to the
particular structure of the architecture, the learning problem corresponds to performing
a deconvolution, which has important applications in signal processing [De Castro, 2012;
Duval, 2015].

The feature space is here the 2-dimensional torus Ω = R2/4Z2 ⊂ R
2 and the data

dimension is d = 2. The RBF neural network architecture performs the convolution with
a kernel k : R2 → R and corresponds to considering the feature map ϕ : (ω, x) ↦→ k(ω−x).
We will use here the Laplace kernel k : x ∈ R

2 ↦→ 8 exp(−1
2∥[x]∥), where [x] represents the

projection of x in Ω = R2/4Z2. For features ¶ωi♢M
i=1 ∈ (Ω)M and outer weights ¶ui♢i=1 ∈ R

M

the RBF neural network model reads:

F¶(ωi,ui)♢ : x ∈ R
2 ↦→ 1

M

M∑︂

i=1

uik(ωi − x) = (k ⋆ ν̂)(x) , (III.50)

where ν̂ = 1
M

∑︁M
i=1 uiδωi

∈ M(Ω) and ⋆ is the convolution operator. We consider a teacher

feature distribution µ̄γ = 1
M̄

∑︁M̄
i=1 δω̄i

for features ¶ω̄i♢1≤i≤M̄ ∈ ΩM̄ and the target signal
Y is thus:

∀x ∈ R
2, Y (x) =

1

M̄

M̄∑︂

i=1

k(ωi − x) = (k ⋆ µ̄γ) .

The teacher features are i.i.d. with ω̄i ∼ µγ = (1
2δω∗

1
+ 1

2δω∗
2
) ⋆ πγ , where ω∗

1 = (−1, 0),
ω∗

2 = (1, 1) are two target modes and πγ is the product measure with density:

∀(z1, z2) ∈ R2/4Z2, πγ(z1, z2) ∝ 1

1 + γ sin2(z1π/4)
× 1

1 + γ sin2(z2π/4)
.

The parameter γ controls the shape of the distribution µγ such that in the large γ limit
one recovers µγ ≃ µ∞ := 1

2δω∗
1

+ 1
2δω∗

2
. A scatter plot of the teacher measure µ̄γ and of

the resulting teacher signal for γ = 100 are shown in Fig. III.10. Finally, we consider the
input data x to be distributed according to an empirical distribution ρ̂ = 1

N

∑︁N
i=1 δxi

with
i.i.d. standard Gaussian samples xi ∼ N (0, Id). In this setting we consider training the
model by performing a VarPro algorithm i.e. gradient descent over the reduced risk, as
in Eq. (III.42).

Experimental setting We test the performances of the VarPro algorithm (Eq. (III.42))
for the training of a RBF neural network (Eq. (III.50)) of varying widthM ∈ ¶32, 128, 512, 1024♢.
We use either the ŞbiasedŤ quadratic regularization fb : t ↦→ 1

2 t
2 or the ŞunbiasedŤ
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Conclusion

From a theoretical standpoint, the recent successes of learning algorithms have challenged
our current understanding and highlighted the need for developing new theoretical frame-
works. This line of research is driven by two objectives. First, although these models are
often treated as black-boxes, gaining a deeper understanding of how learning algorithms
work is essential for improving the interpretability of their predictions. Second, it can
guide the design of more efficient architectures and training methods, ultimately leading
to improved performance or reduced computational cost.

In this manuscript, we focused speciĄcally on the case of overparameterized architec-
tures, where the number of model parameters is large relative to the amount of training
data. Residual architectures form an important class of such models Ů encompassing
popular designs like ResNets and Transformers Ů thanks to the presence of skip connec-
tions, which enable the effective training of very deep networks. In this overparameterized
regime, we saw that the choice of a scaling scheme to normalize parameters as the size
of the model grows plays a critical role in the success of the learning process. Our study
concentrated in particular on the mean-Ąeld limit with respect to network width and on
the Neural ODE limit with respect to network depth in residual architectures.

These scaling choices are motivated not only by practical considerations, but also
by theoretical ones. From a practical perspective, mean-Ąeld neural networks tend to
exhibit stronger abilities to extract nonlinear representations from data, often resulting in
better generalization. Neural ODEs, on the other hand, allow for more efficient training
procedures. From a theoretical standpoint, Neural ODEs implement a smooth deformation
of the input space, which contributes to a simpler optimization landscape and helps avoid
spurious critical points. Also, for both shallow and deep architectures under the mean-
Ąeld scaling, relaxation of the training objective in a space of measure yields favorable
optimization properties. The training dynamics then correspond to interacting particle
systems, which are ŞmetricŤ gradient Ćows that can be analyzed through the lens of partial
differential equations.

Mean-field limits of NODEs In Chapter I, we investigated the training dynamics
of mean-Ąeld models of Neural ODEs (NODEs), which correspond to residual networks
of inĄnite depth and arbitrarily large width. To analyze the training process in this
dynamic, we developed a mathematical framework in which the model is parameterized by
probability measures over a product space of layers and parameters, subject to a uniform
marginal constraint on the space of layers. This parameter space is endowed with a
Conditional Optimal Transport (COT) metric, designed to reĆect the Euclidean geometry
of the ResNet parameter space.

In Section I.3, we showed that the gradient Ćow dynamics of deep ResNets can be
interpreted as a metric gradient Ćow with respect to the COT metric. As in the case
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of shallow architectures, this dynamic is governed by an advection partial differential
equation, whose well-posedness we established in Section I.3.4.

Convergence of training dynamics for NODEs In Chapter II, building on the
framework developed in Chapter I, we studied the convergence properties of the gradi-
ent Ćow dynamics arising in the training of deep ResNets. A key Ąnding is that, for
these models, the training risk satisĄes a local PolyakŰčojasiewicz (PŰč) inequality. This
structure allows us to establish linear convergence of the gradient Ćow toward an optimal
parameterization, under the assumption that the learning problem is sufficiently ŞeasyŤ
to solve. In Theorems II.6 and II.7, we quantiĄed this assumption in terms of the number
of training samples. We also veriĄed our theoretical results with numerical experiments
on large-scale image classiĄcation tasks.

This analysis underscores the pivotal role played by the structure of residual blocks
during training. SpeciĄcally, a lower bound on the PŰč constant is governed by the
conditioning of the tangent kernel associated with the residuals. We focused in particular
on the case of linearly parameterized residuals, such as random feature models, as well as on
the case of single-hidden-layer perceptrons. In both settings, we identiĄed the importance
of having a well-chosen distribution of features to ensure favorable convergence properties
for gradient Ćow.

Feature learning in shallow architectures Finally, in Chapter III, we investigated
feature learning behavior in the training of shallow neural network architectures. To this
end, we considered the Variable Projection (VarPro) algorithm, which can be interpreted
as a two-timescale version of gradient descentŮwhere the linear parameters are updated
ŞfasterŤ than the nonlinear ones. In a teacherŰstudent setting, we showed that this training
dynamic yields linear convergence in approximating the teacher distribution. In contrast,
existing convergence results for mean-Ąeld training of shallow neural networks typically
only describe qualitative convergence, without providing explicit rates.

Once again, our results highlight the power of relaxing the learning problem to the
space of parameter distributions, in which the training dynamics take the form of partial
differential equations. More precisely, we showed that, in a regime of small regularization,
the VarPro dynamics converge to the solution of a weighted ultra-fast diffusion equation
Ů a nonlinear PDE whose long-time behavior was established in the literature.

We also validated our theory through numerical experiments. On simple learning
tasks that satisfy our assumptions, we observed convergence towards ultra-fast diffusion.
Moreover, the VarPro algorithm can be adapted to achieve state-of-the-art performance
when training ResNets for image classiĄcation tasks.

Future research direction

Transformer architectures Transformer architectures now represent the prevailing
approach for solving image classiĄcation and language modeling tasks. Architecturally,
Transformers are also residual networks and can, like ResNets, be modeled by continuous-
time dynamics. However, the key difference lies in the nature of their residual blocks, which
are based on the attention mechanism described in Eq. (35). Unlike standard feedforward
neural networks, attention-based models deĄne sequence-to-sequence mappings that are
inherently permutation-equivariant. From a mathematical standpoint, this corresponds to
replacing the forward ODE in Eq. (42) with an interacting particle system governed by a
nonlocal advection PDE [Sander, 2022a; Geshkovski, 2025].
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Adapting our convergence results from Chapter II to the training of Transformer mod-
els thus represents an appealing research direction. Since our analysis relies on ensuring
the expressivity of the residual maps at each layer, this would require a deeper under-
standing of the approximation capabilities of attention mechanisms within the space of
permutation-equivariant sequence-to-sequence functions. Several recent works have begun
to explore this direction [Geshkovski, 2024; Furuya, 2024].

Neural SDE scaling The Neural ODE scaling Ů in which residual branches are scaled
by 1/D, with D denoting the network depth Ů in association with smooth initialization
of the weights can lead to more memory-efficient training of ResNets. However, it is
observed in practice that a scaling of 1/

√
D combined with random initialization of the

weights is more effective for feature learning and generalization [Yang, 2023]. Under
this alternative scaling and initialization, the inĄnite-depth limit of ResNets is no longer
described by a deterministic ODE, as in Eq. (42), but rather by a stochastic differential
equation (SDE) [Marion, 2025].

Adapting our theoretical framework from Chapters I and II to the training of Neu-
ral SDE models thus presents a compelling research direction. A key challenge would
be dealing with the inherently stochastic nature of the training dynamics. Some recent
approaches have begun to address this issue using the formalism of rough paths [Gassiat,
2024].

Feature learning in deeper architectures As in the case of shallow architectures, we
showed in Chapter II that learning meaningful feature representations from data is crucial
to the success of the training process. However, in contrast with Chapter III, we were not
able to quantify the extent to which such feature learning occurs during the training of
deep ResNets. A natural extension of our work would therefore be to design and analyze
algorithms that explicitly promote feature learning in deep neural networks.

In Chapter III, we studied the VarPro algorithm, which leverages the closed-form
solution of the regression problem with respect to the linear parameters to eliminate them
via partial optimization. A challenge in extending this strategy to deep architectures is
that such closed-form elimination is no longer possible due to the compositional structure
of multiple layers. However, we also interpreted VarPro as a two-timescale limit of gradient
descent. This suggests a promising direction: studying two-timescale variants of gradient
descent for the training of deep networks, and analyzing the limiting training dynamics as
the timescale separation parameter tends to inĄnity.

Stochastic optimization In this manuscript, we have primarily focused on the analysis
of deterministic training strategies, whereas in practice, stochastic optimization algorithms
are the workhorse of modern deep learning. These methods enable the training of large-
scale models on massive datasets and often improve generalization performance on unseen
data. A natural and exciting extension of our work would be to adapt the convergence
analyses from Chapters II and III to stochastic training frameworks.

From a mathematical perspective, the introduction of noise fundamentally alters the
training dynamics and raise important questions about the modeling of the noise pro-
cess. Several works have studied the training of shallow and deep networks under the
assumption of isotropic noise [Mei, 2018; Jabir, 2019; Chizat, 2022; Nitanda, 2022], lead-
ing in the mean-Ąeld limit to Langevin dynamics where a linear diffusion term is added
in Eq. (III.31). Although this assumption may be overly simplistic, Langevin dynamics
reveal a compelling connection with the theory of sampling algorithms and lead to strong
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convergence guarantees [Chewi, 2024]. A possible direction would be to try and extend
those results to more realistic noise models.

On the numerical side, our experiments in Section III.6 showed that adapting the
VarPro algorithm to a stochastic optimization setting requires speciĄc modiĄcations, such
as the introduction of a momentum term. It would be interesting to investigate under
what modeling assumptions such stochastic variants of VarPro lead to consistent mean-
Ąeld dynamics, and whether one can still establish convergence rates for the learning of
the feature distribution.
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