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Résumé

Les progrés récents des modeles d’apprentissage profond dans de nombreuses applica-
tions ont mis en lumiere la nécessité d’une meilleure compréhension de leurs dynamiques
d’entrainement. Dans cette these, nous contribuons a 1’étude théorique des algorithmes
de descente de gradient pour I’entrainement de réseaux de neurones surparamétrés. Des
travaux récents ont en effet montré que, pour des architectures peu profondes, il est pos-
sible d’obtenir de bonnes garanties de convergence en relaxant le probleme d’optimisation
dans ’espace des distributions de parametres.

Nous prolongeons cette approche au cas des architectures profondes en étudiant des
limites de champ-moyen de réseaux de neurones résiduels (ResNets). Ces modeles sont
paramétrés par des distributions sur le produit de I'espace des couches et d’un espace de
parametres, avec la contrainte d’'une marginale uniforme sur l’espace des couches. Dans
ce cadre, nous proposons de modéliser 'apprentissage comme un flot de gradient pour une
distance de Transport Optimal Conditionnel (TOC), une variante du transport optimal
classique incorporant cette contrainte de marginale. En nous appuyant sur la théorie des
flots de gradient dans les espaces métriques, nous démontrons I’existence et la cohérence de
ce flot avec 'entrainement des ResNets de largeur finie. Ce travail est également ’occasion
d’explorer plus en détail les propriétés du TOC et de sa formulation dynamique.

Nous étudions ensuite le comportement asymptotique des flots de gradient en nous
appuyant sur des inégalités de type Polyak-Lojasiewicz locales. Nous montrons que ces
inégalités sont génériquement satisfaites par les ResNets profonds, et établissons des ré-
sultats de convergence pour certains exemples d’architectures et d’initialisations : si le
nombre de neurones est fini mais suffisamment grand, et si le risque est suffisamment
faible & l'initialisation, alors le flot de gradient converge vers un minimiseur global.

Enfin, afin d’étudier ’émergence de représentations non-linéaires durant ’apprentissage,
nous considérons le cas de réseaux a une seule couche cachée avec une fonction de perte
quadratique. Pour ce probleme d’optimisation non convexe et de grande dimension, les
résultats existants sont souvent qualitatifs, ou fondés sur une analyse par le neural tan-
gent kernel, dans laquelle les représentations des données restent figées. Exploitant le
fait qu’il s’agit d’un probléme quadratique non-linéaire séparable, nous analysons un al-
gorithme de Variable Projection (VarPro) ou d’apprentissage d deuz vitesses qui permet
d’éliminer les variables linéaires et de réduire le probleme d’apprentissage a ’entrainement
des parametres non-linéaires. Dans un cadre “enseignant-éleve”, nous montrons que, dans
la limite d’'une régularisation nulle, la dynamique de la distribution des représentations
est décrite par une équation de weighted ultra-fast diffusion, permettant ainsi d’établir un
taux de convergence linéaire pour I’échantillonnage de la distribution enseignante.

Le code pour reproduire les résultats numériques présentés est en open source.

Mots clés : Théorie de 'apprentissage, Apprentissage profond, Optimisation, EDOs
neuronales, Flots de gradient Wasserstein
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Abstract

The recent successes of deep learning models across a wide range of applications have un-
derscored the need for a deeper understanding of their training dynamics. This research is
ultimately motivated by the design of more efficient architectures and learning algorithms.

In this PhD work, we contribute to the theoretical understanding of the dynamics
of gradient-based methods for the training of neural networks by studying the case of
overparameterized models. Indeed, a recent line of work has proven that, for shallow ar-
chitectures, good convergence guarantees can be obtained by relaxing the training problem
in the space of parameter distributions.

We extend this analysis to the case of deep architectures by studying mean-field models
of deep Residual Neural Networks (ResNets). These are parameterized by distributions
over a product set of layers and parameter space, with a uniform marginal condition on the
set of layers. We then propose to model training with a gradient flow w.r.t. the Conditional
Optimal Transport distance: a restriction of the classical Optimal Transport distance which
enforces the marginal condition. Relying on the theory of gradient flows in metric spaces,
we show the well-posedness of the gradient flow equation and its consistency with the
training of ResNets at finite width. In addition, this is an opportunity to study in more
detail the Conditional Optimal Transport distance, particularly its dynamic formulation.

We then study the asymptotic behavior of gradient flow curves by relying on local
Polyak-Lojasiewicz inequalities. We show such inequalities are generically satisfied by
deep ResNets and prove convergence for well-chosen examples of architectures and initial-
izations: if the number of neurons is finite but sufficiently large and the risk is sufficiently
small at initialization, then gradient flow converges to a global minimizer of the training
risk at a linear rate.

Finally, to study the learning of nonlinear features during training with gradient descent
we consider the case of shallow single-hidden-layer neural networks with square loss. For
this high-dimensional and non-convex optimization problem, most known convergence
results are either qualitative or rely on a neural tangent kernel analysis where hidden
representations of the data are fixed. Using that this problem belongs to the class of
separable nonlinear least squares problems, we consider a Variable Projection (VarPro) or
two-timescale learning algorithm, thereby eliminating the linear variables and reducing the
learning problem to the training of nonlinear features. In a “teacher-student” scenario, we
show that, in the limit where the regularization strength vanishes, the training dynamic
on the feature distribution corresponds to a weighted ultra-fast diffusion equation. This
provides a linear convergence rate for the sampling of the teacher distribution.

The code for reproducing the numerical results presented in this thesis is open-sourced.

Keywords : Machine learning theory, Deep learning, Optimization, Neural ODEs,
Wasserstein gradient flows
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Introduction en francais :
algorithmes, architectures et
modeles mathématiques pour
’apprentissage supervisé
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Au cours des derniéres années, ’apprentissage profond a connu des succes remarquables
dans un large panel d’applications, allant de la génération d’images et de textes au calcul
scientifique, et plus récemment & des taches de raisonnement telles que la résolution de
problémes mathématiques complexes. Cependant, bien qu’un nombre croissant de travaux
cherchent & apporter une meilleure compréhension des systemes d’IA et a améliorer leur
conception, ces succes dépassent souvent notre compréhension des mécanismes mathéma-
tiques sous-jacents.

D’un point de vue mathématique, ’entrainement des réseaux de neurones souléve de
nombreuses questions théoriques. D’une part, les problemes d’optimisation en jeu sont
généralement non-convexes et en tres grande dimension. Pourtant, des algorithmes sim-
ples, tels que la descente de gradient stochastique, obtiennent d’excellentes performances
en pratique. D’autre part, les réseaux de neurones sont capables d’interpoler de larges en-
sembles de données tout en généralisant efficacement. Cela va ainsi a I’encontre de certains
principes statistiques fondamentaux, tels que le compromis biais—variance ou la malédic-
tion de la dimension. Ces phénomenes soulignent donc la nécessité de nouveaux cadres
mathématiques capables de mieux décrire les dynamiques d’entrainement des réseaux de
neurones et leurs interaction avec les architectures et les structures de données. En par-
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ticulier, des travaux récents suggerent que les outils issus de 'analyse des équations aux
dérivées partielles (EDP) et du transport optimal peuvent apporter un éclairage précieux
sur ces dynamiques d’entrainement.

Dans ce manuscrit, nous adoptons un point de vue mathématique sur I'entrainement
des réseaux de neurones, fondé sur des outils d’optimisation et de théorie des équa-
tions aux dérivées partielles. Dans une limite d’architectures larges d’une part, la dy-
namique d’entrainement des réseaux peut étre décrite par des modeéles champ-moyen
issus des systemes de particules en interaction, correspondant a des flots de gradient
dans des espaces de distributions de probabilité. D’autre part, les architectures résidu-
elles sont étudiées dans leur limite de grande profondeur, laquelle conduit a des paysages
d’optimisation plus réguliers et & des dynamiques d’entrainement plus stables. Ces deux
régimes asymptotiques, grande largeur et grande profondeur, ne sont pas de simples con-
structions théoriques, mais refletent la structure des architectures modernes telles que les
ResNets ou les Transformers, qui sont fortement surparamétrées et au cceur des modeles
d’TA les plus performants actuellement.

1 Apprentissage supervisé

Dans I’ensemble de ce manuscrit, nous considérons un cadre d’apprentissage supervisé
englobant un grand nombre de taches classiques en apprentissage automatique. Nous
commencons par en décrire les principaux éléments constitutifs, avant de détailler plus
précisément les modeles et algorithmes étudiés dans ce manuscrit.

Jeu de données En apprentissage supervisé, la machine dispose d’'un jeu de données
D C X X Viarg constitué de paires de données d’entrée x € X et de réponses cibles associées
Y € Viarg- Ces données d’entrée et de sortie peuvent prendre des formes tres variées :

e Entrées : En raison de la grande flexibilité des méthodes d’apprentissage automa-
tique, les données d’entrée peuvent étre de nature diverse : images, sons, vidéos,
textes ou encore séries temporelles financieres. Un exemple d’application que nous
considérerons aux Chapter I et Chapter I1I est la classification d’images, ou les don-
nées d’entrée sont des images numériques encodées sous forme de tableaux d’entiers
sur 8 bits de taille n. X ny, X np, ol Ny, et ny désignent respectivement le nombre
de pixels en largeur et en hauteur, et n. le nombre de canaux (généralement n. = 1
pour les images en niveaux de gris et n. = 3 pour les images en couleur). Mathé-
matiquement, ces images peuvent étre modélisées comme des vecteurs dans ’espace
vectoriel X' = R™eXMwXnn

e Cibles : On distingue en général deux grandes catégories de taches d’apprentissage
supervisé : la classification et la régression. En classification, I’objectif est d’associer
chaque donnée d’entrée a l'une des classes d’un ensemble fini, représenté par des
étiquettes ou labels dans YViqrg = {1,...,C}, ot C > 1 est le nombre de classes.
Ces étiquettes peuvent également étre encodées sous forme de vecteurs one-hot dans
Viarg = {0, l}C. A Dinverse, en régression, I’objectif est de prédire un signal vectoriel
dans Vigrg = Rdout,

Dans la suite, les espaces de données d’entrée X’ et de données cibles V4,4 seront toujours
supposés étre des sous-ensembles d’espaces vectoriels réels de dimension finie. Il est alors
standard de voir chaque paire (z,y) € X X Viurg comme la réalisation d’une variable
aléatoire dont la loi sera également notée D.



1. Apprentissage supervisé

Fonction de perte L’objectif de la machine est d’apprendre, & partir des exemples de
D, une fonction de prédiction ou prédicteur F' : X — Yy, associant a chaque entrée r € X
une prédiction de la réponse cible yiqrg € Viarg. L’espace des sorties Vo, est un espace
vectoriel qui n’est pas nécessairement identique a celui des cibles Vi4ry. Pour évaluer la
qualité de ses prédictions, la machine dispose d'une fonction de perte £ : Your X Viarg — R.
Nous considérerons deux exemples fondamentaux :

e Régression : Dans un probléme de régression, les espaces des sorties et de cibles
coincident : YVour = Viarg = R%ut . Cet espace est muni de la géométrie euclidienne
standard, et une mesure naturelle de ’erreur entre une prédiction ¥, et une cible
Ytarg €st donnée par la perte quadratique :

1
e(youh yta/rg) = ilyout - ytarg‘]?gdout . (1)

e Classification : Dans un probleme de classification a C' classes, la machine pro-
duit en général des sorties dans YV = RC représentant des estimations des log-
probabilités a posteriori de chaque classe donnée I'entrée. Une prédiction yout € Vour

est alors comparée a une étiquette cible yiarg € Viarg = {1,...,C} al’aide de la fonc-
tion d’entropie croisée :
ot harg) = — log ( P Woutlbtars) ) 2
out» arg) — . *
1 exp(Yout[d])

Le probléme de minimisation du risque Etant donné un jeu de données D C X x Viarg
et une fonction de perte € : Vour X Viarg — R, la qualité d’une fonction de prédiction
F : X — Y,u peut étre évaluée en moyennant la perte sur I’ensemble des exemples
de D. La stratégie de 'apprentissage automatique consiste a rechercher le meilleur pré-
dicteur au sein d’une classe de fonctions paramétriques F = {Fp | 0 € O}, ou O désigne
I’espace des parametres. Dans le cas des réseaux de neurones, © correspond a l’espace
des poids du réseau, généralement un espace vectoriel de grande dimension muni de la
métrique euclidienne. Pour chaque parametre 8 € ©, on définit le risque d’entrainement
par :

RO) =5 S UFs(@)y). (3)

L’entrainement du modele paramétrique Fy consiste alors a résoudre un probléme de min-
imisation du risque :

Trouver 6* € argminR(0) . (4)
0co

En pratique, cette optimisation est souvent réalisée a l'aide d’algorithmes itératifs du
premier ordre, comme la descente de gradient. Partant d’un parameétre initial 6y € O, les
parametres sont mis a jour selon la régle suivante :

vk >0, 9k+1 =0 — TVgR(@k) ,

ou T > 0 désigne le pas de gradient. En apprentissage profond, pour permettre ’entrainement
sur de grands jeux de données et améliorer la généralisation, le risque est souvent estimé
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a chaque itération k > 0 sur un sous-ensemble D, C D de données échantillonnées aléa-
toirement. On obtient ainsi ’algorithme de descente de gradient stochastique :

1

Vk >0, 6Oky1 =0k —7VeRE(0r),, ou R(h):= 4D,

($,y) GDk

Dans les deux cas, le choix du modele paramétrique ainsi que des hyperparametres (tels
que 7 ou la taille des mini-lots) influence fortement la dynamique d’entrainement et les
performances de généralisation du modele appris. Dans la suite de cette introduction, nous
détaillerons les architectures de réseaux de neurones et les procédures d’entrainement qui
constituent le coeur de cette these.

Aspect statistique de ’apprentissage Bien que ce manuscrit adopte une approche
centrée sur 'optimisation, en se concentrant sur la minimisation du risque d’entrainement,
il est important de rappeler que I'objectif final de 'apprentissage supervisé est de constru-
ire une fonction de prédiction performante sur des exemples nouveaux. Dans le cadre
statistique classique, les points de données (x,y) du jeu d’entrainement D sont supposés
indépendants et identiquement distribués selon une loi inconnue Dyegp sur X X Viqrg. L'objet
central d’intérét est alors I’erreur de test, définie par

gtest(e) = E(w,y)N'Dtest [Etest(Fe (1:)7 y)] ’

ou la perte de test fys peut différer de la perte d’entrainement ¢. Le probléeme de min-
imisation du risque d’entrainement R sert ainsi d’approximation a celui du risque de test
Etest, le principal défi résidant dans le fait que la distribution Dyeg est inconnue et que
I’apprentissage doit s’effectuer a partir du nombre fini d’exemples contenus dans D. Si la
question des capacités de généralisation des modeles entrainés dépasse le cadre principal
de cette these, elle motive néanmoins de nombreux choix de modélisation et d’algorithmes
présentés dans ce manuscrit.

Apprentissage auto-supervisé Enfin, bien que ce manuscrit se concentre sur les
taches d’apprentissage supervisé, il convient de noter que de nombreux systemes mod-
ernes d’apprentissage automatique sont entrainés de maniere auto-supervisé, c’est a dire
ol le signal cible est dérivé directement des données d’entrée. Cette approche peut étre
vue comme un cas particulier d’apprentissage supervisé, dans lequel les cibles sont con-
struites a partir de données non-annotées. Les exemples principaux sont les problémes de
next token prediction en modélisation du langage, ou ’entrainement de modéles de diffu-
sion pour la génération d’images. Ces méthodes se sont révélées particulierement efficaces
pour exploiter de vastes ensembles de données non-étiquetées et préentrainer des modeles
destinés a des taches ultérieures.

2 Architectures de réseaux de neurones

La famille de modeéles paramétriques que nous considérerons dans ce manuscrit est celle
des réseaur de neurones. Ces modeles consistent en la composition successive de couches,
chacune étant elle-méme une transformation paramétrique élémentaire. Un réseau de
neurones de profondeur D > 1 est ainsi un modele paramétré par § € © = HdD:1 O4 qui,
pour une entrée x € X, renvoie :

Fg(ﬂ?):FgDO"'OFgl(x),
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ou, pour chaque d € 1,...,D, la d-iéme couche Fy, est elleeméme un (petit) réseau de
neurones paramétré par g € 04. Considérant X = R%n et Vs = R%ut pour dip, dout > 1,

nous commencons par décrire ici quelques exemples et propriétés d’architectures Fy : R%in — Rout
dites “peu profondes”. Elles constituent les briques élémentaires des architectures plus pro-
fondes que nous présenterons ultérieurement.

¢ Couches linéaires :

Les couches linéaires, ou fully-connected, réalisent des multiplications matrice—vecteur.
Etant donnée une entrée x € R%n | la sortie est donnée par :

ol le parametre W € RéewtXdin st une matrice dite de “poids”. Ces transfor-
mations linéaires constituent les blocs de base de la plupart des architectures de
réseaux de neurones. En pratique, les modeles modernes d’apprentissage profond
sont généralement construits en composant ces applications linéaires avec des fonc-
tions non-linéaires simples.

¢ Couches convolutionnelles :

Les couches convolutionnelles sont un cas particulier de couches linéaires dans lesquelles
la matrice de poids est contrainte a avoir une structure spécifique, celle d’une matrice
de convolution. Introduites par LeCun et al. [LeCun, 1989] pour la reconnaissance
de chiffres manuscrits, ces architectures, en raison de leur structure équivariante
par translation, sont devenues omniprésentes dans les applications de traitement
d’images [LeCun, 2015]. Une couche convolutionnelle est paramétrée par un ensem-
ble de filtres W et, pour une image d’entrée z, renvoie :

Fy(z) =W *z, (5)

ol ~ désigne l'opérateur de convolution discréte. Par exemple, si 2 € R¢n*dwxdn
est une image comportant ¢;, canaux d’entrée et si W € RCoutXCinXkxk ogt un filtre
convolutionnel de taille k x k avec c,,+ canaux de sortie, le résultat de la convolution

discréte s’écrit :

(Wra)ledfl= > > Wled ki kal,zld,i+k,j+kl.  (6)
1<k ,ka<k 1<c'<cin

Nous utiliserons les réseaux de neurones convolutionnels aux Chapter II et Chap-
ter III pour résoudre des probléemes de classification d’images.

¢ Modeéles linéaires dans 1’espace des parametres :

Une classe importante de modeles d’apprentissage est celle des modeles linéaires
en leurs parametres mais non nécessairement linéaires en leurs entrées. C’est par
exemple le cas des méthodes & noyau [Scholkopf, 2002; Steinwart, 2008] ou des
modeles & “représentations aléatoires” [Rahimi, 2007]. Ces modeéles posseédent un
espace de parameétres © = H%ut ol H est un espace de Hilbert de “représentations”,
et calculent, pour un paramétre § € © et une entrée x € R%n :

<‘917 ¢(x)>7-t
F@(IL’) - ) (7)
<9dout7 ¢(x)>7{



Introduction en francais

ou ¢ : X — H est une application associant & chaque entrée une représentation dans
‘H. Alors que les réseaux de neurones classiques sont non-linéaires a la fois en leurs
entrées et en leurs parametres, ces modeles présentent ’avantage d’étre linéaires dans
I’espace des parametres, ce qui facilite leur analyse théorique. Nous étudierons cette
classe de modeles dans la section Section I1.4, comme étape préliminaire a I’analyse
d’architectures plus complexes.

e Couches perceptron :

Le perceptron est sans doute I'un des exemples les plus simples d’architecture de
réseau de neurones non-linéaire a la fois en ses entrées et en ses parametres. Initiale-
ment introduit par Rosenblatt [Rosenblatt, 1958] pour reproduire certaines capacités
visuelles et perceptuelles humaines, il peut étre vu comme la composition de deux
couches entierement connectées séparées par une fonction non-linéaire. Un percep-
tron & deux couches, ou réseau a une seule couche cachée (SHL) de largeur M > 1,
est paramétré par deux matrices de poids U et W de dimensions respectives dyy,: X M
et di, x M, ainsi qu'un biais b € R™. Pour une entrée z € Rdi", il renvoie :

Fuwgy(x)=Uac(W' z+b), (8)

ol o : R — R est une fonction non-linéaire, appelée “fonction d’activation”, ap-
pliquée composante par composante. Les fonctions d’activation les plus utilisées in-
cluent la tangente hyperbolique tanh et ’“Unité Linéaire Rectifiée” (Rectified Linear
Unit ou ReLU). Nous étudierons cette classe de modeles dans les sections Section I1.5
et Chapter III.

¢ Couches d’attention :

Le mécanisme d’attention [Bahdanau, 2014; Vaswani, 2017] est au coeur des architec-
tures de type Transformers, qui se sont imposées comme modeles de référence en vi-
sion par ordinateur [Dosovitskiy, 2020], en traitement du langage naturel (NLP) [De-
vlin, 2019], ainsi que dans d’autres taches de traitement ou de génération de séquences.
Une “téte d’attention” (attention head) est paramétrée par trois matrices Q, K,V € R
et, pour une séquence d’entrée de “jetons” (tokens) x = (z;)1 <i < N € (R%n)N de
longueur N, renvoie :

X din

N (Qzi, Kxj)
Attentiong x,v(x) = Z ¢
j=1

Va, e (R%n)NV (9)

Z]'\Ll e(QxiyKafﬁ
= 1<i<N

Dans le cadre du NLP, ces jetons représentent des plongements de mots ou de syl-
labes, sur lesquels les modeles sont entrainés de maniere auto-supervisée a prédire
les prochains jetons. Dans les grands modeles de langage modernes, tels que les
Generative Pretrained Transformers (GPTs) [Radford, 2018], des perceptrons mul-
ticouches sont empilés avec des couches d’attention a plusieurs tétes, ou plusieurs
opérations d’attention sont effectuées en parallele.

e Couches non-parametrées :

Dans les architectures modernes de réseaux de neurones, les couches paramétriques
sont souvent combinées a diverses opérations non-paramétriques, congues pour améliorer
I'expressivité et la stabilité de I'entrainement. La composition avec une fonction
d’activation non-linéaire peut par exemple étre vue comme une forme simple de
couche sans parametres. De plus, bien que nous les omettions pour la clarté de la

6
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présentation, les architectures modernes incluent fréquemment des couches de pool-
ing, qui réduisent les dimensions des représentations, ainsi que des couches de nor-
malisation, connues pour faciliter l’entrainement des réseaux profonds [loffe, 2015;
Ba, 2016]. Dans le contexte du NLP, les opérations sans parametres incluent égale-
ment des “encodages positionnels”, qui injectent une information d’ordre dans les
représentations de séquences, ainsi que des mécanismes de “masquage” (masking),
qui contraignent le flux d’information (par exemple pour préserver la causalité dans
les modeles autorégressifs) [Vaswani, 2017].

3 Mise a I’échelle des réseaux de neurones dans le régime
de largeur infinie

La derniere décennie a vu une augmentation exponentielle de la taille des architectures de
réseaux de neurones, les modeles modernes comptant ainsi des milliards, voire des milliers
de milliards de parameétres [Villalobos, 2022]. Cela révele pourtant un phénomeéne contre-
intuitif : de nombreux modeles operent dans un régime surparamétré, ou le nombre de
parametres entrainables dépasse le nombre de points de données disponibles. En statis-
tique classique, une telle situation conduirait typiquement & un surapprentissage et a une
mauvaise généralisation. Pourtant, en pratique, les réseaux de neurones surparamétrés
généralisent souvent remarquablement bien [Belkin, 2019; Zhang, 2021]. D’importants ef-
forts théoriques ont donc été consacrés a la compréhension du comportement des réseaux
de neurones dans le régime de largeur infinie, c’est-a-dire lorsque le nombre de neurones
par couche tend vers l'infini. Au-dela de leur intérét théorique, ces analyses asympto-
tiques présentent également des bénéfices pratiques, notamment pour le choix et le trans-
fert d’hyperparametres entre architectures de largeurs différentes [Yang, 2021; Bordelon,
2025], conduisant & d’importantes économies de calcul dans ’entrainement de modeles de
grande taille [OpenAl, 2023].

La plupart des architectures de réseaux de neurones présentées précédemment peuvent
étre représentées comme des applications de la forme :

M
Floyicicn @ € RM™ i ang Y 1p(0;, 1) € Rt (10)
i=1

oll © désigne l'espace des parameétres, 1 : © x R%n — Rut est une fonction élémentaire,
et aps € R est un facteur d’échelle dépendant de la largeur du réseau M. Par exemple, un
perceptron & deux couches correspond au cas ot © = R%ut x R%n x R et ot ¢ est donnée
par :

Y : ((u,w,b),z) € O x RYn s uog(w'z +b), (11)

avec ¢ : R — R une fonction d’activation.

Les parameétres du modele sont généralement initialisés aléatoirement et d’ordre 1, et
des travaux récents ont mis en évidence le role crucial joué par le choix du facteur d’échelle
apr dans la dynamique d’entrainement des modeles de grande largeur M. Différents choix
de mise a I’échelle conduisent & des comportements asymptotiques distincts lorsque M tend
vers I'infini. Deux cadres théoriques principaux ont ainsi émergé : le régime champ-moyen
(mean-field), qui capture lapprentissage de représentations non-linéaires, et le régime
Neural Tangent Kernel (NTK), qui décrit une dynamique d’entrainement linéarisée autour
de 'initialisation aléatoire.
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3.1 Régime Neural Tangent Kernel

Un premier cadre asymptotique pour 'analyse des réseaux de neurones dans la limite
de largeur infinie est celui du Neural Tangent Kernel (NTK) [Jacot, 2018]. Ce régime
correspond a une mise a ’échelle des parametres de l'ordre apy = 1/ VM pour un réseau
de largeur M, sous laquelle I’évolution du réseau pendant la descente de gradient peut
étre approchée par une linéarisation autour de son initialisation aléatoire 8y € ©. Dans ce
régime linéarisé, le modele est linéaire par rapport a ses parametres, comme dans Eq. (7).
Le réseau de neurones se raméne alors a une méthode & noyau [Scholkopf, 2002; Steinwart,
2008] dont le noyau associé :

K(J}, QS‘/) = DgFgO (.7}) . DgFgO (l‘,)—r s (12)

appelé Neural Tangent Kernel, converge vers une limite déterministe dans la limite de
largeur infinie. Ce cadre conduit & des résultats théoriques forts : on peut montrer que la
descente de gradient converge vers un minimum global du risque empirique & une vitesse
linéaire, gouvernée par les propriétés spectrales du NTK [Allen-Zhu, 2019; Du, 2019; Lee,
2019; Zou, 2020]. Nous étudierons plus en détail le conditionnement du NTK associé aux
perceptrons & deux couches dans la Section I1.5.

Cependant, le régime NTK présente d’importantes limitations. Notamment, il in-
duit une forme d’“apprentissage paresseux” (lazy training) [Chizat, 2019], dans lequel
les parametres du réseau se déplacent trés peu par rapport & leur initialisation, et ou les
représentations apprises évoluent peu au cours de ’entrainement. En conséquence, le mod-
ele ne parvient pas a extraire de représentations non-linéaires des données et se comporte
essentiellement comme une méthode & noyau. A l'inverse, les réseaux de neurones béné-
ficient en pratique de capacité d’apprentissage hiérarchiques ou spécifiques a certaines
taches, conduisant a de meilleures capacités de généralisation [Bach, 2017a; Ghorbani,
2019; Ghorbani, 2020).

3.2 Modeles champ-moyen de réseaux de neurones

Un autre cadre asymptotique est le régime de champ-moyen (mean-field), correspondant
a un facteur de mise a ’échelle de la sortie du modele de 1/M pour une largeur M. L'une
des caractéristiques essentielles de ce régime, contrairement au cadre NTK, est sa capacité
a capturer 'apprentissage de représentations non-linéaires [Yang, 2021].

Avec le facteur d’échelle ap; = 1/M, le réseau peut étre interprété comme une in-
tégrale sur une distribution de parameétres. En effet, pour une famille de parameétres
(0:)1<i<m € OM | en considérant la mesure empirique i = ﬁ Zij\il dp,, 'équation Eq. (10)
s’écrit :

M
Vz € R%n Foyi<i<m(z) = % Zliﬁ(@i,fﬂ) = /(9¢(97$)dﬂ(9) = Fy(z),
i—
ol, pour toute mesure de probabilité p sur ’espace des parametres ©, on définit :
F,:xeR¥n s /@ D(0,2)du(8) € Réout (13)
Cette représentation englobe donc les réseaux de neurones de largeur finie (quand pu est
une mesure empirique), mais décrit aussi, lorsque M — oo, une limite de champ-moyen ot

i peut étre une mesure de probabilité arbitraire [Rotskoff, 2018; Chizat, 2018; Mei, 2019;
Sirignano, 2020].
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D’un point de vue mathématique, au-dela de I’élimination de la dépendance en M, la
représentation champ-moyen de Eq. (13) permet de capturer naturellement I'interchangeabilité
des neurones. En effet, 'invariance par permutation de l'indice i € 1,..., M dans Eq. (10)
induit des symétries dans le paysage du risque, ce qui complique son analyse. Elle per-
met également de relaxer le probleme de minimisation du risque Eq. (4) dans 'espace des
mesures, menant ainsi & un paysage d’optimisation plus simple [Chizat, 2018; Rotskoff,
2019].

Enfin, la représentation champ-moyen permet d’étudier la dynamique d’entrainement
a travers le prisme des flots de gradient dans l'espace P(©) des mesures de probabilité
sur © [Ambrosio, 2008b; Santambrogio, 2017]. Cela conduit & des équations aux dérivées
partielles non-locales dont la convergence peut étre étudiée qualitativement [Chizat, 2018;
Rotskoff, 2019] ou quantitativement, & condition que le risque vérifie certaines inégalités
fonctionnelles [Mei, 2019; Chizat, 2022; Nitanda, 2022]. Cependant, bien que le régime
champ-moyen permette une approximation plus fidele de comportements d’apprentissage
réalistes, les résultats de convergence existants restent principalement qualitatifs : ils ne
fournissent ni taux explicites de convergence, ni caractérisations completes des perfor-
mances de généralisation. Cela constitue un axe de recherche important, et le cceur de nos
contributions au Chapter III.

3.3 Expressivité et propriétés fonctionnelles des réseaux de neurones

Bien que définis par des structures compositionnelles simples, le succes des réseaux de
neurones reposent sur de puissantes propriétés d’expressivité. Les propriétés fonctionnelles
de l'espace des applications représentables par un réseau de neurones jouent également un
role essentiel dans ses performances d’apprentissage et de généralisation. Ces propriétés
dépendent a la fois de ’architecture et de la structure métrique de ’espace des parametres,
et seront au coeur de notre analyse au Chapter 11.

Un exemple important est la famille des perceptrons a deux couches de largeur ar-
bitraire avec des fonctions d’activation non-linéaires. Un résultat fondateur de Cybenko
[Cybenko, 1989] a établi que de tels réseaux sont denses dans I’espace des fonctions con-
tinues pour la topologie uniforme sur les compactes. Plus tard, Barron [Barron, 1993]
a fourni des bornes d’approximation quantitatives en norme L?, montrant qu’une large
classe de fonctions peut étre approximée a un taux O(1/v/M), ott M désigne la largeur
de la couche cachée. Fait remarquable, ce taux ne dépend pas de la dimension des don-
nées d’entrée, suggérant que les réseaux de neurones ne sont, en théorie, pas impactés
par la malédiction de la dimension. Cependant, ces résultats sont non constructifs : ils
garantissent ’existence d’approximations précises sans fournir de méthode pratique pour
les obtenir. Cette limitation souligne le role central des algorithmes d’optimisation en
pratique, car il faut s’appuyer sur eux pour découvrir de bonnes approximations.

Dans le cas de 'activation ReLU, 'espace des fonctions représentées par des percep-
trons a deux couches est décrit par I'espace de Barron [E, 2021; E, 2022] :

B = {F cx € R¥n /uReLU(wT:B +b)dpu(u,w,b), p PR xR x R)} .

Lorsque I'’ensemble des poids est muni de la métrique euclidienne standard, il est naturelle-
ment associé a une norme d’espace de Banach :

VfeB, |F|g= inf{/|u|(|w| + [b))dp, 1€ Pa(R x RYn x R), f:FH} .
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Cet espace peut étre caractérisé comme le plus petit espace de Banach de fonctions ap-
proximables efficacement par des perceptrons a deux couches. Il contient par exemple tous
les espaces de Sobolev de régularité suffisante [E, 2022].

4 Mise a I’échelle des réseaux de neurones dans le régime
de grande profondeur

En dépit de I'expressivité déja remarquable des architectures peu profondes, les avancées
récentes en apprentissage automatique reposent largement sur la composition de fonctions.
Dans de nombreuses taches classiques d’apprentissage supervisé, les modeles a 1’état de
I’art s’appuient désormais sur des réseaux de neurones “profonds”, qui prennent la forme :

Fy(z) = Fyp, 00 Fy, (),

ou chaque Fy, désigne un sous-réseau plus simple (par exemple un perceptron, une couche
convolutionnelle, un mécanisme d’attention, une couche de normalisation, etc...), et ou la
profondeur D est généralement tres grande.

Si cette augmentation de profondeur accroit considérablement ’expressivité de la
classe de modeles [Montufar, 2014], elle introduit également d’importants défis en terme
d’optimisation. En particulier, il a été observé que l'erreur d’entrainement des réseaux
convolutionnels profonds tend a se dégrader lorsque la profondeur dépasse un certain
seuil [Srivastava, 2015; He, 2016a]. De plus, ’apprentissage de réseaux trés profonds souffre
fréquemment d’instabilités numériques, telles que des problémes d’evanescence/explosion
des gradients, ou les gradients deviennent respectivement trop faibles ou trop grands dans
les premiéres couches, compromettant ainsi l'efficacité de Papprentissage [Bengio, 1994;
Glorot, 2010]. Ces difficultés ont motivé le développement d’architectures spécifiques fa-
cilitant I’entralnement de réseaux tres profonds. Parmi celles-ci, les architectures dites
“résiduelles” ont rencontré d’importants succes.

4.1 Réseaux de neurones résiduels

Les réseaux de neurones résiduels (ResNets) sont une classe d’architectures de réseaux de
neurones introduite par He et al. [He, 2016a; He, 2016b] pour des applications en classi-
fication d’images. L’idée fondamentale des ResNets consiste a paramétrer chaque couche
comme une petite perturbation, appelée “résidu”, de 'application identité. Concretement,
cette idée se traduit par la présence de connexions “saute-couche” (skip connections) qui
permettent de réinjecter le signal entre des couches successives.

Un ResNet de profondeur D > 1, recevant une entrée x € X, produit une sortie xp,
ou les données sont traitées de maniere récursive selon :

Vde{0,...,D—1}, x4 = Ty + Fp,(xq), avec zy=x. (14)
~—
connexion saute-couche résidu

Une illustration d’une architecture ResNet est présentée en Fig. 1. Les applications résidu-
elles Fy, correspondent a de petites sous-architectures de réseaux de neurones, adaptées
au type des données considérées. Par exemple, on utilise généralement des couches con-
volutionnelles pour le traitement d’images [He, 2016a; He, 2016b] ou des couches a base
d’attention dans les Transformers pour le traitement du langage [Vaswani, 2017]. No-
tons que, bien que I’équation Eq. (14) contraigne les dimensions de sortie de chacune des
couches a étre identiques, les architectures ResNet incluent en pratique plusieurs couches
de sous-échantillonnage qui réduisent progressivement la dimension du signal.
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Figure 1: Illustration de l'architecture ResNet-34 [He, 2016a].

Les ResNets ont démontré des performances empiriques remarquables, atteignant 1’état
de l'art sur des jeux de données de référence tels que CIFAR-10 [Krizhevsky, 2009] et Im-
ageNet [Deng, 2009]. L’une de leurs principales innovations réside dans le mécanisme de
connexion saute-couche, qui permet de réduire les problemes d’évanescence ou d’explosions
des gradients [Raiko, 2012; Szegedy, 2017], et rend possible '’entrainement de réseaux com-
portant plusieurs centaines, voire plusieurs milliers de couches [He, 2016b]. Cette augmen-
tation de la profondeur a soulevé de nouvelles questions théoriques concernant le comporte-
ment des algorithmes d’apprentissage dans les réseaux profonds. Alors que la majorité des
analyses théoriques existantes portent sur des architectures peu profondes [Chizat, 2018],
le succes des ResNets a motivé le développement d’une compréhension mathématique des
dynamiques d’entralnement a tres grande profondeur.

4.2 Equations différentielles ordinaires neuronales

Une question centrale dans ’analyse des ResNets profonds concerne le choix d’un facteur
d’échelle approprié pour les branches résiduelles lorsque la profondeur du réseau augmente.
Afin de garantir un entrainement stable dans la limite de grande profondeur, on introduit
un facteur d’échelle dépendant de la profondeur, noté Bp, ce qui conduit a la formule
suivante pour la propagation du signal :

Vde{0,...,D—1}, wxq11 =xq+ BpFy,(za)- (15)

Le modele d’équations différentielles ordinaires neuronales (Neural Ordinary Differential
Equations ou NODEs), introduit par Chen et al. [Chen, 2018], correspond au choix par-
ticulier Sp = 1/D, pour lequel Eq. (15) peut étre interprétée comme une discrétisation
d’Euler explicite d'une équation différentielle ordinaire (EDO). Dans la limite ot la pro-
fondeur tend vers l'infini, le modele possede un continuum de parametres 6 € O
traite une donnée d’entrée x € X en résolvant V'EDO :

Vs € [0,1], %x(s) = Fyo(2(s)), z(0) ==, (16)

ou les champs de vecteurs paramétriques Fy(y), aussi appelés résidus, sont appris.

Applications A Dorigine, 'introduction des NODEs était motivée par la possibilité de
calculer les gradients via la méthode de I'adjoint (adjoint state method), plus économe
en mémoire que l'algorithme classique de rétropropagation, lequel nécessite de stocker
I’ensemble des activations et devient tres cotliteux en mémoire a grande profondeur [Chen,
2018]. De plus, la formulation continue en termes d’EDO permet d’utiliser des méth-
odes d’intégration adaptatives. Par conception, les NODEs modélisent des systémes dy-
namiques, ce qui a conduit & leur application dans des domaines tels que la modélisation
physique ou les séries temporelles financiéres [Oh, 2025]. Leur capacité a implémenter des
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flots continus de difféomorphismes en fait également un outil naturel pour la conception
de modeles génératifs [Rezende, 2015; Kobyzev, 2020]. Plus largement, les NODEs ont
inspiré le développement de nouvelles architectures de réseaux de neurones [Sander, 2021]
ainsi que de nouveaux algorithmes d’entrainement [Chen, 2018; Vialard, 2020].

Analyse théorique Sur le plan théorique, les NODESs offrent un cadre mathématique
commode, celui des EDO, pour analyser la dynamique d’entrainement et les performances
des réseaux de neurones trés profonds. En particulier, leur formulation en temps continu
permet d’exploiter les outils de la théorie du contréle optimal pour étudier les questions
d’entrainement et de généralisation [E, 2019; E, 2021]. Cette formulation conduit en outre
a un paysage de risque bien conditionné, permettant d’obtenir des garanties de convergence
pour les méthodes d’optimisation par gradient [Sander, 2022b; Marion, 2023b]. Dans ce
manuscrit, nous exploitons le formalisme des NODEs pour étudier, au Chapter I et au
Chapter II, les dynamiques d’entralnement des ResNets a la fois profonds et larges.

5 Apprentissage et algorithmes de descente de gradient

Comme expliqué précédemment, dans le cadre classique de 'apprentissage supervisé, la
phase d’entrainement consiste généralement a minimiser une fonction de risque. L’objectif

est de trouver une paramétrisation 0* € arg minycg R(6), ou R désigne le risque d’entrainement
défini en Eq. (3). Ce probléeme d’optimisation est en pratique résolu a I'aide de méthodes
d’optimisation du premier ordre, dont le cas le plus simple est ’algorithme de “descente

de gradient”, défini par :

Vk>0, 0Ok =0— TV@R(Qk) , (17)

ou 6y € O est une initialisation et 7 > 0 un “pas d’apprentissage” (learning rate). Dans
la limite ou le pas 7 tend vers zéro, cette dynamique discréte peut étre modélisée par une
dynamique en temps continu. Ce “flot de gradient” s’écrit :

vVt >0, %Gt = —VoR(0;). (18)
Dans ce manuscrit, nous analyserons les propriétés de convergence de ces dynamiques pour
I’apprentissage de plusieurs architectures de réseaux de neurones : les réseaux résiduels
profonds au Chapter I et au Chapter II, et les modéles a une couche cachée au Chap-
ter III. Une telle analyse, tout en contribuant & la compréhension des performances des
modeles modernes d’apprentissage automatique, présente des défis mathématiques impor-
tants, le risque R étant une fonction non-convexe d’un nombre généralement tres élevé de
parametres.

Algorithme de rétropropagation FEn pratique, le gradient du risque par rapport aux
parametres est calculé a I'aide de I'algorithme de “rétropropagation des gradients” (back-
propagation), correspondant a une différentiation automatique par accumulation inverse
(reverse mode automatic differentiation) [Baydin, 2018]. En appliquant systématique-
ment la régle de la chaine a travers le réseau, la rétropropagation propage les dérivées de
la couche de sortie vers les couches internes, avec un cotit de calcul comparable a celui de
I’évaluation du modele.

La capacité de passage a 1’échelle de cette approche a été un facteur clé des per-
cées récentes de l'apprentissage profond. Les implémentations efficaces de la différenti-
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ation automatique par accumulation inverse, combinées aux capacités de calcul paral-
lele du matériel informatique moderne (GPU, TPU), ont permis I'entrainement de mod-
eles fortement surparamétrés sur de grands ensembles de données. Ces implémentations
sont notamment disponibles dans les bibliotheques d’apprentissage profond telles que Py-
Torch [Paszke, 2017], que nous utilisons pour valider nos résultats en Section I1.7 et
en Section II1.6.

5.1 Descente de gradient stochastique et variantes

Bien que nous concentrions notre analyse sur la dynamique de la descente de gradient
classique (Eq. (17)), il convient de rappeler qu’en pratique, 'apprentissage sur de grands
ensembles de données repose sur une approximation du risque, calculée sur de petits sous-
ensembles (mini-batch) de données. Cela conduit a I'algorithme de “descente de gradient
stochastique” (SGD) :

VE>0, 6Opp1 =0 —7VeRL(6k), (19)

ol, a l'itération k, le risque approché Ry, s’écrit :

Rkw):#;k S UF().y),

avec D C D un sous-ensemble de données échantillonné a partir du jeu de données D.
Outre la réduction du cofit de calcul par itération, la SGD introduit une stochasticité dans
le processus d’optimisation, qui agit comme un régularisateur implicite et permet souvent
d’éviter le surapprentissage, conduisant ainsi a une meilleure généralisation [Hardt, 2016b).

En complément, un terme de “moment” est souvent ajouté, ce qui conduit a la formule
suivante :

bk+1 = mbk -+ (1 — m)VGRk’(ek) )

20
1 = Op — 7hry1, (20)

Vk >0, {

ou m € [0,1] est le parametre de moment. Introduites initialement par Polyak [Polyak,
1964], les méthodes & moments sont connues pour accélérer la convergence de la descente de
gradient dans le cas d’objectifs lisses et fortement convexes. Des raffinements ultérieurs,
tels que la méthode du gradient accéléré de Nesterov [Nesterov, 1983], atteignent des
vitesses de convergence optimales dans le cas convexe. En apprentissage profond, I'ajout
d’un terme de moment améliore également la stabilité de '’entrainement [Sutskever, 2013].

Enfin, de nombreuses autres techniques ont été développées pour faciliter I’apprentissage
a grande échelle, notamment le dropout, le weight decay, ainsi que des méthodes d’optimisation
adaptatives telles que Adam [Kingma, 2014] ou RMSprop [Hinton, 2012]. Ces méthodes
jouent un roéle crucial dans ’amélioration de la stabilité, de la vitesse de convergence et
des performances de généralisation [Bottou, 2018].

5.2 Apprentissage a deux échelles de temps et projection de la variable

Le choix des hyperparametres, en particulier du pas d’apprentissage 7, joue un roéle essen-
tiel dans le comportement asymptotique de la dynamique d’apprentissage. En pratique,
les pas d’apprentissage peuvent différer selon les parametres [Yang, 2021]. Dans le Chap-
ter 111, nous distinguerons deux types de parametres :
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e Parameétres linéaires : il s’agit généralement des poids de la derniere couche
du réseau, pour lesquels la sortie dépend linéairement des parametres. Lorsque les
autres parametres sont fixés, 'apprentissage de ces parametres revient a la résolution
d’un probléme d’optimisation convexe.

e Parameétres non-linéaires : ils correspondent aux parametres des couches internes
du réseau, liés de maniére non-linéaire a la sortie. Ils permettent ’extraction de
représentations non-linéaires des données et jouent un role central dans la capacité
de généralisation des réseaux de neurones. Leur apprentissage constitue toutefois un
probleme d’optimisation non-convexe.

L’espace des parametres se décompose ainsi en © = O x O™, ou ©! et O™ désignent
respectivement les sous-espaces des parametres linéaires et non-linéaires. Attribuer des
taux d’apprentissage distincts a ces deux sous-ensembles conduit a une descente de gradient
a deux échelles de temps :

0! = 0L —nTVaR(OL, 00,
Vk > 0, kl“ kl kl g l (21)
oL, = 0Pl — 7V R(6L, 00

ou 7 > 0 est un pas d’apprentissage et n > 0 un hyperparameétre contrélant la vitesse
relative des mises & jour. Lorsque n < 1, les parameétres linéaires 6 sont appris plus
lentement que les parametres non-linéaires 6™, et inversement lorsque 1 > 1.

La limite asymptotique de grandes échelles de temps correspond & une optimisation
partielle des parameétres linéaires : c’est I'algorithme de “projection de la variable” ( Vari-
able Projection ou VarPro), introduit initialement par Golub and Pereyra [Golub, 1973]
pour la minimisation de problémes non-linéaires séparables. En effet, lorsque n — o0,
a chaque étape on a 02_ € arg mingi gt R(Gl,ﬂﬁl). D’apres le théoréme de ’enveloppe, la
dynamique sur les parametres non-linéaires s’écrit alors :

VE >0, 0, =0 — VR0, 07 = 07 — TV L(OF), (22)
o1, pour tout § € O™ le “risque réduit” L£(0™) est défini par :

nly . I gnl

L) = eluel(gl R(6°,0™). (23)
En pratique, dans le cas de la régression avec fonction de perte quadratique, cette étape
d’optimisation partielle peut étre effectuée numériquement en résolvant un systéme linéaire.
Ainsi, en séparant I’apprentissage des représentations (parametres non-linéaires, lents)
de celui de l'ajustement prédictif (parameétres linéaires, rapides), apprentissage a deux
échelles de temps et la projection de variables fournissent un cadre conceptuel solide pour
comprendre 'apprentissage des représentations dans les réseaux de neurones. De telles
approches ont récemment suscité un intérét croissant dans la communauté de la théorie
de l'apprentissage automatique [Marion, 2023a; Berthier, 2024; Bietti, 2023; Takakura,
2024]. Nous étudierons dans le Chapter III les propriétés de convergence de VarPro pour

I’entrainement de modeéles champ-moyen de réseaux de neurones.

5.3 Flots de gradient de Wasserstein et transport optimal

Nous nous intéressons dans ce manuscrit a ’apprentissage d’architectures de réseaux de
neurones surparamétrés, décrits par une distribution de parameétres sur un espace de
parametres © (Eq. (13)). Pour de tels modeles champ-moyen, le risque d’entrainement
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défini en Eq. (3) devient une fonctionnelle R : P(0) — R définie sur l'espace P(O) des
mesures de probabilité sur ©. En particulier, pour un réseau de largeur finie M, la distri-
bution des payamétres est donnée par la mesure empirique p = ﬁ Zf\il 0gi. Lorsque les
parametres (6;)1<i<a suivent la dynamique de flot de gradient Eq. (18), la distribution
associée p; = ﬁ Si=1M 592- évolue selon ’équation de continuité :

Oppir — div <Htv?j[ﬂt]> =0, sur[0,+00) X O. (24)

Ici, pour une mesure p € P(0O), le champ de potentiel %%[u] désigne la premiere variation
(ou différentielle de Fréchet) de R. Dans le cas général on py n’est pas nécessairement une
mesure empirique, cette EDP peut étre interprétée comme un flot de gradient métrique
pour la distance de Wasserstein sur P(©) [Ambrosio, 2008b; Santambrogio, 2015].

La distance de Wasserstein découle du probleme de transport optimal entre mesures
de probabilité [Villani, 2009; Santambrogio, 2015]. En supposant que © est un espace
de Hilbert, la p-distance de Wasserstein W, pour p > 1, est définie entre deux mesures
boréliennes p, ' € P(O) par :

1/p
Wy (p, 1) = ( inf /6><6 60— 6" d’y(@,@’)) , (25)

YET (p,t”)

ou I'(u, ') désigne I'ensemble des couplages entre p et u/, c’est-a-dire Pensemble des
mesures de probabilité sur © x © dont les marginales sont respectivement p et p :

T(p, ) = {7 €EPOX0O) : W#’y =u, Tr;ﬁ = //} . (26)

Ainsi, W, muni P,(0©), I'espace des mesures de probabilité & p-moment fini, d’'une struc-
ture d’espace métrique complet et séparable. Il est notamment connu depuis les travaux
de Jordan, Kinderlehrer, and Otto [Jordan, 1998] que plusieurs EDP linéaires ou non-
linéaires, telles que les équations de Fokker—Planck ou les équations des milieu poreux,
peuvent étre interprétées comme des flots de gradient pour cette métrique. De méme que
le flot de gradient Eq. (18) s’obtient comme la limite 7 — 01 de la descente de gradient
discrete Eq. (17), le flot de gradient de Wasserstein Eq. (24) peut étre approché par un
“schéma JKO” correspondant a une discrétisation implicite :

. 1
Vk >0, pry1 € argminR(u) + ?WZ(MaHk)Q’
HEP(O) T

En apprentissage automatique, des EDP de la forme Eq. (24) ont été utilisées dans
de nombreux travaux pour étudier la dynamique d’entrainement des réseaux de neurones
peu profonds [Chizat, 2018; Rotskoff, 2019; Mei, 2019; Chizat, 2022; Nitanda, 2022] ou
profonds [Lu, 2020; Ding, 2021; Isobe, 2023]. Outre I’élégance de ce formalisme pour
décrire I'apprentissage dans un régime de grande largeur, la relaxation du risque dans
I’espace des mesures permet également de simplifier le paysage d’optimisation, notamment
en éliminant les points critiques qui ne sont pas des minimiseurs.
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1 Supervised learning: algorithms, architectures and math-
ematical models

In recent years, deep learning has achieved remarkable empirical successes across a wide
range of applications — from image and text generation to scientific computing, and more
recently in reasoning tasks such as the resolution of complex mathematical problems.
However, while a rapidly growing body of research has emerged to interpret the behavior
of Al systems and guide their design, these successes often outpace our understanding of
the underlying mathematical mechanisms.

From a mathematical perspective, the training of neural networks presents a num-
ber of challenging questions. On the one hand, the optimization problems involved are
typically high-dimensional and non-convex, yet simple algorithms like stochastic gradient
descent often perform surprisingly well in practice. On the other hand, neural networks
are capable of interpolating large datasets while still generalizing effectively, seemingly
defying foundational statistical intuitions such as the bias—variance trade-off or the curse
of dimensionality. These phenomena point to a need for new mathematical frameworks
capable of capturing the dynamical behavior of neural network training and its interaction
with model architecture and data structure. In particular, a recent line of work suggests
that tools from the analysis of partial differential equations and optimal transport can
offer valuable insights into these dynamics.

In this manuscript, we adopt a mathematical perspective on neural network training
based on tools from optimization and the theory of partial differential equations. In the
limit of large width, the training dynamic of neural networks can be described as mean-
field models of interacting particle systems and corresponds to gradient flows in spaces
of probability measures. On the other hand, residual architectures are studied for their
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infinite-depth limit, which gives rise to smoother optimization landscapes and more stable
training dynamics. These two asymptotic regimes — large width and large depth — are
not merely theoretical constructs, but reflect the structure of modern architectures such
as ResNets or Transformers, which are highly overparameterized and central to current
state-of-the-art models.

1.1 The supervised learning framework

We will consider throughout this manuscript a supervised learning framework encompass-
ing a large number of classical machine learning tasks. We start by describing the main
ingredients of this framework, before turning in more details to the description of the
models and algorithms.

Dataset In supervised learning the machine is provided with a dataset D C X X Viarg
constituted of pairs of input data x € X and associated target response y € Viqrg. These
input and target data can have various forms:

e Inputs: Due to the versatile nature of machine learning methods, these can be
virtually anything ranging from images, sounds, videos to text or financial time
series. An example of application we will consider in Chapters II and III is image
classification, where the input data are numerical images encoded as 8-bit arrays of
shape ne X n,, X np where n,, and njy are respectively the number of pixels in the width
and height of the image and n. is the number of channels used to encode the image,
usually n. = 1 for gray-scale images and n. = 3 for color images. Mathematically,
these images can then be modeled by vectors in X' = R7e*"wXn"a,

e Targets: One can generally distinguish between two categories of supervised learn-
ing tasks that are classification and regression. In classification, the objective is to
classify data into a finite set of classes which are usually represented by labels in
Viarg = {1,...,C}, with C > 1 the number of classes. These labels can also be en-
coded as one-hot vectors in Vyarg = {0, 1}0. In contrast, in regression, the objective
is usually to predict a vector-valued signal in Viqrg = Rout

In the following, the spaces of inputs X and targets Viq,q Will always be subsets of real
finite dimensional vector spaces. It is then standard to see (z,y) € X X Viarg as random
variables whose distribution we will also denote by D.

Loss The objective for the machine is to learn from the examples in D a prediction
function or predictor F : X — Yoy, giving for inputs o € X predictions of the target
response Yiarg € Viarg- The space of outputs Vo, is a vector space which is not necessarily
the same as the space of targets Viq,rg and, to evaluate the quality of its predictions, the
machine is provided with a loss function £ : YVout X Viarq — R. We will consider two
fundamental examples:

e Regression: Usually in regression, the space of outputs and response is the same
vector space Vour = Viarg = Rdout . This space is equipped with the standard Eu-
clidean geometry and a natural notion of error between a prediction y,,+ and a target
signal yiarg is the square loss:

1
E(youta ytarg) = 5 ||yout - ytargH]?gdout . (27)
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¢ Classification: In a classification problem with C' classes, the machine usually out-
puts predictions in Yy, = R representing estimates of the posterior log-probabilities
of each classes given the input. A prediction your € Your is then compared to a target
label Yiarg € Viarg = {1, ...,C} by forming the cross-entropy:

— _lo exp(Yout [ytarg])
(Wour yt‘"g) — e <ZzC:1 exp(Yout M)) . (28)

Risk minimization Given a dataset D C X' X Y;qrg and a loss function £ : Vous X Viarg — R,
the quality of a prediction function F' : X — ), can be assessed by averaging the loss
incurred over the dataset. The strategy developed in machine learning is to search for the
best predictor in a class of parametric function F = {Fy : 6 € ©}, where © denotes a
parameter space. For instance, in the case of neural networks, © corresponds to the space

of the network’s weights, which is usually a high-dimensional vector space equipped with
the Euclidean metric. For each parameter 6 € O, the training risk is then defined by:

R(O S U(Fy(x (29)
# (z,y)€D

Training the parametric model Fy then consists in solving the risk minimization problem:

Find 6" € argminR(6). (30)
0cO
In practice, this optimization is often performed using first-order iterative algorithms, with
gradient descent being a canonical example. Starting from an initial parameter 6y € O,
the parameters are updated according to:

V>0, 01 =0p—1VeR(0),

where 7 > 0 denotes the step size or learning rate. In deep learning, to allow for training
on large datasets and improve generalization, the risk is usually computed at each step
k > 0 on a smaller batch D C D of freshly sampled data. This results in the stochastic
gradient descent algorithm:

VE >0, Opyr =0r — 7VeR(0), where Ry(0) = # - ) U@
(z,y)EDy,

For both gradient descent and stochastic gradient descent, the choice of parametric
model, as well as the selection of hyperparameters (such as 7 or the batch size) has a
significant impact on both the training dynamics and the generalization performance of
the learned model. In the remainder of this introduction, we describe in more detail the
neural network architectures and training procedures that will be the focus of this thesis.

Statistical learning perspective While this manuscript adopts an optimization-oriented
viewpoint — focusing on the minimization of the training risk — it is important to recall
that the ultimate goal of supervised learning is to construct a prediction function that per-
forms well on unseen examples. In a standard statistical learning paradigm, data points
(z,y) in the training dataset D are assumed to be independent and identically distributed
according to an unknown distribution Dyes; over X' X Viqrg. The central object of interest
is then the test error, defined as

5test(0) = E(l‘,y)NDtest [€t68t(F9(1:)3 y)] )
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where the test loss fys: can also differ from the training loss £. Minimizing the training
risk R thus serves as a proxy for minimizing &, the fundamental challenge lying in the
fact that Dies is unknown, and learning must proceed solely from the finite number of
examples in D. While the question of the generalization abilities of the trained models lie
beyond the primary scope of this thesis, it motivates and justifies many of the modeling
and algorithmic choices made in the following chapters.

Self-supervised learning Finally, while this manuscript focuses on supervised learning
tasks, it is worth noting that many modern machine learning systems are trained under
the self-supervised learning paradigm, where the target signal is derived from the input
data itself. This approach can be seen as a special case of supervised learning in which
the targets are constructed from unlabeled data using pretext tasks. Prominent examples
include next-token prediction in language modeling or score-based training in generative
modeling. These methods have proven effective in leveraging large amounts of unlabeled
data to pretrain models for downstream tasks.

1.2 Neural network architectures

The family of parametric models we will consider in this manuscript is the one of neural
networks. These consist in the successive composition of layers which are themselves
smaller parametric transformations. A neural network of depth D > 1, is thus a model
parameterized by 6§ € © = HdD:1 ©4 which on input x € X returns:

F9(x):F9DO"'OF91(x)

where, for each d € {1,..., D}, the d-th layer Fp, is a (smaller) neural network param-
eterized by 0; € ©4. Considering X = Ré%n and Y,y = R%ut for some din, dour > 1,
we start here by describing examples and properties of common shallow architectures
Fy : R%in — Rout, These constitute the building blocks of deeper architectures we will
describe later-on.

e Linear layers: Linear fully-connected layers compute matrix-vector multiplications.
Given an input 2 € R%» the output is:

where the parameter W € R%ut*din i5 some weight matrix. Such linear transforma-
tions are the basic building blocks of most neural network architectures. In practice,
modern deep learning models are typically constructed by composing these linear
maps with simple nonlinear functions.

e Convolutional layers: Convolutional layers are a particular instance of linear
layers where, in contrast with fully-connected layers, the weight matrices are con-
strained to have particular shape, namely to be convolution matrices. This kind
of architecture was introduced by LeCun et al. [LeCun, 1989] for digit recognition
and, owing to their translation-equivariant structure, has since become ubiquitous in
image processing applications [LeCun, 2015]. A convolutional layer is parameterized
by filters W and, for an input image x, computes:

Fy(z)=Wxx, (31)
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where + denotes the discrete convolution operator. For example, if z € R¢n*dwXdn

is an image with ¢;,, input channels and W e ReoutXcinXkxk i5 5 convolutional filter
of size k x k with ¢y, output channels the result of the discrete convolution reads:

Wa)e,ijl= > > Wiled ki ko]a[d,i+ki,j+k].  (32)
1<k, ,ko<k 1<c’<c

We will consider convolutional neural networks in Chapters II and III for solving
image classification problems.

Linear models in parameter space: An important class of machine learning
models is the one of models that are linear in their parameters but not necessarily
in their inputs. This is for example the case of kernel methods [Scholkopf, 2002;
Steinwart, 2008] or of random feature models [Rahimi, 2007]. These models have a
parameter space © = H%ut where H is some Hilbert space of features, and compute
for a parameter # € © and an input € R%n:

(01, 0(x)) 4
F@(‘/L') = : ) (33)

Oy ()3,

where ¢ : X — H is a map associating to each input a feature representation in
‘H. While standard neural networks are nonlinear in both their inputs and their pa-
rameters, such models offer the advantage of being linear in parameter space, which
facilitates theoretical analysis. We will study this class of models in Section I1.4, as
a preliminary step towards understanding more complex architectures.

Perceptron layers: The perceptron is arguably one the simplest instance of a
neural network architecture that is nonlinear in both its input and its parameters.
It was originally introduced by Rosenblatt [Rosenblatt, 1958] to emulate human
visual and perceptual capacities and can actually be seen as the composition of two
fully-connected layers with a nonlinear function. A 2-layer or single-hidden-layer
(SHL) perceptron of width M > 1 is parameterized by two weight matrices U, W
of respective shape doyr x M and di x M and a bias term b € RM. For an input
z € Rin it computes:

Fuwy(z) =Uc(W'z+1b), (34)

where the o : R — R is a nonlinear function, called activation, applied component
wise. Popular examples of activations are for example the hyperbolic tangent tanh
or the Rectified Linear Unit (ReLU) activation. We will study this class of models
in Section II.5 and in Chapter III.

Attention layers: Attention mechanisms [Bahdanau, 2014; Vaswani, 2017] is at the
heart of Transformers architectures which have emerged as state of the art models
in computer vision [Dosovitskiy, 2020], Natural Language Processing (NLP) [Devlin,
2019] as well as other sequence processing or generation tasks. An attention head is
parameterized by matrices @, K,V € R%n*din and, for an input sequence of tokens
x = (z;)1<i<n € (R%")N of length N, returns:

Attentiong kv (x) = | Y — GEN e Va; e (R%n)™. (35)
j=122j=1°¢ 1<i<N
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In the context of NLP, these tokens represent embeddings of words or syllables on
which models are trained in a self-supervised manner to perform a next-token pre-
diction task. In modern large-scale language models, such as Generative Pretrained
Transformers (GPTs) [Radford, 2018], multi-layer perceptrons are actually stacked
with multi-head attention layers where several attention operations are computed in
parallel.

e Parameter-free layers: In modern neural network architectures, parametric lay-
ers are composed with several other parameter-free operations engineered to enhance
the expressivity and trainability of the models. Composition with a non-linear ac-
tivation can for example be seen as a simple form of parameter-free layer. Also,
while for the sake of simplicity we omit them in the rest of this manuscript, com-
mon parameter-free layers usually include pooling layers, which reduce the spatial
or temporal dimensions of feature maps, or normalization layers, which have been
shown to facilitate the training of deep neural networks [loffe, 2015; Ba, 2016]. In the
context of NLP, parameter-free operations include positional encodings, which inject
order information into sequence representations, and attention masking mechanisms,
which constrain the flow of information (e.g., to preserve causality in autoregressive
models) [Vaswani, 2017].

1.3 Scaling neural networks in the infinite width regime

The past decade has witnessed an exponential increase in the scale of neural network ar-
chitectures, with modern models comprising billions, and in some cases even trillions, of
parameters [Villalobos, 2022]. However, a striking and somewhat counterintuitive phe-
nomenon has emerged: many of these models operate in an overparameterized regime,
where the number of trainable parameters exceeds the number of available data points.
In classical statistics, such settings would typically lead to overfitting and poor general-
ization. Yet, in practice, overparameterized neural networks often generalize remarkably
well [Belkin, 2019; Zhang, 2021]. Significant theoretical efforts have thus been devoted
to understanding neural networks in the infinite-width regime — that is, when the num-
ber of neurons (or channels) per layer tends to infinity. Beyond their theoretical value,
these asymptotic analyses also offer practical benefits, particularly in guiding hyperpa-
rameter selection and enabling hyperparameter transfer across architectures of different
widths [Yang, 2021; Bordelon, 2025] leading to important computational savings in the
training of large models [OpenAl, 2023].

Many of the above presented neural network architectures can be represented as map-
pings of the form

M
F(ei)lsiSM sz € R%n s Zw(ﬁi, x) € R%ut (36)
i=1

where © denotes a parameter space, 1 : © x R%n — Rut is a basis function, and aj; € R is
a scaling factor that depends on the network width M. For example, the 2-layer perceptron
model corresponds to the case where © = R%ut x R%n x R and 1 is given by:

¥ (u,w,b),z) € © x RYin s ug(w'z +b), (37)

where o : R — R is the activation function.
Parameters of the model are usually initialized randomly of order 1 and recent re-
search has then highlighted the crucial role played by the choice of scaling «ajs in shaping
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the training dynamics for models of large width M. Different scalings lead to different
asymptotic behaviors when M tends to infinity. Two main theoretical frameworks have
emerged: the mean-field regime, which captures nonlinear feature learning, and the neural
tangent kernel regime, which describes a linearized training dynamic around the random
initialization.

1.3.1 Neural Tangent Kernel regime

A first asymptotic framework for analyzing neural networks in the infinite-width limit is
the Neural Tangent Kernel (NTK) regime [Jacot, 2018]. This regime corresponds to a
scaling of the network parameters of order ap; = 1/ V/M for a network of width M, under
which the evolution of the network during gradient descent can be closely approximated
by a linearization around its random initialization 6y € ©. In this linearized regime, the
model is linear in its parameters, as in Eq. (33). The neural network thus reduces to a
kernel method [Scholkopf, 2002; Steinwart, 2008] whose associated kernel:

K(z,2') = DgFy,(x) - DgFy, (z') ", (38)

called NTK, becomes deterministic in the infinite-width limit. This leads to powerful
theoretical results: it can be shown that gradient descent converges to a global minimizer
of the empirical risk at a linear rate, governed by the spectral properties of the NTK [Allen-
Zhu, 2019; Du, 2019; Lee, 2019; Zou, 2020]. We will study in more detail conditioning of
the NTK associated to 2-layer perceptrons in Section II.5.

However, the NTK regime comes with intrinsic limitations. Most notably, it induces
a form of “lazy training” [Chizat, 2019], in which the network parameters barely move
from their initialization, and the feature representations do not evolve significantly over
the course of training. As a result, the model fails to capture nonlinear data-dependent
features in a meaningful way, instead behaving like a kernel method. In contrast, neural
networks benefit from hierarchical or task-specific feature learning behaviors, leading to
improved generalization [Bach, 2017a; Ghorbani, 2019; Ghorbani, 2020].

1.3.2 Mean-field models of neural networks

An alternative asymptotic framework is the mean-field regime, corresponding to a scaling
of the output of order 1/M for width M. One of the key features of this regime — in
contrast with the NTK setting — is its ability to capture nonlinear feature learning [Yang,
2021].

Under the apy = 1/M scaling, the network can be interpreted as the integration over a
distribution of parameter. Indeed, for a family of parameters (6;)1<i<p € O™, considering
the empirical measure i = ﬁ M, dp,, Eq. (36) can be written:

, 1 ¥ R
Ve e B By, (@) = Y (0, 2) = /6 $(0,2)di(6) = Fa(e),
i=1
where for every probability measure p on the parameter space © we define:
F,:z €R%n / Y(6, 2)du(f) € Rbeut (39)
©

This representation thus encompasses neural networks of arbitrary finite width when p is
an empirical measure but also describes, when the width M tends to infinity, a mean-field
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limit in which p can be any probability measure [Rotskoff, 2018; Chizat, 2018; Mei, 2019;
Sirignano, 2020].

From a mathematical perspective, beyond eliminating the dependence on the width
M, the mean-field limit representation in Eq. (39) conveniently captures the interchange-
ability of neurons. Indeed, the invariance under permutations of the index i € {1,..., M}
in Eq. (36) induces symmetries in the risk landscape, which can complicate its analysis. It
also enables relaxation of the risk minimization problem Eq. (30) in the space of measures,
which has proven to lead to a simplified optimization landscape [Chizat, 2018; Rotskoff,
2019].

Finally, the mean-field representation allows one to study the training dynamics through
the lens of gradient flows in the space P(O) of probability measures over © [Ambrosio,
2008b; Santambrogio, 2017]. This results in non-local evolution PDEs whose convergence
can be analyzed qualitatively [Chizat, 2018; Rotskoff, 2019] or quantitatively at the con-
dition that the risk satisfies appropriate functional inequalities [Mei, 2019; Chizat, 2022;
Nitanda, 2022]. However, while the mean-field scaling enables a more faithful approxi-
mation of realistic and desirable training behaviors, existing convergence results are pre-
dominantly qualitative: they do not provide explicit convergence rates, nor do they fully
characterize the generalization performance of the learned models. Addressing this gap is
an active area of research, and constitutes the focus of our contributions in Chapter III.

Remark 1.1. Note that, while the mean-field representation Eq. (39) has encountered
significant interest, it is not the only way to represent the infinite width limit of neural
networks with the ayr = 1/M scaling. Several other representations have for example
been proposed by E and Wojtowytsch [E, 2022], among which representations with signed
measures (also proposed in [Bach, 2017a]) or with indexed particle systems.

1.3.3 Expressivity and functional properties of neural networks

Though defined by simple compositional structures, the success and the versatility of
neural networks owes to powerful expressivity properties. Functional properties of the
set of maps that can be represented by a neural network also play an important role
for the training and generalization performances. Such properties are determined by the
architecture as well as the metric structure of the set of parameters and will be at the core
of our analysis in Chapter II.

An important example is the class of 2-layer perceptrons of arbitrary width with non-
linear activation functions. A seminal result by Cybenko [Cybenko, 1989] established that
such networks are dense in the space of continuous functions with respect to the compact-
open topology. Later, Barron [Barron, 1993] provided quantitative approximation bounds
in the L? norm, showing that a large class of functions can be approximated at a rate of
O(1/v/M), where M denotes the width of the hidden layer. Remarkably, this rate does
not depend on the input dimension, suggesting that neural networks can, in principle,
overcome the curse of dimensionality. However, these results are non-constructive: they
state the existence of accurate approximations without providing a practical method to
find them with computational guarantees. This limitation highlights the central role of
training algorithms in practice, as one must rely on optimization procedures to discover
good approximations.

In the case of the ReLLU activation, the space of function represented by 2-layer per-
ceptrons is described by the Barron space [E, 2021; E, 2022]:

B = {F :z € Rin /uReLU(wTw + b)dp(u, w,b), pe PR x REn x R)} .
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When the set of weights is equipped with the standard Euclidean metric, it is naturally
provided with a Banach space norm:

Vf B, 1Pl int [ lul(lu] + b)du, € Pa(® xRS xR), £ =}

This space can be characterized as the smallest Banach space of function efficiently ap-
proximable by 2-layer perceptrons and for example contains all Sobolev spaces of sufficient
regularity [E, 2022].

Note that similar results hold for shallow convolutional architectures which are dense
in the class of translation equivariant functions [Petersen, 2020; Yarotsky, 2022]. Also,
attention-based architectures — and particularly Transformer models — are dense in the
space of permutation equivariant sequence-to-sequence functions [Yun, 2020].

1.4 Scaling neural networks in the infinite depth regime

Despite the already high expressivity of shallow architectures, recent breakthroughs in
machine learning have relied on the power of function composition. In numerous classical
supervised learning tasks, state-of-the-art models are now based on deep neural networks,
which take the general form:

Fg(a?):FgDO"'OFgl(x),

where each Fy, denotes a simpler neural network (e.g., a perceptron, convolutional layer,
attention mechanism, normalization layer, etc.), and the depth D is typically very large.
While this increased depth greatly enhances the expressivity of the model class [Montu-
far, 2014], it also introduces significant optimization challenges. In particular, it has been
observed that the training error of deep convolutional networks can degrade as depth
increases beyond a certain point [Srivastava, 2015; He, 2016a]. Moreover, training deep
networks often suffers from numerical instabilities such as the vanishing and exploding
gradient problems, where gradients become too small or too large in early layers, impair-
ing effective learning [Bengio, 1994; Glorot, 2010]. These difficulties have motivated the
development of specialized architectures that ease the training of very deep networks. A
particularly successful design is the class of residual neural networks.

1.4.1 Residual Neural Networks

Residual Neural Networks (ResNets) is a class of neural network architectures introduced
by He et al. [He, 2016a; He, 2016b] for application in image classification. The idea
behind ResNets is to parameterize each layer as a small perturbation, called residual, of
the identity mapping. In practice, this idea materializes by the presence of skip connections
whose function is to reinject the signal in-between successive layers. A ResNet of depth
D > 1, with input z € X, outputs xp where the data is processed recursively according
to:

vd €{0,...D—1}, x4 = Tq + Fy,(zq), with zp=zx. (40)
~—
skip connection residual

An illustration of a ResNet architecture is depicted in Fig. 2. The residual mappings Fp,
are smaller neural network architectures which can be tailored to the application, typical
examples are convolutional layers for image processing tasks [He, 2016a; He, 2016b] or
attention-based layers in Transformers for natural language processing [Vaswani, 2017].
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Figure 2: Illustration of ResNet-34 architecture from [He, 2016a].

Note that while Eq. (40) constrains the output of each layer to have the same dimension, in
practice ResNets architectures include several downsampling layers reducing the dimension
of the signal.

ResNets have demonstrated remarkable empirical performance, achieving state-of-the-
art results on benchmarks such as CIFAR-10 [Krizhevsky, 2009] and ImageNet [Deng,
2009]. A key innovation is the skip connection mechanism, which alleviates the vanishing
and exploding gradient problems [Raiko, 2012; Szegedy, 2017] and enables the effective
training of networks with hundreds or even thousands of layers [He, 2016b]. This increase
in depth has spurred new theoretical questions about the behavior of gradient-based op-
timization in deep networks. While much of the existing theory focuses on shallow archi-
tectures [Chizat, 2018], the success of ResNets has motivated the need for developing a
mathematical understanding of training dynamics at very large depth.

1.4.2 Neural Ordinary Differential Equations

A central question in the analysis of deep ResNets concerns the appropriate scaling of
residual branches as the network depth increases. To ensure effective training in the limit

of large depth, a depth-dependent scaling factor Sp is introduced, leading to the modified
update rule:

Vd € {0,...,D—1} ,  Xd41 =xd+BDF9d(a:d). (41)

The Neural Ordinary Differential Equation (NODE) model introduced by Chen et al.
[Chen, 2018] corresponds to the specific scaling Sp = 1/D, under which Eq. (41) can be
interpreted as an explicit Euler discretization of a continuous-time ODE. In the limit as
depth tends to infinity, the model has a continuum of parameters 6 € O and processes
input data x € & by solving the ODE:

Vs e [0,1], %x(s) = Fys(2(s)), z(0) ==, (42)

where the parametric vector fields Fy,), still referred to as residuals, are learned.

Applications At first, the introduction of NODEs was motivated by the possibility of
computing gradient through a memory-efficient adjoint state method instead of the clas-
sical backpropagation algorithm, which requires storing the activations and becomes very
memory intensive at large depth [Chen, 2018]. Moreover, a continuous formulation through
ODEs also allows considering adaptative integration methods. By design, NODEs model
dynamical systems, which has led to their application in areas such as physical modeling
and financial time series [Oh, 2025]. Their ability to implement continuous flows of dif-
feomorphisms has also made them a natural fit for generative modeling with normalizing
flows [Rezende, 2015; Kobyzev, 2020]. More broadly, NODEs have spurred the develop-
ment of new neural architectures [Sander, 2021] as well as novel training algorithms [Chen,
2018; Vialard, 2020].
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Theoretical analysis From a theoretical standpoint, NODEs offer a convenient math-
ematical framework — namely, that of ordinary differential equations — for analyzing
the training dynamics and performance of very deep neural networks. In particular, their
continuous-time formulation enables the use of tools from optimal control theory to study
questions of training and generalization [E, 2019; E, 2021]. Moreover, this formulation
leads to a well-behaved loss landscape, which allows for convergence guarantees when
training with gradient-based methods [Sander, 2022b; Marion, 2023b]. In this manuscript,
we leveraged the NODE formalism to study in Chapters I and II the training dynamics of
both deep and wide ResNets.

Different scalings of residual branches The choice of the scaling factor 3p for resid-
ual branches — together with the initialization scheme — plays a crucial role in shaping
the training dynamics of ResNets. As in the case of width-dependent scaling in wide neu-
ral networks, an appropriate depth scaling can improve convergence behavior and enable
significant computational savings, for instance by allowing the transfer of hyperparameters
across architectures of varying depth [Yang, 2023; Bordelon, 2025; OpenAl, 2023].

Several scaling regimes have been proposed and studied. The NODE scaling Sp =
1/D, when paired with smooth (e.g., zero) initialization, leads to stable training and
ensures a finite contribution from residuals in the infinite-depth limit. In contrast, under
a more standard random initialization of weights, a larger scaling of order 8p = 1/vD
is required to obtain a non-trivial limiting behavior as depth increases [Cohen, 2021;
Marion, 2025]. This latter regime has also been associated with improved feature learning
properties [Yang, 2023], although its optimization landscape remains less well understood,
and theoretical guarantees for convergence under gradient descent are still lacking.

1.5 Training and gradient descent algorithms

As explained above, in a classical supervised learning framework, the training phase usually
consists in the minimization of a risk functional. The objective is to find a parameterization
0* € argmingcg R(F) , where R is the training risk defined in Eq. (29). This optimization
problem is usually solved using first order optimization methods whose simplest example
is the gradient descent algorithm which reads:

VkE>0, Okp1 =0 —7VeR(0k), (43)

where 6y € © is some initialization and 7 > 0 is some step-size or learning rate. In
the limit where the step-size 7 > 0 vanishes, this discrete dynamic can be modeled by a
continuous-time dynamic. Such a gradient flow reads:

V>0, %et — VR (6:). (44)
In this manuscript we will analyze the convergence properties of the above dynamics
for the training of several neural network architectures, for deep ResNets in Chapters I
and II and for single-hidden-layer perceptrons models in Chapter III. While contributing
to the understanding of the performances of modern machine learning models, such an
analysis presents significant mathematical challenges, the training risk R being a non-
convex function of a usually high number of parameters.

Backpropagation algorithm In practice, the gradient of the risk with respect to the
parameter is computed using the backpropagation algorithm, corresponding to reverse-
mode automatic differentiation [Baydin, 2018]. By systematically applying the chain rule
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through the computational graph, backpropagation propagates derivatives from the output
layer back to the inner layers with a computational cost comparable to that of evaluating
the function itself.

The scalability of this approach has been a key enabler of modern deep learning break-
throughs. Efficient implementations of reverse-mode automatic differentiation — com-
bined with the parallel processing capabilities of modern hardware such as GPUs and
TPUs — has made it possible to train highly overparameterized models on large datasets.
These implementations are made available in popular deep learning libraries such as Py-
torch [Paszke, 2017], which we used to validate our result in Section I1.7 and Section III.6.

1.5.1 Stochastic gradient descent and variants

While we will focus in this manuscript on the analysis of the simple gradient descent
dynamic (Eq. (43)), one should keep in mind that, in practice, training on large datasets
is made possible by replacing the full training risk with an approximation computed on a
small subset (or mini-batch) of data. This leads to the Stochastic Gradient Descent (SGD)
algorithm, defined by

Vk >0, Ogi1=0r—TVeRr(6k), (45)
where, at iteration k, Ry is given by:
1
Rie(0) = o > HFo(@),y),
#Dk (m,y)GDk

with D C D a mini-batch of data sampled independently from the dataset D. Besides
reducing the computational cost per iteration, SGD introduces stochasticity into the opti-
mization process, which can act as an implicit regularizer and help avoid overfitting, often
leading to improved generalization [Hardt, 2016b].

In conjunction with stochastic gradients, a momentum term is often incorporated into
the gradient updates, resulting in the update rule:

bpyr = mbg + (1 —m)VyRe(6k),

46
Oktr1 = Ok — 7hry1, (46)

Vk >0, {
where m € [0, 1] is the momentum parameter. Originally introduced by Polyak [Polyak,
1964], momentum methods are known to accelerate convergence of gradient descent in the
case of smooth and strongly convex objectives. Subsequent refinements, such as Nesterov’s
accelerated gradient method [Nesterov, 1983], achieve optimal convergence rates in the
convex setting. In deep learning, incorporating momentum has been shown to lead to
improves stability during training [Sutskever, 2013].

Finally, numerous additional techniques have been developed to facilitate the train-
ing of large-scale machine learning models, including dropout, weight decay, learning rate
scheduling, and adaptive gradient methods such as Adam [Kingma, 2014] or RMSprop [Hin-
ton, 2012]. These methods play a crucial role in improving training stability, convergence
speed, and generalization performance [Bottou, 2018].

1.5.2 Two-timescale learning and variable projection

The choice of hyperparameters, and typically of the learning-rate 7 for gradient descent,
plays a crucial role in the asymptotic behavior of the training dynamic. In particular, the
learning rates need not be the same for all of the parameters [Yang, 2021]. In Chapter III,
we will distinguish between two types of parameters:
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e Linear parameters: these are usually the weights of the last layer of the network
and are parameters w.r.t. which the output is linear. Everything else being fixed,
training these parameters is equivalent to the training of a linear model, i.e. a convex
optimization problem for which convergence properties are well-known.

e Nonlinear parameters: these are the parameters of the inner layers of the network,
which are in a nonlinear relation with the output. These allow extraction of nonlinear
representations of the data and play a key role in the generalization abilities of neural
networks. However, training these parameters constitutes a non-convex optimization
problem.

The parameter space thus decomposes as © = O x O™, where ©! and ©™ denote the
subspaces of linear and nonlinear parameters, respectively. Assigning different learning
rates for linear and nonlinear parameters thus leads to the two-timescale gradient descent:

0t ., = 0L —nTVaR(OL, 00,
Vk > 0, ’“l“ '“l ’“l g l (47)

where 7 > 0 is some step-size and n > 0 a timescale hyperparameter controlling the
relative speed of updates. When 7 < 1 the linear parameters 6 are learned more “slowly”
than the nonlinear parameters ™ and conversely, when 1 > 1 the linear parameters are
learned more “quickly” than the nonlinear ones.

The asymptotic limit of large timescales corresponds to a partial optimization of the lin-
ear parameters, a Variable Projection (VarPro) algorithm originally introduced by Golub
and Pereyra [Golub, 1973] for the minimization of separable nonlinear least square prob-
lems. Indeed, as 7 — +o00, we have at each step 0} € argming g R(6',0%). Then, by
the envelope theorem, the dynamic on the nonlinear parameters reads:

VE >0, O, = 0 — 1V R(0L,00) = 0 — TV g L()1), (48)
where for 6™ € ©™, the reduced risk L£(0™) is obtained by:

L") = nf R(6,6™). (49)
In practice, in the case of regression with square loss, such a partial optimization step can
be efficiently performed for a moderate number of neurons by solving a linear system.
Thus, isolating feature learning (slow, nonlinear parameters) from prediction refine-
ment (fast, linear parameters), two-timescale learning and variable projection provide a
principled framework for understanding feature learning in neural networks. For this rea-
son, such approaches have recently attracted the interest of the machine learning theory
community [Marion, 2023a; Berthier, 2024; Bietti, 2023; Takakura, 2024]. In turn, we will
study in Chapter III the convergence properties of VarPro for the training of mean-field
models of neural networks.

1.5.3 Wasserstein gradient flows and optimal transport

We focus in this manuscript on the training of overparameterized neural network archi-
tectures, which — as in Eq. (39) — are described by a distribution of parameters on a
parameter space ©. For such “mean-field” models, the training risk of Eq. (29) is a func-
tional R : P(O) — R defined on the space P(©) of probability distributions on ©. In
particular, for neural networks of finite width M, the distribution of parameters is the
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empirical measure p = ﬁ Zf\il 8pi- Then, when the parameters (6});<;<p follow the gra-
dient flow dynamic Eq. (44), the associated distribution of parameters p; = ﬁ Zf\il 59%
evolves according to the continuity equation:

Oy — div (,utv(?j[,uto =0, on[0,4+00) x O, (50)
where for a distribution pu € P(©) the potential field %—f[,u] is the first variation or Fréchet
differential of R. In the general case where p; is not necessarily an empirical probabil-
ity measure, this PDE can be understood as a metric gradient flow with respect to the
Wasserstein metric on P(0) [Ambrosio, 2008b; Santambrogio, 2015].

The Wasserstein distance arises from the problem of optimal transportation of prob-
ability measures [Villani, 2009; Santambrogio, 2015]. Assuming © is some Hilbert space,

the Wasserstein distance W), for p > 1, is defined between two Borel probability measures
p, 1 € P(O) by:

1/p
Wy (i, 1) = < inf /@x@ 16 — 6'||” dv(6, 9’)) , (51)

YET (p,1")

where T'(u, p') is the set of couplings between p and p/, i.e. the set of probability measures
on © x © whose marginals are respectively p and u':

D, ) = {7y € PO x 0) : why=p, why=p} . (52)

Then, W, provides P,(©) — the space of probability measure with finite p-th moment
— with a structure of complete separable metric space. In particular, it is known since
the work of Jordan, Kinderlehrer, and Otto [Jordan, 1998] that several linear or nonlinear
evolution PDEs such as Fokker-Planck or porous medium equations, can be interpreted
as metric gradient flows for this metric. Indeed, in a similar manner than the gradient
flow Eq. (44) can be obtained as the limit when 7 — 07 of gradient descent Eq. (43), the
Wasserstein gradient flow Eq. (50) can be obtained as the limit when 7 — 07 of a “JKO
scheme” corresponding to its implicit discretization. For an initialization ug € P(0) and
a step-size 7 > 0, such a JKO scheme reads:

) 1
Vk >0, pre1 €argminR(p) + Q—Wg(u,,uk)z.
HeP(O) T

In machine learning, evolution PDEs of the form Eq. (50) have been used by several
authors to study the training dynamics of shallow [Chizat, 2018; Rotskoff, 2019; Mei,
2019; Chizat, 2022; Nitanda, 2022] or deep neural networks [Lu, 2020; Ding, 2021; Isobe,
2023]. Indeed, in addition to providing an elegant formalism for studying the training of
neural networks at large width, the relaxation of the risk in the space of measures also
benefits from a simplified optimization landscape, for example by eliminating spurious
critical points.
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2. Contributions

2 Contributions

We are now in position to detail the contributions of this work. These contributions are
based on three papers that have been written in the context of this PhD and are listed in
the list of publications. In all these works, the code for reproducing numerical results is
freely available at: https://github.com/rbarboni.

I Training of infinitely deep and wide residual architectures

We saw that important effort has been put in developing a mathematical theory for study-
ing the training of overparameterized neural network models. Convergence properties of
gradient descent are now partially understood in some linearization regimes — such as
the Neural Tangent Kernel regime [Jacot, 2018] — or for some architectures — such as
shallow perceptrons with a mean-field scaling [Chizat, 2018]. Yet in applications, recent
breakthrough have been made by very deep architectures such as ResNets [He, 2016a] or
Transformers [Vaswani, 2017] whose training is permitted by the use of skip-connections.

Our first contribution in Chapter I, is thus to propose a mathematical framework
for studying the training of ResNets of both infinite depth and arbitrary width. In this
purpose we consider a mean-field NODE model, that is a NODE of the form Eq. (42) whose
residuals are mean-field models of neural networks of the form Eq. (39). We consider the
input space and output space are the same Euclidean space X = Vot = R?, for some
d > 1, and the basis function in Eq. (39) is of the form 1) : © x R? — R?. Definition 1.1 is
as follows:

Definition (Mean-field NODE). For a family of probability measures 1 = {1(.|8) }sejo,1] €

PO and input x, we define the output of the NODE model as NODE,(z) = z,,(1)
where (x,,(8))sep0,1) satisfies the forward ODE:

Vs € [0,1], %xu(s) = Fy(u(s)) . with 2,(0)=1. (53)

We propose to parameterize this model over the set of probability measures on [0, 1] x ©
whose marginal is the Lebesgue measure on [0,1]. The family of probability measure
{u(18) }sepo) € P(0)%1 is then obtained by disintegration. This space of parameteriza-
tions is defined by:

Py(0,1] x ©) == {p € P2(10,1] x ©) : whp = Leb([0,1])}.

Conditional optimal transport

When training ResNets, gradient of the risk is computed with respect to the Euclidean
metric on the space of parameters at each layer. For our mean-field model of NODE,
this corresponds to a layer-wise Wasserstein-2 distance, which we interpret as a Condi-
tional Optimal Transport (COT) distance, i.e. a restriction of the classical OT distance
which preserves the marginal condition. We define and study properties of the COT
distance in Section I.2. In this purpose, we assume © is some Euclidean space RP for
p > 1. Note that similar topologies on the set of probability measure on product spaces
have found other applications, for examples in the study of evolution PDEs with hetero-
geneities [Peszek, 2023], of Bayesian inverse problems [Hosseini, 2025] or of Bayesian flow
matching [Chemseddine, 2024].
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The COT or Conditional Wasserstein distance W§©T corresponds to a L?-Wasserstein
distance and is defined for u, i/ € PL°P([0,1] x ©) by:

1 1/2

WEOT ) o= ([ W 1) (1)) as)

In particular, the space P%“eb([(), 1] x ©) equipped with the distance WQCOT is a com-
plete metric space (Propositions 1.2.1 and 1.2.3). As for the classical Wasserstein distance
in Eq. (51), we show in Proposition 1.2.2 that the distance WSOT can be obtained as the
optimal value of a convex minimization problem over the space of couplings. However, in
contrast with Eq. (51), this problem has to be restricted to a set of “conditional” couplings.
Namely for p, u' € PE°([0,1] x ©) we have:

WSOT (4,12 = min / 6 0'|2dy(s,6,5.,6),
2 (s i) e e | [[7d( )

where I'P (i, 11') is the set of probability measures v on [0, 1] x © x © s.t. its first marginal
is the Lebesgue measure on [0, 1] and s.t. v(.|s) € T'(u(.]s), 1'(.|s)) for ds-a.e. s € [0,1].
As a consequence, the Conditional Wasserstein topology is stronger (and in fact strictly
stronger, cf. Remark 1.2.1) than the Wasserstein topology.

In the case of the Wasserstein distance, it is a well-established result that absolutely
continuous curves in the Wasserstein topology are characterized as solution to linear con-
tinuity equations [Ambrosio, 2008b, Thm. 8.3.1]. Generalizing on this result, we show
in Theorem 1.1 that absolutely continuous curves for the Conditional Wasserstein topol-
ogy admit a similar dynamic characterization. Precisely, for an interval I C R, a curve
(pe)ter in PEP(]0,1] x ©) is absolutely continuous if and only if it is solution (in the weak
sense) to the continuity equation:

Oy + div((0,v4)pe) =0 on I x [0,1] x O, (54)

for some Borel velocity field v : I x [0,1] x © — © such that [v;|l12(,,) € L*(I) .

Training NODEs with Conditional Wasserstein gradient flow

We then study the training of the mean-field NODE model. We assume the space of

targets is some Euclidean space Viqrg = R? for some d’ > 1. Provided with a finite

training dataset D C R? x R and a loss function ¢ : R% x R — R the training risk is

then defined for a parameterization u € P3°([0,1] x ©) as:

R(p) = #1D S ((NODE,(1),y).
(z,y)€D

In the case of NODEs of finite width, the original method proposed by [Chen, 2018] to
compute the gradient is to rely on an adjoint sensitivity analysis. In addition to solving the
forward equation Eq. (53), the gradient is obtained by solving a backward ODE, modeling
the computations made by the backpropagation algorithm. For data (z,y) € D and

parameterization p € Py°P([0,1] x ©), the adjoint variable (P,z.y(8))sefo,1) is solution to:

d
Vs € [0, 1]: &pu,m,y(*g) = _DxFM(.|r) (xu(s))—rpu,x,y(s) ) (55)
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with pzy(1) = Val(z,(1),y). The gradient velocity field VR[] : [0,1] x © — O is then
defined as:

1

VR[M](‘S?H) = #D

Z Dy (0, xu(s))Tpu,w,y(S)-

(z,y)€D

This gives rise to the following Definition 1.3, defining gradient flow curves for the training
risk R as solution to a continuity equation of the form Eq. (54) with the gradient field VR.
In particular, it has been proven that, in the case of residuals of fixed finite width, the
parameter distribution of a ResNet trained with gradient flow converges locally-uniformly
in time to a solution of this PDE when the depth of the ResNet tends to infinity [Marion,
2023b]. Eq. (56) generalizes here this gradient flow dynamics to infinitely deep ResNets
of arbitrary (finite or infinite) width.

Definition (Gradient flow). Let I C R be an interval. A locally absolutely continuous
curve t € T+ pp € PY¥P([0,1] x ©) is a gradient flow for R if it is solution to the
continuity equation:

Ope — div ((0, VR[pe]) ) =0 on I x [0,1] x ©. (56)

In contrast with Eq. (56), gradient flow curves in metric spaces are usually defined
as solution to variational problems. We retain in Definition 1.5, the notion of curve of
mazximal slope [Ambrosio, 2008b, Def.1.3.2].

Definition (Curve of maximal slope). Let I € R be an interval. Then a locally absolutely
continuous curve (pig)ier in PyP([0,1]x ©) is a curve of maximal slope for the risk R if the
map t — R(ut) is non-increasing and for dt-a.e. t € I the following Energy Dissipation

Inequality (EDI) holds:

d 1(|d |? 5
— < - —
dtR(“t) <5 (’dtut +|VR| (m)) ;

where ’%pt‘ is the metric derivative and |VR| is an upper gradient for R (Definition 1./).

Relying on our characterization of absolutely continuous curves for the W§©T-topology on

PLeb(]0,1] x ©), we show the two above definitions of gradient flow and curve of mazimal
slope of the risk R coincide. This is the content of Theorem I.2:

Theorem. Let I C R be an open interval. Then a curve (ug)ier in PEe([0,1] x ©) is a
gradient flow for the risk R if and only if it is a curve of maximal slope for R.

In turn, this identification allows us to use results on the existence and uniqueness of curves
of maximal slope to deduce corresponding statements for gradient flow curves. These
results, presented in Section 1.3.4 hold under mild regularity and growth assumptions on
the basis function 1 and the special case of shallow perceptrons is treated in Section I.A.
Our existence and uniqueness result is the following:

Theorem. Let g € P¥([0,1] x ©) be some parameter initialization. Then there exists

a unique curve of mazimal slope / gradient flow (fit)ieo,+00) for the risk R starting from
wo- In particular, such a gradient flow curve is defined for every time t > 0.
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IT Convergence in the training of residual architectures

Relying on the mathematical framework developed in Chapter I, we focus in Chapter 11
on the asymptotic analysis of the gradient flow dynamic Eq. (56) for the training of
deep ResNets or NODEs. Considering standard examples of residual architectures such
as random feature models [Rahimi, 2007] or single-hidden-layer perceptrons, we show a
convergence result: for proper initializations of the parameters, the gradient flow converges
at a linear rate to a parameterization that is a global minimizer of the training risk.
In contrast, other convergence results for the training of deep and wide ResNets either
state optimality of the parameterization under a convergence assumption [Lu, 2020; Ding,
2022], or convergence towards a first order critical point which is not necessarily a global
optimizer [Isobe, 2023]. In the end, our theoretical results are supported by numerical
experiments on image classification datasets. The code is available at: https://github.
com/rbarboni/FlowResNets.

ResNets and Polyak-Y.ojasiewicz property

Our proof strategy to obtain convergence of gradient flow is to show that the training
risk R satisfies a Polyak-Lojasiewicz (P-1) inequality around appropriate initializations.
Initially introduced by Polyak [Polyak, 1963] for studying the convergence of gradient
based optimization algorithms, such an inequality has been observed by several authors to
hold for the risk associated to the training of neural networks [Oymak, 2019; Chatterjee,
2022; Marion, 2023b]. We review in Section I1.2 the local versions of the P-¥. inequality we
will use as well as the local convergence results it implies for gradient descent and gradient
flow.

For the risk R associated to the training of our mean-field NODE model, the local P-¥,
inequality here takes the form:

IVR[ 172y = mR() , (57)

where m > 0 is the P-£ constant and p is any parameterization in the neighbourhood of
some initialization po € P¥¢"([0,1] x ©). In particular, Eq. (57) implies that every critical
point of R in a neighbourhood of g is actually a global minimizer. Also, applying results
from [Dello Schiavo, 2024], it allows to conclude to the convergence of gradient flow curves
to an optimal parameterization at a linear rate when the risk at initialization is already
sufficiently small.

In the context of deep ResNets, we show in Lemma II.3.1 that a P-L property is
generically satisfied by our mean-field NODE model and detail in Section 11.3.2 how the
P-t, constant depends on the residuals architecture and on the approximation properties
of the associated functional space. Precisely, Eq. (I1.15) shows that the P-L constant
can be expressed in terms of the conditioning of the residuals Neural Tangent Kernel
(NTK). In the case of mean-field residuals of the form Eq. (39), the NTK depends on the

parameterization u € P(0O) at each layer and is given by:

Klpl(e,a") = [ Dov(0.2)Dori(6.2) du(o). (58)

The NTK in particular evolves with the parameterization during training but, assuming
it stays well-conditioned, one can show convergence of gradient flow to a global minimizer
of the training risk (Corollary 11.3.1). In turn, we show this assumption can be satisfied
for standard architectures in Sections I1.4 and IL.5.
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Convergence for RKHS residuals

We first investigate in Section I1.4 the case of a linear parameterization of the residuals.
For a Hilbert space of features H and a parameter § € © = H%, these are residuals of the
form:

(01, 0(2))y
Fg(fE) = )
<6d7 ¢(x)>’H

where ¢ = R? — H is some feature map. This for example encompasses the case of linear
layers or of 2-layer perceptrons of arbitrary width with fixed hidden layer such as random
feature models [Rahimi, 2007]. Our interest in this architecture is motivated by the fact
that the space of residuals F := {Fy : 6 € O} can then be provided with a structure of
Reproducing Kernel Hilbert Space (RKHS). This has two main interests:

e Equipped with this RKHS metric, the space of residual maps is isometric to the space
of parameters © = H? equipped with its standard Hilbert metric. This allows seeing
the NODE as a nonparametric RKHS-NODE model defined in Definition 1.4 by the
integration of an ODE with nonparametric time-dependent residuals. Moreover, the
gradient flow dynamic Eq. (44) can be projected onto a gradient flow on the space
of residuals (Proposition 11.4.3).

e For this architecture, the NTK is the kernel naturally associated with the RKHS
structure. In particular, it does not depend on the parameterization and stays con-
stant during training. Choosing functional spaces with good approximation prop-
erties, we then obtain a convergence result for gradient flow in Theorem II.4 and
for gradient descent in Theorem II.5. Moreover these functional spaces can be ap-
proximated by random feature models of sufficiently large width. As a consequence,
we also obtain in Theorem I1.6 convergence result for deep ResNets whose width is
polynomial in the number of data samples.

Convergence for SHL residuals

We then turn in Section II.5 to the more realistic case of residuals which are two-layer
perceptrons of arbitrary width with trained hidden layers. These are mean-field models
of the form Eq. (39) with a parameter space © = R? x R? x R and a basis function
¥ : O x R4 — RY of the form:

V(u,w,b) €O, Yz e RY,  ¢((u,w,b),z) = uo(w' z+b),

where o is some nonlinear activation function such as any smooth approximation of ReLLU.
In this case, leveraging the partial linearity of 1) with respect to its parameters, the NTK
in Eq. (58) decomposes as a sum of two positive kernels:

Vo, € RY, K[u)(z,2') = k' [u] (2, 2")Id + K[] (2, 2") ,

where k!'[u] is a scalar kernel corresponding to gradients w.r.t. the linear parameter u
and depending only on the marginal of yu w.r.t. (w,b), or feature distribution, and K?|[u]
corresponds to gradients w.r.t. the nonlinear parameters (w,b).

In case the feature distribution is fixed, that is ¢» only has linear parameters, k' is the
kernel associate to the random feature model previously studied in Section I1.4. Spectral
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properties of this type of kernel have been studied for different type of activations [Bach,
2017a; Cho, 2009] but, generically, strict positivity of the NTK is ensured as soon as the
feature distribution has a dense support (Proposition I1.5.1). Moreover, in the special
case of a trigonometric activation and a uniform bias distribution, a lower bound on the
conditioning of the NTK can be obtained by leveraging results from the theory of radial
basis function interpolation [Schaback, 1995].

However, in contrast with Section II.4, the kernel k' may evolve during training. Still,
using that the conditioning of k' is a Lipschitz continuous function of the parameter
distribution (Lemma I1.5.1), we are able to obtain a convergence result in Theorem II.7.
Moreover, our convergence assumptions are precisely quantified with respect to the number
of data samples in Corollary I1.5.1, for special cases of activations and of initializations.

IIT Feature learning in shallow architectures

In Chapter II, we have shown convergence of gradient descent and gradient flow for the
training of deep ResNets with different choices of residual architectures. In case residuals
are single-hidden-layer (SHL) perceptrons of the form Eq. (34), convergence requires a
sufficiently spread distribution of features, i.e. weights in the inner layer. However, while
this assumption can be ensured at initialization, our analysis in Chapter II is unable to
track the evolution of the feature distribution during training. This restriction is arguably
the pitfall of many convergence results for the training of neural networks which are
unable to describe the evolution of nonlinear parameters, even though feature learning
is expected to be at the core of approximation and generalization capabilities of neural
networks [Chizat, 2018; Rotskoff, 2019; Allen-Zhu, 2019; Du, 2019; Lee, 2019; Zou, 2020).

To tackle this problem, we study in Chapter III the training of a mean-field model
of neural network for solving a univariate regression task in a teacher-student scenario
where the target signal is given by a neural network. In this setting, we consider the
Variable Projection (VarPro) algorithm described in Eq. (48) and show convergence of the
student feature distribution to the teacher feature distribution. In addition, in a certain
regime of small regularization, we are able to establish a linear convergence rate for the
feature distribution by comparing the training dynamic to the solution of a weighted ultra-
fast diffusion equation [lacobelli, 2019b]. Our result are to be compared with the results
of Chizat and Bach [Chizat, 2018] and Rotskoff et al. [Rotskoff, 2019], which establish
qualitative convergence results for the learning of the feature distribution in the training
of shallow neural networks with gradient descent. In contrast we study a two-timescale
variant of gradient descent and establish a linear convergence rate.

In the end, these theoretical results are supported by numerical experiments. We
show on low-dimensional problems with synthetic data that, for a suitable choice of hy-
perparameters, the evolution of the feature distribution during training can indeed be
faithfully modeled by an ultra-fast diffusion equation. Moreover, we also show with ex-
periments on the CIFAR10 dataset [Krizhevsky, 2009] that the VarPro algorithm can
be adapted for solving large-scale machine learning problems. The code is available at:
https://github.com/rbarboni/VarPro.

Variable Projection and reduced risk

We first study properties of the VarPro algorithm. In Chapter III, we consider mean-field
models of neural networks of the form Eq. (39), with a basis function v that is partially
linear with respect to its parameters. Precisely, we consider that the parameter set is of
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the form © = R x €, where () is some space of features, and v is given by:
¥ (u,w),z) € © x R = up(w,z) € R,

where ¢ : Q x R — R is some feature map. This setting for example encompasses
the case of SHL perceptron models of Eq. (34) where the feature map is of the form
¢ : ((w,b),z) — o(w'x +b). Then, given a feature distribution u € P(R), the linear
parameters can be considered as a function v € L!(x) and the neural network’s output
reads:

Ve eRY  Fu(z) = /Q ()b, 2)du(w) (59)

We consider a univariate regression problem with square loss. For a regularization strength
)\, the training risk for a feature distribution u € P(Q) and outer weights u € L?(u1) reads:

— —|Fuu(z) — A dp .
5 X g Fua@ =yl [ JulPan

(z,y)€D

RN, u) =

Leveraging the partial linearity of ¢, one can distinguish in Eq. (59) between nonlinear
parameters, which are encoded in the feature distribution p € P(2), and linear param-
eters, which are encoded in w € L?(u). In particular, for a fixed feature distribution u,
minimization of R* with respect to u is a ridge regression problem which can be solved
analytically in closed form and performed efficiently by numerically solving a linear sys-
tem. As described in Eq. (48), the VarPro algorithm — or two-timescale limit of gradient
descent — then consists in performing partial optimization over u before taking a gradient
step on the non linear parameters. Equivalently, it can be seen as a gradient descent over
a reduced risk defined for every feature distribution u € P(2) by:

i 5,2 g el o+ [l
= u —_ u
u€l?(p) A ueL2 #D 2)\ H H-

In the case A = 0, this reduced risk is the value of a constrained optimization problem:

£O%) = inf /HuHQd,u,
u€L2

Fuu=Y

We consider a “teacher-student” scenario described by Assumption I1I.1 in which the
target signal is represented by a teacher network with some teacher feature distribution
ii € P(Q). In this scenario, we show in Section II11.2 that, for A > 0, the reduced risk £*
can be interpreted as an infimal convolution between two types of statistical distances:
a Mazimum Mean Discrepancy (MMD) distance, which arises from the convolution with
the feature map ¢, and a y?-divergence, which arises from the regularization term. In
particular, in the limit where A — 01, £° corresponds to the y2-divergence between
the teacher feature distribution g and the student feature distribution p. We then show
in Lemma I11.3.3 that the functional £* T-converges on P(f2) to this y?-divergence, imply-
ing for example convergence of sequences of minimizers of £* to the teacher distribution
(Proposition I11.3.1).
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Convergence and ultra-fast diffusion regime

We show in Section III.4 that, in the limit of small learning rates, the evolution of the
feature distribution p under the VarPro algorithm corresponds to a Wasserstein gradient
flow for the reduced risk £*. Following Eq. (50), this evolution takes the form:

A

o
8tut —div <,U’tv(§L[:u’t]> = 07 on [07 OO) X Q? (60)

where the potential %[u] is the first variation of £*. We show in Theorem III.1, that
the above equation is well-posed in the case A > 0. Moreover, we show in Theorem III1.4
that, provided solutions stay sufficiently smooth (e.g., with bounded log-density) the re-
duced risk £* converges to 0 with a convergence rate of order O(1/t). This in particular
implies that, in the limit where ¢ — 400, the student feature distribution converges to the
teacher’s.

In the case A = 0, we explain in Section I11.4 how the wasserstein gradient flow of the
reduced risk £° can be interpreted as a weighted ultra-fast diffusion equation of form:

Ayt — div (/ZV <Z>_l> =0, onl0,00) xQ, (61)

where 1 € P(Q) is the teacher feature distribution. In particular, well-posedness of such
a weighted ultra-fast diffusion has been shown in the case where €2 is the n-dimensional
flat torus, or a bounded convex domain of R” and Neumann boundary conditions are
imposed [lacobelli, 2019b]. Moreover, in this case, the solutions converge in L? to the
teacher feature distribution ji at a linear rate, i.e. a convergence rate of order O(e~¢?) for
some constant C' > 0. In turn, taking the limit A — 0T, we show in Theorem IIL.5 that
(sufficiently regular) solutions of Eq. (60) converge locally-uniformly in time to solutions
of the weighted ultra-fast diffusion Eq. (61).

In Section III.6, we show these theoretical predictions are supported by numerical
experiments on simple settings reproducing our assumptions. We observe that, for a suffi-
ciently low regulariation strength A > 0, single-hidden-layer neural networks trained with
VarPro indeed enter an ultra-fast diffusion regime where the teacher feature distribution
is recovered with a linear convergence rate.
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1.1 Introduction

Understanding the training dynamics of neural networks is an important problem in Ma-
chine Learning as it brings the hope of understanding the good performances of these
models. This training is however an involved optimization problem, usually solved by
performing (stochastic) gradient descent for the training risk, an optimization procedure
which, though simple, often manages to find a global minimum of the risk despite its non-
convexity. This phenomenon is now correctly understood in some simple cases such as the
one of linear networks [Hardt, 2016a; Bartlett, 2018; Zou, 2019; Bah, 2022]. In the more
realistic case of non-linear architectures, most works have focused on Multi-Layer Per-
ceptrons (MLP) [Li, 2017; Du, 2019; Allen-Zhu, 2019; Zou, 2020; Lee, 2019; Chen, 2020;
Nguyen, 2021] and convergence towards a minimizer of the risk can be obtained with great
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probability over a random initialization provided that the network is sufficiently wide, a
regime referred to as “overparameterization”. Taking the limit of infinite width, many
works have also studied the convergence of gradient descent for the training of neural
networks in the limit of an infinite number of parameters [Chizat, 2018; Mei, 2018; Ja-
vanmard, 2020; Wojtowytsch, 2020; Nguyen, 2023]. In those works, the neural network
is trained by modeling the parameters as a probability measure over the parameter space
and performing a Wasserstein gradient flow over the set of probability measures. Notably,
Chizat and Bach [Chizat, 2018] establish a result of optimality at convergence: if the
gradient flow converges then its limit is a global minimizer of the training risk.

We will focus in the first two chapters of the thesis on the case of the Residual Neural
Network (ResNet) architecture which we presented in Section 1.4. ResNets were first in-
troduced by He et al. [He, 2016a] for applications in computer vision but the architecture
has since distinguished itself by obtaining state-of-the-art results in several other machine-
learning applications. A key feature of ResNets is the extensive use of skip connections
(Eq. (40)): each layer consists of the addition of a perturbation (called residual) to the
output of the previous layer. The presence of skip connections has indeed been identified to
ease the training of deeper neural networks [Raiko, 2012; Szegedy, 2017] by mitigating the
vanishing / exploding gradient phenomena, a common problem encountered when training
deep neural networks [Bengio, 1994; Glorot, 2010]. The ResNet architecture has thus per-
mitted the training of neural networks of almost arbitrary depth [He, 2016b]. Considering
the limit where the depth tends to infinity Chen et al. [Chen, 2018] introduced the Neural
Ordinary Differential Equation (NODE) architecture we presented in Section 1.4.2: with
a 1/D scaling of residual branches, passing to the limit of infinite depth leads to a model
performing the integration of the ODE Eq. (42), with a parametric velocity field.

An important contribution of NODEs is to provide a theoretical framework upon which
many other works have been based to study very deep neural network architectures. Chen
et al. [Chen, 2018] proposed a method based on adjoint sensitivity analysis to compute the
gradient of NODEs efficiently without automatic differentiation. Sander et al. [Sander,
2021] proposed a new architecture based on a second-order ODE which can be trained with
reduced computational complexity. Inspired by methods from medical imaging and shape
analysis, Vialard et al. [Vialard, 2020] proposed a new algorithm for the training of deep
ResNets. E, Han, and Li [E, 2019] and E, Ma, and Wu [E, 2021] studied the training and
generalization properties of deep ResNets borrowing tools from the mathematical theory
of Optimal Control.

Notations For a metric space X, P(X) is the set of Borel probability measures over
X. This set is endowed with the narrow topology, which is the topology of convergence
against the set Cp(X) of bounded continuous functions. For z € X, we note d, € P(X)
the Dirac measure at . For p > 1, Pp(X) is the subset of P(X) of probability mea-
sures with finite p-order moment, endowed with the Wasserstein distance VW, defined
in Eq. (51) [Villani, 2009; Santambrogio, 2015]. When X is a Hilbert space we define on
Pp(X) the p-Energy &,(1) = [y |z|Pdu(z). If p € P(X) and f: X — Y is a measurable
map between topological spaces we denote by fupu € P(Y') the pushforward of p by f. If
{fi : Xi = Yi}, <<, is a family of mappings then (fi,..., f,) designates the product map
(Fisoos fr) 2 (@1, oy zn) = (F1(21), ory fr(zn)) and if X = X1 x .. x X™ is a product space
we designate by 7 the projection 7 : (z!,...,2") € X > 2 € X*.
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I.1.1 Mean-field models of neural networks

We consider in this chapter Neural ODEs (NODEs) modeling ResNets whose depth tends
to infinity with a proper rescaling of the residuals layers [Chen, 2018]. We also consider
residuals of the form Eq. (39). Such “mean-field models” can be thought of as neural
networks of arbitrary width and were studied before by Chizat and Bach [Chizat, 2018],
Mei, Montanari, and Nguyen [Mei, 2018], Rotskoff and Vanden-Eijnden [Rotskoff, 2018],
Wojtowytsch [Wojtowytsch, 2020], and Nguyen and Pham [Nguyen, 2023]. Provided with
the parameter space © C RP, the input space R? and with a Borel map 9 : © x RY — R¢

(the basis function), we consider mappings F), : R? — R? parameterized by measures
p € P(O) and defined by:

F,:zeRlws /@1/}(9,1’)(1/1,(9). (L1)

Single-hidden-layer perceptrons The above definition encompasses as a particular
case standard neural network architectures. For example, for © = R? x R? x R and
Y : ((u,w,b), ) — uo(w' x4+ b) with a real-valued function o : R — R (called activation),
considering the atomic measure y = ﬁ Zf‘il O(u;w;,b;) One recovers the classical model of
a single-hidden-layer (SHL) perceptron of width M > 1 defined in Eq. (34):

M
1
F,:x— i ;um(w;—x +b;). (1.2)

We will study this type of architecture in more detail in Chapters II and III.

Convolutional layers Closer to applications, Eq. (I.1) also encompasses the residuals
originally used by He et al. [He, 2016a]. These consists of two of the convolutional layers
defined in Eq. (31), composed with a nonlinear activation. Consider integers n,c,k > 0
and © = REXIXkxk  RIxexkxk o RIXnxn the set of parameters of the form (u,w, b) where
u and w are convolutional filters of size ¢ x 1 x k X k and 1 X ¢ X k x k respectively and b
is a bias term of size 1 x n x n. Then for an image input x € R*™*" of size n X n with ¢
channels, and (u,w, b) € O consider the basis function ¢ : ((u, w,b),x) — uxo(wxx+b) €
Re**" where the activation o is applied component-wise. Then for an empirical measure

= ﬁ Zf\il O(us,wiby)> Q- (I.1) gives on input z:

1 M
Fu(x):MZui*a(wi*m—l—bi), (13)
i=1
which is the output of a ResNet residual with M intermediary channels in [He, 2016a].
However, the definition in Eq. (I.1) does not model some popular architectures such as
normalization or pooling layers which play an important role in the success of ResNets.

Attention layers Finally, Eq. (I.1) also models attention layers at the heart of Trans-
formers architectures [Vaswani, 2017]. Consider as parameter space @ = R x Re*? x R¥xd,
the set of triplets (K,Q,V) where K € R®? is the key matrix, Q € R°*? is the query
matrix and V € R%¥*? is the value matrix. For parameters (K,Q,V) € © and an input
sequence of tokens x = (z%)1<;<n € (RHN of length N > 0, the attention head defined

in Eq. (35) is:

N 6<Ka:i,sz> )
Y((K,Q,V),x) = Attention((K, Q,V),x) = Z N e Qﬂ.)VmJ e (RHN,
! 7 1<i<N

j=1 2uj=
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Then for an empirical measure p = DOy O(Kr,Qu,vi)» Ed. (L1) defines a multi-head
attention layer with M heads:

M
Fu(x) = % S Attention((Kp, Qx, Vi), ) (1.4)
k=1

Note that with this definition, we are only able to describe Transformer architectures
taking as input sequences of tokens of fixed length N. However, our setting could be
adapted to model Transformer architecture taking as inputs sequences of tokens of various
finite lengths by considering different basis functions depending on the length of the input
sequence.

1.1.2 Mean-field NODEs

We proceed then to the definition of Neural ODEs (NODEs) modeling ResNets whose
depth tends to infinity with a proper rescaling of the residual layers [Chen, 2018]. Our
NODE model is then an ODE whose velocity field (or residual) belongs to the class of
mappings parameterized by measure defined in Eq. (I.1). Similar models of “mean-field
NODEs” or “mean-field limit of ResNets” were studied by Lu et al. [Lu, 2020], Ding et al.
[Ding, 2022], and Isobe [Isobe, 2023].

Definition I.1 (Mean-field NODE). For a family of probability measures ju = {p(.[$)};cp0.1) €

P(O)%Y and input x € R, we define the NODE model output as NODE, () = z,,(1)
where (x,,(s))sep0,1) satisfies the Forward ODE:

L) = g lan(s)) . ul0) = 2. (L5)

When there is no ambiguity, we simply write x(s).

The parameter set Py°"([0,1] x ©) To justify the well-posedness of Eq. (I.5) it is first
necessary to define the adequate set of parameters we will consider. Given a topological
space Z, we define PY°P([0,1] x Z) as the set of probability measures u € Pa([0,1] x Z)
whose marginal w.r.t. [0, 1] is the Lebesgue measure Leb(]0, 1]):

PyL(0,1] x 2) = {p € P2((0,1] x Z) : whp=TLeb((0,1])} .

Given p € PYP([0,1] x ©), using a disintegration result [Attouch, 2014, Thm.4.2.4], there
exists a ds-a.e. uniquely determined family of probability measures p(.|s) € P2(Z) such
that for every measurable f : [0,1] x Z — R the mapping:

s€[0,1] — /Zf(s,z)du(z|s)

is measurable and

/[0,1]><Z f(s,2)du(s, 2) :/Ol/zf(s,z)dﬂ(z\s)ds_
Leb

In the following, we will consider as parameters probability measures p € Py°([0, 1] x O).
Therefore, every parameter p € PY°P([0,1] x ©) is naturally associated with a (almost
everywhere uniquely defined) family of probability measures {p(.|s)} sefo,1]- We will provide

this set of parameters with a modification of the Wasserstein-2 distance [Villani, 2009;
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Santambrogio, 2015] that takes into account the marginal constraint by considering a
restriction of Kantorovitch’s original optimal coupling problem to the set of couplings
that are the identity on the first variable s € [0, 1]. The solution of this new optimization
problem induces the Conditional Optimal Transport (COT) distance on the parameter
set [Hosseini, 2025].

Well-posedness of NODEs The following assumption on 1 will be sufficient to show
the well-posedness of Eq. (1.5) for any parameter u € P¥"([0,1] x ©). This is the content

of Proposition 1.1.1.
Assumption I.1. Assume 1 : © x R* = R? is measurable and

(i) (quadratic growth) grows at most quadratically w.r.t. 0 and linearly w.r.t. x: there
exists a constant C' s.1.

Ve eRY, VO €O, [[¢(8,2) < C(L+ ()L +[6]).

(ii) (local Lipschitz continuity) is locally Lipschitz w.r.t. x, with a Lipschitz constant that
grows at most quadratically with 6: for every R > 0, there exists a constant C(R) s.t.

va,2’ € B(O,R), V0 €O, |¢(0,2) —¢(6,2")| < C(R)(L+ [|0]*) |z — 2| .

Proposition I.1.1 (Well-posedness of the flow). Assume u € PY([0,1] x ©) and ¥
satisfies Assumption I.1. Then for every x € R? there exists a unique weak solution
to Eq. (1.5), that is an absolutely continuous path ((s))seo,1) such that for every s € [0,1]:

x(s) =z + /Os ey (z(r))dr. (1.6)

Proof. The result follows Caratheodory’s theorem for the existence and uniqueness of
absolutely continuous solutions [Hale, 2009, Sec.I.5]. Indeed, given p € PYb([0,1] x ©)
the map (s,x) = Fj,(|s)(z) is measurable w.r.t. s and, thanks to Assumption 1.1 (local
Lipschitz continuity), locally Lipschitz w.r.t. = with a local Lipschitz constant that is
integrable w.r.t. s. Moreover, the solutions of Eq. (I.6) are defined up to time s = 1
thanks to the growth assumption in Assumption 1.1, and if C is the growth constant we
get the following bound on the solution:

Vs €[0,1], [lz(s)ll < exp(C(1+ &(w))([z(0)[ + C(1 + E2(n))) - (L.7)
O

Supervised learning We consider the supervised learning framework presented in Sec-
tion 1.1 with input and output space X = YV,ur = R4 and space of targets Vigrg = R? for
d,d’ > 1. Given a data distribution R% x R 3 (z,y) ~ D and loss £ : R x RY — R, we

associate to a parameterization p € P3°([0,1] x ©) the training risk:
R(p) = Eq4yl(NODE,(2),y) = Eayl(zu(1),y) - (1.8)

In the following, we assume the data distribution D has compact support and £ is a smooth
loss. The risk minimization problem Eq. (30) for the training of the mean-field NODE
model thus reads:
Find p*€ argmin  R(u).
pePLeL([0,1]xO)

In practice, such an optimization problem is often solved using first order optimization
algorithms such a gradient descent or stochastic gradient descent. In this chapter, we show
such training dynamics can be modeled by a gradient flow w.r.t. an appropriate metric
structure on the space of parameterizations.
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I.1.3 Related works and contributions

Due to the popularity and performance of the ResNet architecture, many works have
studied its training dynamics and their convergence properties.

Mean-field models of NODEs Some works have proposed models for ResNets of
infinite depth similar to Definition I.1. E, Ma, and Wu [E, 2021] study properties of the
functional space induced by considering the flow of functions of the form Eq. (I.1) and
define a notion of norm which they use to provide bounds on the Rademacher complexity
of this class of function. Chen et al. [Chen, 2023] also provide bounds on this Rademacher
complexity which they use to prove an upper bound on the generalization error of trained
ResNets.

Closer to our work are the works of Lu et al. [Lu, 2020] and Ding et al. [Ding, 2021;
Ding, 2022| studying gradient flow dynamics for the minimization of the risk R for the
ResNet model of Definition I.1. Lu et al. [Lu, 2020] consider gradient flows w.r.t. the true
Wasserstein distance on the space of measures. While this point of view motivates a new
training strategy, it is not consistent with the way ResNets are trained in practice, that
is with a layer-wise-L? metric. Ding et al. [Ding, 2021; Ding, 2022] show existence and
uniqueness of solutions for gradient flow equation similar to Definition [.3.

As a comparison, a key contribution of our work is to provide the parameter set
with the appropriate metric structure allowing us to identify the gradient flow equation,
derived formally by adjoint sensitivity analysis with a curve of maximal slope of the risk.
Similarly, Isobe [Isobe, 2023] considers NODEs parameterized on the space of Py(0©)-
valued functions equipped with a "L?-Wasserstein" metric and trained with gradient flow.
A notable difference is that [Isobe, 2023] considers adding a regularization term to the
risk. This ensures the risk is a coercive function, which is not the case in our setting.

ResNets as a discretization of NODEs Wahile it is not addressed in the present
chapter, an interesting question is the one of the consistency of the NODE model with
ResNets of finite depth. Marion et al. [Marion, 2023b] shows the convergence of ResNets of
finite width towards NODEs, at initialization and during training, when the depth tends
to infinity. This convergence is uniform over finite training time intervals but can be made
uniform over the whole training dynamic under a convergence condition. For ResNets of
arbitrary width, with layers of the form Eq. (I.1), Ding et al. [Ding, 2021; Ding, 2022] give
a result of uniform convergence over finite training time intervals. Adding a regularization
term, Thorpe and Gennip [Thorpe, 2023] show the I'-convergence of the risk associated
with ResNets to the one associated with NODEs.

Conditional Optimal transport In this chapter, we rely on the properties of the
Conditional OT metric (Section 1.2) to define a notion of gradient flow for the training
of ResNets in the mean-field limit. Similar metrics have been used in recent works for
other applications, for example Peszek and Poyato [Peszek, 2023] use gradient flow in
the Conditional OT topology to study evolution PDEs with heterogeneities, Hosseini,
Hsu, and Taghvaei [Hosseini, 2025] apply Conditional OT to the study of solutions to
Bayesian Inverse Problems, Chemseddine et al. [Chemseddine, 2024] consider applications
to Bayesian Flow Matching and Kerrigan, Migliorini, and Smyth [Kerrigan, 2024] consider
applications to conditional generative modeling. Important for studying the gradient
flow dynamics are the dynamical properties of the Conditional OT metric. Analogously
to the Wasserstein case [Ambrosio, 2008b], we show that absolutely continuous curves
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are solutions to certain continuity equations (Theorem I.1). Similar results were shown
in [Peszek, 2023].

Contributions Our main contribution is to propose a model for ResNets of infinite
depth and arbitrary width together with a metric space structure that is consistent with
the layer-wise-L?-metric used in practice when training ResNets with gradient descent
and automatic differentiation. Our model thus allows a rigorous analysis of the training
of ResNets at infinite depth and arbitrary width.

In detail, the ResNet model of Definition 1.1 is parameterized over P3<*([0,1] x ©) —
the set of probability measures on [0, 1] x © whose first marginal is the Lebesgue measure
on [0,1] — which we equip in Section 1.2 with a L?-Wasserstein (or Conditional Optimal
Transport) distance WSOT (Proposition 1.2.1). In Section 1.3 we leverage results from the
theory of gradient flows in metric spaces [Ambrosio, 2008b; Santambrogio, 2017] to define
the gradient flow of the risk R. This gradient flow equation corresponds to both notions
of curve of mazimal slope of the risk and the usual gradient flow of ResNets obtained by
adjoint sensitivity analysis [Chen, 2018]. We conclude this part by showing well-posedness
results for the gradient flow equation, that is existence in arbitrary time (Theorem 1.3),
uniqueness (Theorem 1.4) and stability w.r.t. initialization (Theorem I1.5). The study of
the asymptotic behavior of such gradient flow curves will be the subject of Chapter II.

In addition to this, we study in Section 1.2 properties of the space Pi<P([0,1] x ©)
equipped with the Conditional OT distance WSOT. The literature on this subject being
sparse, some of our results might be of their own interest. In particular, we provide
in Theorem I.1 a characterization of absolutely continuous curves analogous to the one in
the Wasserstein space [Ambrosio, 2008b, Thm.8.3.1].

I.2 Metric structure of the parameter set P}*([0,1] x ©)

We define here a notion of distance WSOT over the parameter set Pr<*([0,1] x ©) and

study its properties. Importantly, the characterization of absolutely continuous curves in
the metric space (P3<P([0,1] x ©), WEFOT) will be used in Section 1.3 to define the notion
of gradient flow for the risk R.

In the rest of this chapter as well as in Chapter II, we will assume for simplicity that ©
is the Euclidean space RP for some p > 1. However, the presented results could probably
be adapted to the case where © is a smooth manifold embedded in R? or an (infinite
dimensional) separable Hilbert space. In particular, we will extensively use the fact that
© is a complete, separable metric space. We recall that the Wasserstein-2 distance Wh
on the space P2(©) was defined in Eq. (51) as the optimal value of the Kantorovitch’s
optimal transport problem:

1/2
Vil € Po(©), Wa(u i) = min (/ ||9—0’|2d7(9,9’)) )
YET (1,1") \JOxO

where T'(u, ¢/) is the set of couplings between p and p/, defined in Eq. (52). We denote
by To(p, pt') C T'(, p’) the subset of optimal couplings achieving the equality in Eq. (1.9).
We refer to the books of Villani [Villani, 2009] and Santambrogio [Santambrogio, 2015]
for further properties of the Wasserstein distance.

I[.2.1 Conditional Optimal Transport distance

The Conditional Optimal Transport (COT) distance WEOT is a modification of the Wasser-
stein distance W, with the supplementary constraint that the transport plan should pre-
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serve the marginal over [0, 1]. This constraint is introduced to closely model the training
dynamic of ResNets where the gradients are computed over the weights of each layer inde-
pendently. For this purpose, it is natural to define a “layer-wise-L?” Wasserstein distance,
that is a L2-distance over the set of families of probability measures in Py(©), indexed
over s € [0,1].

Proposition 1.2.1 (COT distance). Define for u, i’ € P¥([0,1] x ©):

WSO (u (/ Wa (p wo(. |s))2ds> v :

Then, WSOT defines a metric on P¥([0,1] x ©).

Proof. One essentially needs to justify the existence of the integral in the definition of
WCOT That WCOT is a metric then follows from the properties of the Wasserstein and
L2 metrics respectively.

For Borel probability measures p, v € P(0) it is known [Villani, 2009, Thm.5.10] that
the Monge-Kantorovitch problem admits the dual formulation:

Wa(p,v)? =sup{/® cpdu+/®1/1dV} :

where the supremum is taken over all pairs (¢, 9) € Cp(0) x Cy(0) such that p(z)+9(y) <
|z — y||?. We also have the alternative formulation:

Wa(p,v)* = sup {/ sodwr/ soch},
peCy(0) L/O ©

where for ¢ : © — R the c-transform ¢ of ¢ is defined as [Santambrogio, 2015, Def.1.10]:

0 €(0) == inf ||0' — 0||* — (8.
YO, ¢(0)= it 17— (6")

Consider (¢n,)n>0 a sequence of functions in Cp(©) such that for any ¢ € C,(©) we can find
a subsequence m(n) with ¢,,,) — ¢ for the compact-open topology (uniform convergence
on compact subsets) and ||y, (n)[lco is uniformly bounded. Then we also have ¢, (n) — ©°
uniformly on compact subsets with H‘an(n) lloo < [|@m(n)lloo uniformly bounded, whence:

Wa(p,v)* = sup{/ gpndu+/ @ndy} .
neN

Thus, for u, 1/ € P¥P([0,1] x ©), the application s — Wy (u(.|s), /(.]s))? is measurable
as it can be expressed as the supremum of countably many measurable functions. O

Alternatively, the distance WCOT can be viewed as an optimal transport distance

with the additional constraint that the transport plans should be the identity on the first
marginal. This new formulation is convenient for calculations and, in particular, allows
easily estimating the distance WSO from above. Given u, i/ € PLeb([O, 1] x ©) we define:

L, ) = {vePLebqo,ux@?) (1) € Dl Js), 1 (]9)) for ds-ae. s € 0.1]}

rdiag(, ) = {7€F Ly /f 5,8 )dvy(s,0,5,6") / f(s,8)ds, Vf e C([0, 1]2)} .
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Note that these to sets are closely related as, if v € T®(p, 1i'), then

Fi=(rlm? w0y € T8 ()
and conversely, if 4 € T'48(y, 11/), then

FLeb

vi=(wh w? )y € THP (u, i)

In both cases we have for any measurable f : ©2 — R:

/ £(6,0)d(s,6,0') = / £(0,0)d5(s,0,5,6). (1.10)
[0,1]x©?2 ([0,1]x©)2

In the same way the Wasserstein distance Wh(p, 1/) can be obtained of the solution of a
minimization problem over the set I'(u, i/) (Eq. (1.9)), the COT distance WSO can be
obtained as the solution of minimization problems over the sets TP (1, p') and T'428 (1, ).

Proposition 1.2.2. Let u, 1/ € PYP([0,1] x ©) then:

WEOT (/N2 = min / 0 — 0')2d(s.0.0'
() et Jo e | [17d( )

= min 0 —0'||?dv(s, 0,5, 0.
i /([OJ]X@)Q 16 — 0/ 2d( )

We denote respectively by TP (u, 1) and TE28(p, 1) the set of optimal couplings in both
minimization problems. Then for v € TXP(u, 1) we have for ds-a.e. s € [0,1]:

Y(s) € To(u(ls), W' (]s)), e /@2 16— 0'[[2d(0,6'|s) = Wa(ul-]s), 1 (]s))? -

Proof. Our proof technique is similar to the one of [Hosseini, 2025, Prop.3.3] and relies on
the possibility of choosing an optimal transport plan vy(.|s) € To(u(.|s), /(.]s)) for every
s € [0,1] in a measurable way.

We show equality with the first minimization problem on FLeb(,u, 1), equality between
the two minimization problems then comes from Eq. (1.10). Assume there exists a Borel
map 7 : s — y(.|s) € P(O?) (where P(©?) is equipped with the narrow topology) such
that v(.|s) € To(u(.|s), 1 (.|s)) for every s € [0,1]. With such a map, one can define a
Borel probability measure on [0,1] x ©, that we also denote by ~, which is the measure
whose disintegration w.r.t. the Lebesgue measure on [0, 1] is {7(.|s)}¢(o 1- In other words,
the measure 7 is defined by:

1
[ 56.0.000905.0.0) = [ [ £(5,0.0009(60.8s)ds, VF € Cu([0,1] x 62).
0,1]x©2 0 Jez
Such ~ will be a solution to our first optimization problem as we have:

[ 1001, 0.8) =W TP < int 0 05,00
[0,1]x©?2 YETTeP (p,u’) J[0,1]x©2

To show the existence of such v we use a measurable selection result, that is considering
the set-valued mapping s € [0,1] — To(u(.|s),1/(|s)) C P(©?) we show it admits a
measurable section. Consider the set:

G" = {(s,7) : v €To(ul|s), 1’ ()} € [0,1] x P2(6?).
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Using [Bogachev, 2007, Thm.6.9.6], as for every s € [0,1] the set T'y(u(.|s), '(.]s)) is
narrowly compact, it is sufficient to show that G* € B([0,1] x P2(0?)). Let {fn},cy be
dense in Cy(0O) for the compact-open topology. Then, for every n € N as the mapping
(5,7) = Jo2 fndy — [g fndu(.]s) is measurable, so are the sets:

6= {(s7) 5 [ £:000020.6) = [ 10061}
6= {5 ¢ [ 2 @)a900.0) = [ (0)a)5)

Also, as the mapping (s,7) — Wa(u(.|s), 1/ (.|s))*— [o2 ||0—0'||*d~y is measurable by Propo-
sition 1.2.1, so is the set:

G, ={(5.7) + [, 16 = 0'1Pdy = WaluC). (1) } € B(10.1] x Po(67) .
Finally we have that G* = G,N(N,,eny Gn N Gl is a Borel set, which completes the proof. [

Remark I1.2.1 (Comparison of Wasserstein and Conditional-Wasserstein topologies).
Note that, for p, ' € P¥P([0,1] x ©), we have that TV (y, 1') C T(u, ). Hence from
the previous result, it follows:

Wa(p, ') < W5 (, 1t')

and the topology induced by WSOT on PLP([0,1] x ©) is stronger than the Wasserstein
topology. It is in fact strictly stronger and, for example, the sequence [, = fol 5(_1)L2nsJ ds

and the measure p = 5 J3 (31 46_1)ds in PEP([0,1] x R) are such that Wa(jin, pt) — 0 but
WSO (pi, ) > 1.

The following result states that the metric space (PX°"([0,1] x ©), WSOT) is complete.
Proposition 1.2.3 (Completeness). (P3P([0, 1] x ©), WSOT) is a complete metric space.

Proof. The proof is analogous to the proof of completeness of the Wasserstein space
P2(]0,1] x O) (see [Villani, 2009, Thm.6.18]).

Let (14n)n>0 be a Cauchy sequence in PY°"([0, 1] x ©). Then, since the WO T-topology
is stronger than the (complete) Wh-topology (cf. Remark 1.2.1) and since narrow con-
vergence preserves the marginal condition, such a sequence narrowly converges to some
lioo € PYP([0,1] x ©). Then by narrow lower semicontinuity of W$OT (Lemma 1.2.1) we
have for every n > 0:

WCOT (Koo, fin) < lmiglof W2COT (Hms Hin)
and by taking the limsup w.r.t. n > 0:

lim sup WSO (fioo, pin) < lim sup WEOT (pim, pin) = 0.
n—oo m—0o0
n—oo

Hence (u1,) WEOT-converges to fioo. O

Lemma I.2.1 (narrow lower semicontinuity of WSOT). Let (pin)n>0 and (vn)n>o0 be se-
quences in P¥°([0,1] x ©) such that (pin,vn) — (1, v) narrowly for some p,v €

PLeb(10,1] x ©). Then:

CO s CO
Wy T(Ma V) < hnrggfwz T(Mna Vn) .
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Proof. Up to extraction of a subsequence one can assume:

WEOT (11, 1) 2222 Tim inf WEOT (14, 1) -
n—-+00

Then for every n > 0 consider some v, € I'4@8(y, v,). In particular v, € T'(pn, V)
and by [Villani, 2009, Lem.4.4] the sequence (7,) is tight. Hence it admits a subsequence
(Yn, )k>0 Narrowly converging to some « which is in T928(y, v/) by the properties of narrow

convergence. Thus applying [Villani, 2009, Lem.4.3] and using the characterization of
WEOT in Proposition 1.2.2:

WEOT (< [ oo
(0.1]x®©)?
< liminf 160 — 0'||*dyn,,
k=00 J([0,1]x©)2

T CcoT 2
—l%nl)géfwz (Hns Vn)™,

from which the result follows. O

I1.2.2 Dynamical formulation of Conditional Optimal Transport

We analyze here the properties of absolutely continuous curves in PX<P([0, 1] x ©) when
equipped with the COT metric. Similarly to the classical Wasserstein metric, we show that
absolutely continuous curves obey a certain continuity equation. This characterization will
be crucial to define the gradient flow equation used in the training of our NODE model.

Absolutely continuous curves in the Wasserstein space For T > 0, consider
I = (0,7) an open interval and (p)¢cs a family of probability measures over the Euclidean
space RP. Given a Borel velocity field v : (f,z) € I x R? — v (z) € RP such that
J7 Jre llve]|dpeedt < oo, we say that (¢)¢cr satisfies the continuity equation Oy pus + div(vefis)
in the weak sense if:

/I/R (Bp(t, 7) + (Veo(t, 2), v4(2))) dug (z)dt = 0, Ve € CH(I x RP). (L11)

Equivalently ([Santambrogio, 2015, Prop.4.2]), when the mapping ¢ — pu; is narrowly
continuous, this amounts to have that for every ¢ € C(RP) the map t — () = [ pdpu
is absolutely continuous and verifies:

d
aut(ﬂﬂ) = / (Vo,v) dpy, for dt-ae. t € I.

An important property of the Wasserstein space Pa(RP) endowed with the distance W, is
the characterization of absolutely continuous curves: a narrowly continuous curve (i )er
is absolutely continuous in Py(RP) if and only if it is solution to the continuity equa-
tion Eq. (I.11) for some velocity field v with [; [Jve|lz2(,,)dt < oo [Ambrosio, 2008b,
Thm.8.3.1]. We refer to the book by Ambrosio, Gigli, and Savaré [Ambrosio, 2008b]
for a detailed study of absolutely continuous curves in (P(RP), Wh).

Absolutely continuous curves int the Conditional Wasserstein space Similarly
to the characterization of absolutely continuous curves in the Wasserstein space Pa(RP),
an adaptation of [Ambrosio, 2008b, Thm.8.3.1] provides an analogous characterization
of absolutely continuous curves in Py¢P([0,1] x ©), equipped with the Conditional OT
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distance WSOT. This characterization allows us to (formally) provide the metric space
(PLeb(]0,1]x0), WEOT) with a kind of “ differential structure” by seeing tangent vectors as
velocity fields. This identification will be crucial for defining the gradient flow equation for
the training risk R, which will take the form of a continuity equation with an appropriate
velocity field (Definition 1.3).

Theorem I.1 (adapted from [Ambrosio, 2008b], Thm.8.3.1). Assume © = RP. Let
I=(0,T) for some T >0 and (1)t an absolutely continuous curve in Pye"([0,1] x ©).
Then there exists a unique Borel velocity field v : (t,s,0) € I x [0,1] x © — v:(s,0) € ©
such that for a.e. t € I:

)

d
we L), oo <| g0

and p is a weak solution of the continuity equation:
Opue + div((0,v)pe) =0 on I x [0,1] x ©. (I.12)

We will refer to such vy as the tangent velocity field of the curve (u;)ier. Conversely, if
(t)ter is a narrowly continuous curve satisfying Eq. (1.12) for some Borel velocity field vy
with |vell 2. € L), then (u)er is absolutely continuous and 14 < Vel L2y for
a.e. tel.

Proof. Part 1: AC curve = Continuity equation.

Note that this part is the easiest as WEOT—absolute continuity implies Whs-absolute
continuity for which the result is well-known, originally proven in [Ambrosio, 2008b,
Thm.8.3.1]. Therefore we here only adapt this proof to our specific setting.

Up to reparameterization, one can assume w.l.0.g. that ‘% ,ut’ € L*°(I). First we show
that, for ¢ € C}(I x [0,1] x ©), the map t > py() = fol Jo @dpy is absolutely continuous.
Indeed, for ¢,u € I, introducing a coupling 7, € F(I;eb(,ut, ) We have:

1
| L 0(5,8) = (5.0 d1(5.6.6)| < [Faplla W5 it 1)

le(p) — pu(p)| <

from which absolute continuity follows. Then considering the map:

IVop(s,8)| ifo=4¢,
H(s,0,0') =

5,0)—p(s,0"
e g,

we have for every t,u € I:

_ 1
’Ht(sﬁ) :uu((p)| S |t_1u| /0 /@2 HQ—9/||H(3,9,0/)d’yt,u(s,9,0/)

|t — ul
WO (uy, i)

e T 1 H | £2(y,.0) -

As u — t, we have WSOT(MU, pe) — 0 and by the properties of L? spaces [Cannarsa,
2015, Prop.3.11] we can take a sequence w, — t such that Wa(pu,, (.|s), ue(.|s)) — 0
for ds-a.e. s € [0,1]. This implies for those s € [0,1] that gy, (.|s) — w(.|s) narrowly
and that v, (.[s) = v(.|s) € To(ue(.]s), ne(.|s)), i.e. the trivial transport plan ~(.|s) =

20



1.2. Metric structure of the parameter set P1°([0,1] x ©)

(Id, Id) 1 (.|s). Thus we have that 7, — (7', 7%, 72) 4 narrowly since, by Lebesgue’s
theorem, given a bounded continuous function f € Cy([0,1] X © x ©):

[ st = [ ([ 760.0000,6.019 ) ds o [ ([ 15,0000 as.

Hence, at a point where ¢ — p; is metrically differentiable:

Jim sup e () — pu()] <
u—t ‘t - U’

4] 1902201

Consider p = [; pedt € P(Ix 0, 1] x ©) the measure whose disintegration w.r.t. Lebesgue’s
measure on I is (u¢)ie;. Then for ¢ € CL(I x [0,1] x ©) we have:

// Orp(t, s, 0)dpu(s, 8)dt
IJ]0,1]x©

o(t,s,0) —p(t —h,s,0)
_1 // P d 379 dt
8 oo Y pe(s, 0)

= lim (/ o(t,s,0)du(s,0) — / go(t,s,@)d,uth(s,é?)> dt.
h=0Jr b\ Jp1yxe [0,1]x©

Thus by the previous inequality and Fatou’s lemma:

/2 1/2
( / \ " dt) ( / ||veso<t,s,mu?du(t,s,e)) .
[ Ix[0,1]x©

Consider the subspace V := {Vpp : p € CL(I x [0,1] x ©)} and let V be its closure in
L*(I x [0,1] x ©, ). Then by the previous inequality the linear functional A : V — R
defined by:

Orp(t, s, 0)due(s, 0)dt| <

0,1]x©

A(Vop) = — / Dup(t, s, 0)du(t, s, 0)
Ix[0,1]x©

is continuous on V and thus, by Hahn-Banach’s theorem, can be extended to a unique
continuous linear functional on V. Therefore, by Lax-Milgram’s theorem, the minimization
problem

1
min {/ |w(t,s,0)|*du(t, s, 0) — A(w) : we V}
2 Jixmret?
admits a unique solution v € V which is characterized by the property that:
[ (0lt5.0), Tplt, ,0)) dult, 5,0) = A(Vow), Vi € CHT x [0,1] X ©)
IxRP+

This is the desired continuity equation by definition of A.
Finally, let (Vgp,) C V be a sequence converging to v € L?(u). Considering an
interval J C I and some n € C}(J) with 0 < 1 < 1 we have by the previous arguments:

/ n(®)llo(t, 5,0)|2du(t, 5,0) = lim 0 (0, Von) dps
Ix[0,1]x© ”*K>1xmuxe
= lim A(Vg(nen))

IN

2 1/2 1/2
dt) lim ( / \vewdu)
n=00 \ JJx[0,1]x©

9 1/2 1/2
dt) ( / ||v\|2du>
Jx[0,1]x©

/ ‘
ILL

o1




Chapter I. Training of infinitely deep and wide residual architectures

Hence approximating the characteristic function of J with such an n we get:

L] Pt < | \ut
[0,1]x©

implying [|ve|lp2(,,) < ‘%,ut’ for a.e. t € I.

dt,

Part 2: Continuity equation = AC curve.

This part of the proof is new as, according to [Ambrosio, 2008b, Thm.8.3.1], the
continuity equation only ensures Ws-absolute continuity, which is strictly weaker that
WEOT_continuity as explained in Remark 1.2.1. We show here that the specific form of
the velocity field ensures WCOT absolute continuity.

For (t,s) € I x [0,1], we denote by v s the Borel vector field vy s : 0 € © — vy(s,0).
Note that by Jensen’s inequality:

1
I Toallzagupondsdt < [ ollzagdt < +oc.

and we have that for ds-a.e. s € [0,1], t = [[vgsll 204,015y € L'(I). Also if p € CL(I x ©)
and y € C1([0,1]) then by definition of the continuity equation:

/1/01 /9 (Orp + (Vap, vt.s)) x(s)dpe(.|s)dsdt = 0.

Hence if J C [0,1] is an interval, approaching the characteristic function of J with x we
get:

/I/J/@ (Oep + (Vop, vt5)) dpe(.]s)dsdt = 0,

and hence for ds-a.e. s € [0, 1]:

// (Opp + (Vop,v1.6)) dpe(.[s)dt = 0.
1J©

Now if we consider (¢,) a countable dense sequence in C}(I x ©) endowed with the usual
topology then we can find a set A C [0, 1] of full Lebesgue’s measure such that for every
s € A the above equation holds for every test function ¢ € CL(I x ©). In other words we
have shown that, for ds-a.e. s € [0, 1], p(.|s) solves the continuity equation:

Oppie(.|s) + div(ve spue(.]s)) =0 on I x ©.

Note that, without loss of generality, we can consider the curve (u(.|s))ier to be
narrowly continuous. Indeed, as it is a solution of the continuity equation we know that the
curve (p(.]s))ter admits a narrowly continuous representative fi;(.|s) [Ambrosio, 2008b,
Lem.8.1.2] and that this representative is characterized by that for every ¢ € C}(©) and
every t € I:

o= [ [ 6o x(w) (Vo0 dimaCls),

where y € C!(I) is any function such that y = 0 on a neighbourhood of 0 and x(u) = 1 for
u >t (the definition does not depend on x by definition of the continuity equation). Then
it follows that for any ¢ € I and any f € Cy([0, 1] x ©) the map s — fi¢(.|s)(f) is measurable
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1.2. Metric structure of the parameter set P1°([0,1] x ©)

and integrating w.r.t. s we get that f; = fol fit(.|s)ds defines a probability measure over
[0,1] x © whose disintegration is {/i(.|s)}sc[1)- Moreover, for any ¢ € CL([0,1] x ©) we
have:

/ / / w) + x(u) (Vop, vy,s)) dpy(.|s)dsdu = pi(p)

and hence in fact the equality fi; = py.

Then, using [Ambrosio, 2008b, Thm.8.3.1] with the assumption that ¢ — pu(.|s) is
narrowly continuous, we have that for ds-a.e. s € [0,1] the curve t € I — p(.]s) is
absolutely continuous and

to
Wh(j1a, (1), 1, (]8))2 < (2 — tl)/t /@ loslPdpu(Js)dt, Vi <tz el.
1

Hence integrating w.r.t. s € [0, 1] gives:
to
WEO T2 < (ta=t0) [ [ wlPdudr, ¥ <tael,
t1 [0,1]x©

showing that ()ser is WSOT-absolutely continuous and ‘ 5 Mt’ < |vell L2y for ae. t € 1.
O

Remark 1.2.2. Note that to study absolutely continuous curves, we introduce the sup-
plementary time variable t > 0. This time variable will model the optimization time in
the Definition 1.3 of the gradient flow equation. It is not to be interverted with the NODE
flow time s € [0, 1].

As a consequence of Theorem 1.1 we recover two useful results about absolutely contin-
uous curves in Py¢"([0,1] x ©). Those are stated in the following Lemmas 1.2.2 and 1.2.3.
The first result is a result of approximation along absolutely continuous curves. It states
that the tangent velocity field (v;);er defined in Theorem 1.1 indeed furnishes a first-order
approximation of the curve (u;)ier at every time ¢ € I. It will be particularly useful to
differentiate quantities related to p; (Corollaries 1.3.2 and 1.3.3). The second result is
an application and gives the differential of the square-distance WEOT (s, /)% along an
absolutely continuous curve (f)er.

Lemma 1.2.2 (Adapted from [Ambrosio, 2008b, Prop.8.4.6]). Let (u¢)ter be an absolutely
continuous curve in (PYP([0,1] x ©), WSOT) and let v : I x RPYL — RP be the unique
velocity field satisfying the conclusions of Theorem [.1. Then for dt-a.e. t € I it holds that
for any choice of 31 € TE (s, pr):

1
: 1. 21,3 o h_ (1 _2 :
}{gl})(ﬂ,ﬂ',h(ﬂ' W))#’)/t —(W,W,Ut)#ut in Wh([0,1] x © x ©)

and

lim WCOT(#t—l—h) (Id + h(oa Ut))#lut)

=0.
h—0 |h

Proof. The proof only needs to be slightly adapted from the one of [Ambrosio, 2008b,
Lem.8.4.6] but we rewrite it here for completeness.
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Chapter I. Training of infinitely deep and wide residual architectures

Let (¢n)n>0 be a countable dense sequence in C}([0,1] x ©). Then for dt-a.e. t € I we
have limy,_,q WHWQCOT(MH;L, pe) = ‘%Mt‘ and for every n > 0:

iy Farn(#n) — pe(on) :/We%vt) s,
h—0 h

Introducing some " € TLP (s 41, p1¢) we consider:
1
= <7T1,7r2, —(n — 7r2)) ’yth.
h #

Then for any sequence (h,) converging to 0 the sequence (1) is tight in P([0, 1] x © x ©)
and we can consider a narrow limit point »°. The marginal of v*, and hence of %, on
[0,1] x © is u; which allows to write by disintegration 2° = [ ngedut(s, 6). Then we have
for every n > 0:

,U/t—&-h(‘pn)h_ ,ut(gon) = ]i/ (gpn<3, 0/) - Son(sv 9)) d%fl(sv 0, 9,)

- flb/(spn(sa 0 + hz) - 3071(87 9)) dyh(s’ 9’ Z) ’

and taking the limit h — 0 gives by Lebesgue’s theorem:
/(Vggon,vt) dus = / / (z, Vopn(s,0)) dygﬂ(z)dut(s,ﬁ) i
[0,1]x© JO

For (s,0) € [0,1] x ©, let us denote by ¥(s,0) = [g zdygﬂ(z) the first moment of 1/29.
Then from the last equality and by a density argument it follows:

diV((O, ’(715 — Ut)Mt) = 0,

and in particular the continuity equation Eq. (I.12) is satisfied with the vector field (0, ;).
Let us now show:

2

d
o L IEPaneedn(s,0) < | o
[0.1]x6 Jo dt

Indeed we have:

[ [Py dpn(s,6) < limint I=l2dv" (5.6, 2)
[0,1]x0e Je ’ h—0  J[0,1]x©x6
1
= lim inf 116" — 6]|?d~" (s, 6,6
it [ ool 0P, 0.0)
o W2COT(Ht+haMt)2 d ?
= 112138f % = aﬂt
Whence by definition of ¢y and Jensen’s inequality:
N d
9t 2200 < | = Nt 22 (100

from which it follows that @; = v; in L?(u;) because of the minimality of ||v| £2(n) and
the strict convexity of the L?-norm. Moreover the above inequality is strict whenever
1/29 is not a Dirac mass in a set of u; positive measure. This implies that 1/29 is a Dirac
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[.3. Gradient flow dynamics

mass for du-a.e. (s,0) € [0,1] x © and that 10 = (71, 72, v;) . This proves the narrow
convergence of v towards the desired measure and together with the convergence of the
second moments we have W, convergence.

Let us now estimate the distance between p;45, and (7!, 72+ h(0, vt)) 2 with the cou-
pling v := (7!, 72+ h(0,v;), 73) vt € L (2l 72 + h(0,v¢)) g pir, f1e41). By the preceding
result:

WCOT 1’ 2+h , 2 1
2 ((ﬂ' ™ - ’Ut)#ut ,Uft+h) < /[0 1}X®X®ﬁ”9+hvt(5:9) _9/H2d,yth(8’9’0/)

= |ve(s, ) — z||2dv(s,0,2) — 0.
[0,1]xOx© h—0

O]

Lemma 1.2.3 (Adapted from [Ambrosio, 2008b, Thm.8.4.7]). Let (u¢)ier be an absolutely

continuous curve in PY¥P([0,1] x ©), let v: I x [0,1] x @ — © be its tangent vector field

and let ' € PYP([0,1] x ©). Then for dt-a.e. t € I:

d 1
— WSO (g, 1f)* = 2/0 /@ (0 —0,v:(s,0)) dy(s,0,0"), Yy €5 (g, pf) -

dt
Proof. Having shown Lemma 1.2.2; the proof is the same as the one of [Ambrosio, 2008b,
Thm.8.4.7]. O]

1.3 Gradient flow dynamics

To train the NODE model of Definition I.1 we consider performing Gradient Flow on the
parameter p for the risk R and for the COT metric described in the previous section.
However the parameter set PY<P([0,1] x ©) equipped with the distance WSOT lacks a
proper differential structure. We will thus in this section give a sense to the notion of
gradient flow of R. First, motivated by formal computations we will introduce a definition
of gradient flow that is consistent with the one proposed by Chen et al. [Chen, 2018]
for the training of NODEs of finite width. Then, we will show this definition to be
equivalent to the notion of curve of mazximal slope from the theory of gradient flow in
metric spaces [Ambrosio, 2008b; Santambrogio, 2017]. Finally, this equivalence will allow
us to show well-posedness results for the gradient flow equation.

I.3.1 Backward equation and adjoint variables

The computation of the gradient will make use of a new ODE linked to Eq. (I1.6). This
ODE should be understood as running backward over the time variable s € [0, 1] with the
initial condition at s = 1. In the same way Eq. (1.6) models the processing of the data by
a ResNet of infinite depth, the adjoint variables p solutions to this backward ODE should
be considered as modeling the quantities calculated when performing back-propagation
over a deep ResNet.

Definition 1.2 (Adjoint variable). Let u € PY([0,1] x ©) and (z,y) € R™? . Let
(2(5))sepo,1) be the solution to Eq. (1.5) with parameter y and x,(0) = x. Then we call

adjoint variable associated to u, x and y the solution (puzy(s))scjo,1) to the backward
ODE:

1
Vs € 10,1, By () = Vallan(D,0) + | Doy @) g ()dr. (113)

When no ambiguity, the dependence w.r.t. u, x and y is omitted and we simply write p(s).
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The following proposition states the well-posedness of the backward equation under
suitable assumptions on the basis function ¢ and gives a useful representation of the
adjoint variables.

Proposition 1.3.1. Let ;€ PY([0,1] x ©) and (z,y) € R, Assume 1 satisfies As-
sumptions I.1 to 1.3. Then there exists a unique solution to Eq. (I1.13) which is given

by:
Vs €[0,1], Puay(s) = q);mc(5)_T(I)u,w(1)—rvz€(xu(1)a y) - (1.14)

where we define ®, . to be the (matriz) solution of the linear ODE:
Vs € 0,1], @#@(s)::hi+l/ Doy Py ) (20(r)) @y (1) (L15)
0

When no ambiguity we simply denote by ®,(s) or even ®(s).

Proof. Note that Eq. (I.13) is non-autonomous linear ODE w.r.t. the variable p. Thus,
the representation Eq. (I.14) follows from the existence and uniqueness of ® and to prove
the result it suffices to show the map s — D, F),( |5 (z(s)) is integrable.

First, as v is continuously differentiable w.r.t. = with integrable differential for almost
every fixed s € [0, 1] the map x — F),(|5)(z) is continuously differentiable with differential
given by:

DJWM@:ADWWMM%)

Moreover, by continuity of s — x(s) the integrand D,g(x(t)) is measurable and so is the
map s — Dy F),(|s)(z(s)). Finally integrability follows as Dty(z(s)) has 2-growth w.r.t.
0 and [ ||0]|*du(8]s) is integrable on [0, 1]. O

The following result gives an alternate point of view on the adjoint variable p. Geomet-
rically, it follows from Eq. (I.14) that p lives in the co-tangent space of the flow z. In the
case of a general (not necessarily with finite support) data distribution D € P(R% x RY) it
is convenient to see p as the gradient of a potential 1 over the variables (z,7) € RY x RY .

Lemma I1.3.1. Let u € PY¥([0,1] x ©). Then for every (x,y) € R the associated
adjoint variable p can be expressed for every s € [0,1] as:

Pa,y(8) = Vau(s, zu(s), y) , (1.16)
where 1, is the unique solution to the transport equation:
as%ﬂ‘ <v$¢,u7Fu(\s)> :07 ¢H(1ax7y) :€<$,y), v<$7y) eRd X Rdl' (Il7)
Proof. The solution to the transport equation can be given in the characteristic form:

Vs €[0,1],z € R?, Yu(s,2,(8),y) = Yu(l,2,(1),y) = Uxu(1),y).

One can then check that the r.h.s. of Eq. (I.16) is indeed a solution of Eq. (I1.13). O
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[.3. Gradient flow dynamics

I.3.2 The gradient flow equation

We motivate here by formal computations a definition of a gradient flow equation for the
risk R. This adjoint sensitivity analysis consists in using a Lagrangian form of the risk
minimization problem to obtain an expression of the gradient w.r.t. the parameter u.

One can consider for a parameter u € Py°P([0,1] x ©) and every time s € [0,1] the
distribution p,(.|s) = (z — x,(s),1d)4D of the data at time s. Then, as the inputs are
processed by our model through the ODE Eq. (1.5), {p.(.|s)} is a narrowly continuous
solution to the continuity equation:

s€[0,1]

9sp,(-|8) + diva (Fy sy, () =0, (I.18)

and the risk associated to p is
R ——/ Uz, y)dp,(x,y|l) = J1)(4) .
(1) i (z, y)dpu(z, y[1) = pu(.[1)(£)

We introduce a Lagrange multiplier ¢ to penalize the above continuity equation. For

a parameter u € PYP([0,1] x ©), a measurable family p = {p(.|s)} sefo,1) Of probability

measures over R? x R? and a smooth test function 1 : [0, 1] x R? x R — R, consider the
lagrangian £ defined as:

L(p, p, ) = p(-[1)(€) = p(.|1)(1(1)) = p(.[0)(¥(0))
1
+/0 /RM (050 + (Ve Fys))) do( Js)ds . (1.19)

Using the definition of F' and inverting integrals, the variation of £ w.r.t. p is given for
every p and ¥ by:

o) (5,00 [ (T, 6(0,2) o).

Also, if p = p, is the solution of Eq. (1.18) for the parameter ;, we have the relation
L, pp, ) = R(p) for any test function ¢p. Hence the variation of R w.r.t. p is:

0R oL oL o
E(u) = 7(M,pu,w) + E(M?pli?w)ﬂ(/j’) )

op op

where the Lagrange multiplier 1 can be chosen arbitrarily. Also the variation of £ w.r.t.
the family of probability measures p, seen as the probability measure whose disintegration
on [0,1] is {ps}ejo,1) (With the fixed initial condition p(.|0) = D), can be formally given
by:

oL

5, 0 0) = (€= (1) bzt + 000+ (Va0 Frgr)

We see that taking 1 = 1), to be a solution of Eq. (I.17) cancels % for every p and hence:

R oL
E(M) = E(Ma Pus ¢u) .

By Theorem 1.1 we know that, for every absolutely continuous curve () passing through
u, its variation at p is given by Oyuy = —div((0,v)u) for some v € L%(u). A notion of
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gradient of R (for the “differential” structure of P}°"([0, 1] x ©)) at u could thus be defined
as the unique solution to the variational problem:

1 R
VR(u) € argmin - ||v||? —<V9,u,v> .
(1) € argmin o) — (Vo3 Gv)

This problem admits a unique solution v* € L?(p), provided that Vg%%(,u) € L?(u), and
using the relation Eq. (I.16) between the adjoint variable p, and the potential ¢, we have:

. IR 3L
v = Vo (1) = V@@(u,pu,%)a

that is
vt (s,0) = /Rd+d, Dy (0, x)Tvx¢u(5Ea y)dpu(z,yls) = EqzyDoyp(0, wu(5)>—rpu,:v,y(3)'

If the above calculations are purely formal they motivate the following definition of
gradient flow for R. In particular, this definition will be shown in the next section to be
equivalent to the appropriate notion of gradient flow in metric spaces.

Definition I.3 (Gradient flow equation). Let I C R be an interval. For u € PY([0,1] x ©)
let us define:

VR[] : (s,0) — ]Exnygw(Q,wu(s))TpM7m7y(s). (1.20)

We say a locally absolutely continuous curve t € I — puy € P¥P([0,1] x ©) is a gradient
flow for R if it is a weak solution to the continuity equation:

Ope — div ((0, VR[pe]) ) =0 on I x [0,1] x ©. (L.21)

The following result is a useful representation formula for the gradient flow curves
defined by Definition I.3: for every ¢ > 0 the gradient flow p; at time ¢ is the pushforward
of the initialization pg by a flow-map. The proof relies on classical results from transport
equation theory [Ambrosio, 2008a].

Proposition 1.3.2. Assume v is twice continuously differentiable and satisfies Assump-
tions 1.1 to 1.3. Let (ut)e>0 be a gradient flow for the risk R and consider for every t > 0
the vector field:

Vi (5,60) = (0, VR[i](5,0)) = (0, B yDoth(0, 211, (5)) Py (s)) €ER X O

Then for every t > 0 we have p; = (X¢)upo where Xy is the flow-map solution of the
ODE:

%Xt(s, 0) = Vi(Xy(s,0)), Xo=1d. (1.22)
Proof. The existence and uniqueness of the flow-map X; for every t > 0 follows from
the assumptions on ¢ (in particular linear growth and local Lipschitz continuity of Dyt
w.r.t. #) and classical theory of ODEs. The flow-map representation of u; then follows
from [Ambrosio, 2008a, Thm.3.2] as for any initial value (s, ) € [0, 1] x © the set of curves
solutions to the ODE is the singleton {(X(s,6))i>0}- O
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Consistency with the adjoint gradient flow A case of particular interest for nu-
merical applications is when the measure p is discretized and approximated at every time
s € [0,1] by an empirical distribution. Given M > 1 and 6 = (67);<j<p € L*([0,1],0)M

we define the associated empirical distribution g € PYP([0,1] x ©) by:

1M
for ds-a.e. s € [0,1], pg(.|s) = Y § 83 (5)ds - (1.23)
i=1

i.e. pg is the measure whose disintegration at any time s € [0, 1] is the empirical measure
= Zj]\il Jpi(s)- Then we denote by R(f) :== R(ug) the risk associated to 6. In the original
work of Chen et al. [Chen, 2018], the authors propose to train the Neural ODE parame-
terized by 6 and minimize R(#) by performing gradient descent for the adjoint gradient
defined as:

VBJR(G) = Em,yD9¢(0jv CC(S))Tp(S) )

where x and p are respectively the solutions of Eqs. (I.6) and (I.13) for the parameter
tg. One can observe that the adjoint gradient is the one calculated by Eq. (1.20) when
© = pg. Given sufficient regularity assumptions on the basis function ¢, we have by Propo-
sition 1.3.2 that (u¢)¢>0 is a gradient flow in the sense of Definition 1.3 with pug = pg, if
and only if p; = g, for every t > 0 and (0:):>0 is a gradient flow for the above adjoint
gradient.

I1.3.3 Gradient flows as curves of maximal slope

There exists a large body of mathematical works devoted to the generalization of the classi-
cal theory of gradient flows to functionals over metric spaces. Ambrosio, Gigli, and Savaré
[Ambrosio, 2008b] give an in-depth presentation of this theory. Complementary and more
synthetic presentations are given by Ambrosio et al. [Ambrosio, 2013] and Santambrogio
[Santambrogio, 2017]. Based on those works, we introduce here another definition of gra-
dient flows for the risk R which is the one of curves of maximal slope and show it coincides
with the definition from the previous section.

1.3.3.1 Curves of maximal slope in metric spaces

When Z is a Euclidean space, and f is a smooth function the gradient flow of f is defined
as the solution of the ODE %zt = —V f(2). Then such a gradient flow satisfies:

d d
G = =19l = =5 (1541 + 19 £GP

whereas for any other smooth curve (y;) we have by Young’s inequality:

0w == (it Gy = =5 (IGuP+19f@I?) . a2y

with equality if and only if %yt = —V f(y:). Hence, we see that imposing equality in the
above inequality gives a characterization of gradient flow curves in the Euclidean case. The
definition of curves of maximal slope is based on the generalization of this characterization
to metric spaces. For example, a generalization of the speed’s norm H%th is given by
the metric derivative ‘%zt‘. To give a sense to the gradient’s norm ||V f(z)|| we need to
introduce the notion of upper gradient.
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Definition I.4 (Upper gradient [Ambrosio, 2008b, Def.1.2.1]). Let (Z,d) be a complete
metric space and f : Z — R be a function. The map g : Z — [0, +0o0] is an upper gradient
for f if for every absolutely continuous curve (zi)ic; we have that t — g(z;) is measurable
and:

dt, Vt;<tsel.

o) = Gl < [ o) |

t1

When no ambiguity an upper gradient of f will simply be denoted by |V f|.

Given an upper gradient for f, the definition of curves of maximal slope consists in
imposing equality in Eq. (1.24).

Definition 1.5 (Curve of maximal slope [Ambrosio, 2008b, Def.1.3.2]). Let (Z,d) be a
complete metric space, I € R be an interval and f : Z — R a function with |V f| an upper
gradient for f. We say that (z;)ier is a curve a maximal slope for f (w.r.t. |V f|) if it
satisfies:

(i) (zt)ier is locally absolutely continuous,

(ii) the map t — f(z;) is non-increasing,
Iz d 1 (a2 2
(iii) for dt-a.e. t € I it holds 5 f(z) < —35 ‘&zt‘ + [V fI*(2) ).

If limy_yinf g 2¢ = 2 exists then we say (z¢)ier s a curve of maximal slope starting at z.

Remark 1.3.1 (About the various definitions of curves of mazximal slope). There exists
various definitions of the notion of curve of maximal slope in metric spaces, see for ex-
ample [Ambrosio, 2013, Sec.4] for a discussion about the various definitions and their
relations. Our definition is the same as the one used in [Hauer, 2019, Def.2.12]. In par-
ticular, it implies the following Energy Dissipation Inequality [Hauer, 2019, Prop.2.14]:

Fly) = flz) > % /tt ('jtzt

This definition differs from the one exposed in [Dello Schiavo, 202/, Def.2.2] (see also [Mu-
ratori, 2020, Def.4.4]) as the map t — f(z) need not be locally absolutely continuous. The
difference between these two definitions is discussed in [Dello Schiavo, 202/, Rem.2.6] but
observe that for our purpose (i) the loss R will be shown to be locally Lipschitz in Corol-
lary 1.3.1, hence implying that R(u) is locally absolutely continuous, (ii) the gradient
norm ||[VRI[u]| r2() will be shown to be an upper gradient in Proposition I.5.4. For these
reasons, we need not here make the distinction between these two definitions and prefer
weaker assumptions.

2
+ |Vf|2(zt)> dt, Vt,tael. (EDI)

Note that there is a priori no reasons for Definitions 1.3 and 1.5 to define the same
notion of gradient flow for the risk R. In particular, the first definition uses the existence
of the adjoint variable p and thus some regularity on . In contrast, the second definition
requires an upper gradient which is yet unspecified for R. Taking appropriate assumptions
on the basis function 1, we show in the rest of this section that the risk R is sufficiently
regular for the two definitions to coincide. This will be the content of Theorem I.2.
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[.3. Gradient flow dynamics

1.3.3.2 Curve of maximal slope for the risk R

Provided with Definition 1.5, we seek to characterize the curves of maximal slope for the
risk R in the metric space PYP(]0,1] x ©). We first show the NODE’s output is a locally
Lipschitz function of the parameter y € PXP([0,1] x ©).

Assumption 1.2 (local Lipschitz continuity w.r.t. 6). Assume that 1 : © x R® — R? s
locally Lipschitz w.r.t. 0 with a Lipschitz constant that grows at most linearly w.r.t. ©: for
every R > 0 there exists a constant C(R) s.t.:

Vo € B(0,R), V0,0' € ©, |[¢(0,2) — (6, 2)|| < C(R)(1 + max(||6]], |0]))]|6 — ¢"[|.

Lemma 1.3.2 (local Lipschitz continuity of the flow). Assume ¢ satisfies Assumptions I.1
and 1.2 and consider some input x € R4, Then the map

€ Py([0,1] x ©) = (2(s))sefo.n) € C(0,1],R)
is locally Lipschitz. More precisely, for every € > 0 there exists a constant C = C(E) s.t.:

up u(s) = 2 ()| < COWGOT (, 1),
se|0,

for every p, i’ € PE¥P([0,1] x ©) with Ex(u), Eo(u') < E. Moreover, the constant C' can be
chosen uniformly over x in a compact set.

Proof. Consider x € R% & > 0 and p, ' such as in the statement. We denote by
(2(5))sefo,1) and (2'(s))sefo,1) the flow associated to z and to the parameters p and p/
respectively. Let R > 0 be such that ||z|| < R. Then by Proposition I.1.1 the trajectories
x,2’ are uniformly bounded by some R’ = R'(R,E) . Then using Eq. (I.5) we have for
every s € [0,1]:

Jo() = '@ <la(©) = 'O+ 1| [ [ @atrDaueindr = [ [ w026 @lr)ar|
<Na(0) = 'O+ [ [ 160.a(r)) = (6.2 (r) [ dolr)ar
+ [0 [ vt eat = e ar.

For the first integral note that using the local Lipschitz continuity of ¥ w.r.t. x in As-
sumption 1.1 we have for every r € [0, 1]:

| 10,2(0)) = 60 () [dp(@lr) < 1 [ 1+ 1012 du(6lr) () = 2'0)]
S} S}

where C1 = C1(R, £). For the second integral note that at fixed r € [0, 1], if v € Tp(uu(.|7), p/(:|7))
is a (optimal) coupling between p(.|r) and p/(.|r), then:

[ 0.2 @)= )0l = [ @6.2'0)) = 6l 2/ (r)dr(0,0')
e S}

Using the local Lipschitz continuity of ¢ w.r.t. # in Assumption 1.2 and the optimality
of v:

I 0.2l = )@ < [ 1600.2/(r) = (0", (7)) [d3(0.0)
< [, Col1 -+ max((61].1/1))16 ~ #ax(®.)

< V3G (14 E(u(.[r)) + E( (1) P Wil [r), 1 (7).
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where Cy = Cy(R,E). Integrating those inequalities gives by Gronwall’s lemma that for
s € [0,1]:
()= ()] < VBEHIEUDNCy [ (14 Ea(u( 1)) + Exlp () WaluCIr). ()
< C3WQCOT(M7 :U//) )
where 03 == Cg(R,g) L]

As an immediate corollary of the above proposition we get that, provided the loss
function ¢ is itself locally Lipschitz then the risk R is also a locally Lipschitz function of u.

Corollary 1.3.1 (local Lipschitz continuity of the risk). Assume that ¢ satisfies As-
sumptions 1.1 and 1.2 and € is locally Lipschitz w.r.t. . Then the risk map L : p €
PLeb([0,1] x ©) = R(u) is locally Lipschitz.

Assuming more regularity on the map 1, one can express the first variation dz of

the flow map with respect to a variation of the parameter transported by a velocity field
ve L (p).

Assumption 1.3 (Differentiability of ). Assume that ¢ is continuously differentiable
and s.t.

(i) Dy grows at most quadratically with 0: for every R > 0 there exists a constant C'(R)
such that

Vo € B(0,R), Y0 €©, [Duy(8,2)| < C(R)(L+[6]°).

(ii) Dt grows at most linearly with 6: for every R > 0 there exists a constant C = C(R)
such that

Vo€ BO,R), W €O, [Dy(0,2)| < C(R)(1+0]).

Proposition 1.3.3. Assume ) satisfies Assumptions I.1 to I.3. Consider i € P¥*(]0,1] x ©)
and a velocity field v : [0,1] x © — © in L*(u). For t € R, define puy == (Id + ¢(0,v)) g p.
Then, for x € RY, (z,,,)ier is differentiable in C([0,1],R?) at t = 0 and 6z == Sy, |i—0 s
the solution to:

Vs € [0,1], dx(s) = /0 CDE, (04 dr + /O ) /@ D (0, 2, (r))o(r, 0)du(0]r)dr .
(1.25)

Proof. First, thanks to Assumption 1.3, for v € Py(©) the map F, : R — R? is differen-
tiable with DF}, : ¢ — [ D,9(6,x)dv(0). Also, 0z is well-defined as the unique solution
of Eq. (1.25) and:

Vs e [0,1], 53:(3):/08/6@,,,@(3)%@(7")1De¢(9,w(?"))v(r,ﬁ)du(n@)-

For simplicity, in the rest of the proof we will write x; := z,, for any ¢ € R. Let us
then show that dx is the derivative of x; at ¢ = 0. For t # 0, consider the normalized
increment:

2t = %(wt — x9) € C([0,1],RY).
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[.3. Gradient flow dynamics

Then we have by definition of x; and x( that for every s € [0, 1]:

//zth Y (r, 0) — //M:po Ydpu(r, 0)

- /0 /@ (W0 + to(r,0), 2,(r)) — (0, 20(r))) dps(r, 0)
_ /0 ’ /@ ( /0 D (0, 20(r) + utzt(r))du> - zy(r)du(r, 0)
+ /os /@ (/01 Dy (6 + utv(r, 19),:Ut(7“))du> ~v(r,0)du(r,6) .

Hence z is solution of the linear ODE z(s) = [ (A¢(r) - 2¢(r) + be(r)) dr where we defined
for dr-a.e. r € [0, 1]:

1
A(r) = /@ /0 D, (0, 20 (r) + utz(r))dudu(0]r)
1
= [ [ Dot + utv(r.0). ) - o(r, Otudp(6lr)

and in order to prove that z; — éx in C([0, 1], R?) as ¢ — 0 it suffices to show that A; and
by converge respectively in L1([0, 1]) to

:/G)wa(ﬁ,xg(r))du(em, and  b(r /Dg?/) (0, 20(r)) - v(r)dpu(6]r) .

Indeed, note that WEOT (1, p) < tl|vll z2(,) and the family (z¢)e(—1,1) is bounded C([0, 1], RY)
by Lemma I.3.2. Thus for ¢ € R:

1
| 14— @) ar <

where Assumption 1.3 allows to bound the integrand by an integrable function and to
apply Lebesgue’s theorem, showing that A; — A as t — 0 in L(]0,1]). Similarly for b;:

xw(ea ‘TO(T) + UtZt(T’))d’LL - DI¢(07 SUO(T)) dM(Tv 6) —0

t—0

1 1 1
| ) =ptar < [ [ | [ Do + uto(r,0),(r))du — Dyt 6,0(r))
0 0 JolJo

O]

A direct consequence of the previous result is the differentiability of the flow map and
consequently of the risk along absolutely continuous curves.

Corollary 1.3.2 (Differentiability of the flow). Assume 1 satisfies Assumptions 1.1 to I.3.
Let I C R be an interval and consider (ju:)ter an absolutely continuous curve in P ([0,1] x ©)
satisfying the continuity equation:

Opur + div((0,v)pe) =0 on I x [0,1] x ©.

Consider some x € RY. Then (x,,)ier is an absolutely continuous curve in C([0,1],R%)
and is differentiable in C([0,1],RY) for dt-a.e. t € I with éz; == S, the solution to:

Vs € [0,1], Sas(s / DE,, () (2 (1)) (r dr+/ /Dw (8, 2,0, ()0 (7 0) dyae (8]7) dr
(1.26)
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Proof. For t € I we use the shortcut notation x; := x,,. The fact that (z;):cs is absolutely
continuous follows from Lemma [.3.2 stating that the flow map is locally Lipschitz. To
prove the result it hence suffices to show that dx; is the derivative of ¢ — z; in C([0, 1], R%).

Note that, without loss of generality we can consider v; to be the (uniquely defined)
tangent velocity field of the curve (pu¢)ier. Indeed if ¥, is the tangent velocity field then
we have by Theorem .1 that in the sense of distributions:

diV((O, VUt — @t)ut) =0.

Hence for every z € R? and every s € [0, 1]:

/s/ Dot(0, z¢(r))ve(r, 0)dpy(r, 0) = /S/ Dot(8, z¢(r))0¢ (1, 0)d e (1, 6)
0o Jo 0o Jo

and the definition of dx; stays unchanged. Then, assuming v; is the tangent velocity
field to the curve u;, we can consider a subset A C [ of full Lebesgue measure such
that the conclusions of Lemma 1.2.2 hold. For every t € A and every h # 0 consider
i == (Id + h(0,v;)) 40t and Z} the associated flow. Then by Proposition 1.3.3:

~h
Tiah — T
— 0ztle(o1)) + H%HC([OJ]) oY

i‘?—l‘t

Tish — T
||HTt — 0ztlleqo) < |l

where the first term goes to 0 by application of Proposition 1.3.3.The second term also
goes to 0 by the fact that the flow map is locally Lipschitz, thus

|Zen — 2 lleoay < OWS T (esn, 1))

for some constant C' and ||z, — j?HC([O,U) — 0 by Lemma 1.2.2. Note that, as A C [ is
independent of x, it follows that the curve t — x; is differentiable at every t € A for every
r € RY. O

Corollary 1.3.3 (Differentiability of the loss). Assume v satisfies Assumptions 1.1 to 1.3
and ¢ is continuously differentiable. Let I C R be an interval and (u)ier be as in Corol-
lary 1.3.2. Then (R(t))ter is absolutely continuous and for almost every t € I:

SR = [ (TRl (5,0),w5,) (s, 0).
[0,1]x©

dt
Proof. First, the fact that ¢ — R(u) is absolutely continuous follows from the fact that
p— R(p) is locally Lipschitz, as shown in Corollary 1.3.1. It remains to show the formula
for its derivative.

For t € T and (z,y) € R? x R use the shortcut notations a; = z,,,, p == Ppy.zy and
®; .= &, .. By the proof of Corollary 1.3.2 we know that there exists a subset A C I of
full Lebesgue measure such that for every ¢t € A, the map ¢ — x; is differentiable at t for
every € R%. By Lebesgue theorem, the map ¢ +— R(u;) is differentiable at every ¢ € A
with:

d

G R(1) = Eay (Val(2(1), ), 62(1)) |

where, at fixed x € RY, jz; verifies Eq. (1.26) and is given by
oxy(1) = /[0 16 Dy (1)®y(5) " Dgtb(0, x4 (5))ve(s, 0)dpe (s, 0) .
1] x
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[.3. Gradient flow dynamics

Also, the adjoint variable p; is given by pi(s) = ®;(s)” T ®:(1) "V £(x4(1),y). Hence by
inverting the integration order, we see that for t € A:

SR(u) = Bay (Voo (1)), 6021 = [

dt 0,116 <Em,yDew(«9, z1(s)) ' pu(s), vils, 9)> dpe(s, ) .

By the expression of VR[u] in Eq. (II1.10), this is the desired result. O]

Thanks to Corollary 1.3.2 (which can be seen as a chain-rule formula) one can show
that the gradient norm [[VR[u]||z2(,) gives an upper gradient for the risk R in the sense
of Definition I.4. Moreover the following Proposition 1.3.4 shows it corresponds to the
notion of local slope ([Ambrosio, 2008b, Def.1.2.4]). The result relies on the following
lemma.

Lemma 1.3.3 (Continuity of the adjoint variable p). Assume v satisfies Assumptions I.1
to 1.3. Then, for fized (z,y) € R™Y the map p — Puzy € C([0,1] x RY) is WEOT.
continuous on Py ([0,1] x ©).

Proof. Let € PY®([0,1] x ©) and consider a sequence (j,)n>0 in PyP([0,1] x O) s.t
WEOT (11, 1) — 0. Fix a pair (z,y) € R and use the shortcuts z, = z,, (resp.
x=x,) and p, = Py, 2y (T€SP. P = pu o). By Lemma 1.3.2 we already have z,, — « in
C([0,1]) and we show now that p,, — p in C([0, 1]) using Ascoli’s theorem.

Remark that by the assumptions on v, all the trajectories z, z,, p and p, stay in a
bounded set B(0, R) for some R > 0. Also, as p, — u, we have that the sequence ()
has uniformly integrable second moment and for every € > 0 we can find a £ > 0 s.t.

[ awlePanse, and osw [ (040 < <.
ol1>k n>0J|6||>k

Then for n > 0 and s; < s2 € [0, 1] we have by Eq. (I.13) and the assumptions on :

Ipu(s2) = pa(sn)l < [ [ D00, 20 (1) () [z r.6)
<c [* [+ 101 r.0)

< C €+ (1 + k2)|82 . 81|)
where C' = C(R). Hence the sequence (p,)n>0 is equicontinuous and, up to a subsequence,

we have p, — p € C([0,1]). Let us then show p = p. Indeed using the initial condition we
have for n > 0 and s € [0, 1]:

pn(s) = Val(zn(l +/ /me 0, 2,(1) " pp(r)dpin (1, 0) .

First we have V 0(z,(1),y) — V.l(x(1),y). Also, note that by the assumptions on
n o0

we have Dytp(6, 2, (r)) " pa(r) < C(1+[|0]1*) and Dyt (6, 2n (1) " pa(r) — Datp(8, 2(r)) T5(r)
locally uniformly over [0, 1] x ©. Hence by the properties of Wh-convergence, we can take
the limit in the above equation to obtain:

ps) = VallaV)0) + [ [ D6, ) B Iu(r0),

i.e. p = p by uniqueness of the solutions to Eq. (I.13). O
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Lemma 1.3.4 (Continuity of [|[VR(u)| 2.y ). Assume ¢ satisfies Assumptions 1.1 to L.3.
Then the map p+— [VR[u]||p2(y s WESOT _continuous on PP ([0,1] x ©).

Proof. Let p € PY®([0,1] x ©) and consider a sequence (j,)n>0 in P¥P([0,1] x O) s.t.
WSOT (ti, 1) — 0. For an input 2 € R?, denote by x,, (resp. z) the flow associated to
fn (resp. p) and starting from x. Similarly introduce the adjoint variables (py)n>0 and p.
Then by Lemma 1.3.2 and Lemma 1.3.3 we have that z,, — 2 and p, — p in C([0, 1], R%).
As a consequence the sequence of continuous maps

fn : (T7 0) — Ex,yD0¢(97 xn(T))Tpn(T‘)

converges locally uniformly towards the map f : (r,0) — E, Dgtp(6,2z(r)) "p(r) and is
uniformly bounded by a function of linear growth. As WSOT-convergence implies Wa-
convergence and by the properties of Ws-convergence ([Villani, 2009, Thm.6.9]) this im-
plies:

VRl 2,y = [

nll"dpin S du= VR ,
011x6 [ fnll"dp o 717 dp = [IVRIuII T2 )

n—oo [0’1] %
]

Proposition 1.3.4 (||VR(p)|[z2(,) is an upper-gradient). Assume 1 satisfies Assump-
tions I.1 to 1.3. Let u € PY¥P([0,1] x ©), then |[VR[u]|| 12 (1) is the local slope of the risk
R at u, that is:

(R(x) - R(w)* L2

VR =i
| 1] HLQ(u) 1151_§L1p WQCOT(M V)

Moreover, it is an upper-gradient in the sense of Definition I./.

Proof. The last part of the result follows from Theorem 1.1, since if (1) is an absolutely
continuous curve then it satisfies the continuity equation with a vector field v such that
vl L2 < ‘%,ut’ for a.e. t € I. Hence by Corollary 1.3.3 and Cauchy-Schwarz we have:

to d
Vo <ta el [Rim) = Rm)| < [ IVR gz | 30| de-
1

Let us then show Eq. (1.27). Consider some parameter 1 € P3°P([0, 1] x ©) and denote
by [VR|(1) the r.h.s. of Eq. (1.27). Then for ¢ > 0, by continuity of [[VR[u]||r2(,)
(Lemma 1.3.4) and by definition of [VR|(x) one can find a v € PLP([0,1] x ©) s.t.:

(R(p) — R(v)) ™
WOt (1, v)

> |[VR[(u) — ¢

and

VR[] 2y = VR 2| < &

if WSOT (u,v") < WEOT (i, v). Consider (11t)tefo,1) @ constant speed geodesics with end-
points pg = p and py3 = v (such a geodesic can easily be constructed by similarity
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with classical Wasserstein geodesics, see [Ambrosio, 2008b, Thm.7.2.2]). Then by The-

orem I.1 the tangent velocity field v of the curve (u;) satisfies for dt-a.e. t € [0,1],

vl £2() < ‘%,ut’ = WEOT (14, v) and using Corollary 1.3.3:

1
R() = R0+ [ (TR{u], 0] g2, dt

1
< R(u) + WET(uv) [ IVR 2yt
< R(u) + WEOT (1) [ VR |2y + <

Similarly we have
R(n) < R(v) + W5 T (1, ) IIVR [ 12y + €

and hence |[VR| (1) < [[VR[p]l|z2(n) + €

For the converse inequality consider for t € R the parameter p; = (Id+t(0, VR [p])) 4.
Then, by Proposition 1.3.3 with v = VR[], the map t — R(u) is differentiable at ¢t = 0
and applying the same calculations as in Corollary 1.3.3:

d

TR ()|

o = (VRIu), o) 2y = IVRIA] 720

t=0

Hence observing that WSOT (1, 1) < tlvllz2(y,) we have

(R(pt) — R(/;))+ > [[VR[W| L2y -

O]

As a consequence of the previous result, we will from now on only consider as upper

gradient of R the one given for every u € P¥"([0,1] x ©) by:

1/2
Wmeﬂwmwm@:(Amgmwmwamm%@mem> -2y

Note that the vector field VR [u] was used in Definition 1.3 to define the notion of gradient
flow whereas the upper-gradient |[VR|(x) is used in the Definition 1.5 of curves of maximal
slope. The following theorem is the main result of this section and shows these two notions
coincide.

Theorem 1.2. Assume v satisfies Assumptions 1.1 to 1.3 and £ is smooth. Let I C R be
an open interval. Then a curve (ut)ier is a gradient flow in the sense of Definition 1.3 if
and only if it is a curve of maximal slope for R in the sense of Definition 1.5.

Proof. Part 1: Gradient flows are curves of mazimal slope.

Let (pu)ter be a gradient flow for R in the sense of Definition I.3. Then (u) is a locally
absolutely continuous curve satisfying the continuity equation Oy + div(vepy) = 0 with
vy = —VR|[ut]. Hence by Theorem I.1 we have for a.e. t € I:

d
dt“t

< vell 2y = IVRIpa]ll 20 -
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Also, by Corollary 1.3.2, (R(ut))ter is absolutely continuous with for a.e. ¢t € I:

d

—qp Rlue) = (v, VRpel) 2., = IV Rl 72 ) -

Thus recalling that [VR[(u) = [[ VR[] £2(,) we get Definition .5 by putting together the
two previous equations.
Part 2: Curves of mazximal slope are gradient flows.

Let (ut)ter be a curve of maximal slope for R in the sense of Definition 1.5. Then
in particular (u)ser is locally absolutely continuous in (P¥°([0,1] x ©), WEOT) and
by Theorem I.1 there exists a Borel velocity field v : I x [0,1] x © — © such that p
satisfies the continuity equation:

Ot + div((0,ve)pue) =0, on I x [0,1] x O,

and such that the metric derivative satisfies |%,ut| > |lvtllr2p,) for ae. t € I. Hence it

follows from Corollary 1.3.3 that (R(ut))er is absolutely continuous and for a.e. t € I:

d

—aR(Mt) = — (v, VR[me]) -

Using the EDE condition we thus have:

(lvellZ2 g + IVRILIZ2 ()

DO | =

(o, VRl 2 3 (15l + VR ) 2

from which it follows by Young’s inequality that vy = —VR[u] in L?(y) forae. t € I. O

Note that, although it does not appear in Definition 1.3, the above equivalence shows

that if (pu)ier is a gradient flow for R then ‘%Mt) = [[VR[pelll £2(y) 1-€ VR[] is in fact

Kt)
the (uniquely defined) tangent velocity field of the curve (u¢)ier.

I.3.4 Existence, uniqueness, and stability of gradient flow curves

We show here the well-posedness result for the gradient flow equation of the risk R, namely
we show the existence, uniqueness, and stability of gradient flow curves starting from any
initialization ug € P3<P([0,1] x ©). For the “existence” part we will rely on classical results
from the theory of gradient flows in metric spaces showing the convergence of proximal
sequences towards a curve known as (Generalized) Minimising Movements [De Giorgi,
1993]. For the “uniqueness” part we will show that gradient flow trajectories are stable,
that is if two initializations o, ufy are close (in the sense of the metric W§OT), then the

emanating gradient flow curves (pt)i>0, (1})1>0 stay close in finite time.

1.3.4.1 Existence

We proceed to show the existence of gradient flow curves as defined in Definition 1.3. For
that purpose, we need a strengthening of Assumption I.1. Notably, Assumption I.A allows
to show the flow map p + z,, is continuous for the topology of narrow convergence over

Preb([0,1] x ©).

Assumption I.A. For some a € [1,2) we assume that:
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[.3. Gradient flow dynamics

(i) The basis function v has a-growth w.r.t. 0, locally w.r.t. . That is for every compact
K C RY there exists a constant C = C(K) s.t:

Vee K, v0eO, ¢, z)]<C1+]0]%).

(i) The basis function 1 is continuously differentiable and its differential Dytp w.r.t. x
has a-growth w.r.t. 0, locally w.r.t. x. That is for every compact K C R there exists
a constant C = C(K) s.t.:

Vee K,v0 €O, [Dyp(0,2)]| <C(+0]%).

Theorem 1.3 (Existence of curves of maximal slope). Assume ¢ satisfies Assumptions I.1
to 1.3 and Assumption L.A. Let g € PYP([0,1] x©). Then there exists a curve of maximal

slope (1it)ie(0,+00) Starting from po and (’%Mtbwo € L2 ([0, +00)).

Proof. The result follows from the successive application of [Ambrosio, 2008b, Thm.2.2.3
and Thm.2.3.3|, the first result ensuring the existence of Generalized Minimizing Move-
ments and the second result stating that these curves are curves of maximal slope for
the local slope. The proof proceeds by verifying the assumptions of these theorems.
We consider here PY¢P(]0,1] x ©) equipped with the topology induced by the distance
WEOT and with the (weaker) topology of narrow convergence, denoted by 7. Note that
(PEeb([0,1] x ©), WEOT) is a complete metric space (Proposition 1.2.3) and that the

distance WSOT is r-lower-semicontinuous (Lemma 1.2.1).

Part 1: WEOT -bounded sets are T-relatively compact.

This property is verified as W§©T-bounded sets are tight and hence 7-relatively com-
pact by Prokhorov’s theorem.

Part 2: R is T-continuous on WSOT -bounded sets.

Let (11,) be a W§©9T-bounded sequence in P¥*"([0, 1] x ©) such that p,, — u for some
p € PEP(]0,1] x ©) and let us show that R(u,) — R(u). Take € R? and denote
by x, = z,, the flow trajectory starting from = and associated to u,. By Lebesgue’s
theorem, it suffices to show that x,(1) — z,(1). Using Ascoli’s theorem, we will proceed
by showing that z,, — x, in C([0,1],R%).

From the W§©T-boundedness and the proof of Proposition 1.1.1, it follows that the
trajectories x, stay in a compact set. Moreover given s; < sy € [0, 1] we have using the
a-growth assumption:

|20 (52) — Zn(s1)]| < /

51,82 X

[9(6, 2n(r))l|dpn(r,0) < / CL+10]1%)dpn(r,0) -
€] [s1,52]%x©

Also as the sequence () is WS OT-bounded it has uniformly integrable a-moments. Given
e > 0 we can thus find a k > 0 such that, for every n >0, 555 C(1 + [|0]|%)dpn < e.
Using this in the previous inequality and the fact that the marginal of p, on [0, 1] is the
Lebesgue measure gives:

Vs1 < s2 €[0,1], |lzn(s2) — zn(s1)|| < e+ C(1+ k%) (s2 — s1) .

Thus the trajectories (z,) are equicontinuous and, by Arzela-Ascoli’s theorem, we have
(up to a subsequence) that x,, — 7 in C([0, 1], R9).
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Let us show that = x, is the flow generated by p. This will conclude this part of the
proof as it will imply z,(1) — z,(1) and then R(u,) — R(p) by Lebesgue’s convergence
theorem. Considering s € [0, 1] we have:

xn(s) =T+ ﬂTSSw(ev xn(r))dun(rv 9)
[0,1]x©
=z+ Lr<s9(0, z(r))du(r, 0)

[0,1]x©

+ Lr<s (¥(0, zn(r)) — ¥(0,Z(s))) dpn(r, 0) (L1)
0,1]x©

o Leab(0,3()d (i — 10)(r,). (L2)
[0,1]x©

In this last equality, we need to show that L1 and L2 vanish as n — co. In L1 the integrand
has a-growth. Hence, given € > 0, we have using the uniform integrability of ||0||* on the
sequence (py,) that for every n > 0:

I Lo (000,20() = (0.2()) dpa(r, O] < £+ [ Ly orcell (0, 2a(r) = 00, 2(1))]|dyun(r0).

Then, as ¢ is locally-Lipschitz w.r.t. x and z,, — &, we have that the integrand on the
r.h.s. converges uniformly to 0 and hence:

lim sup || Lr<s (9(0, 20 (r)) — (6, 2(s))) dpn(r, 0)|| <.

n—o0 [0,1]x©

In L2 the integrand is not continuous so we can’t simply apply the definition of narrow
convergence and need to leverage the fact that (u,) is a WFOT-bounded sequence in
PLeb(]0,1] x ©). Note that for every (r,0) € [0,1] x ©, [|¢(0,Z(r))|| < C(1+|0]|*). Given
£ > 0 and using the uniform integrability of ||6]|“ we can thus have a k > 0 such that:

sup / C(1+[16]°)dptn, / C1+ [6]|%)dp <=
n>0J(6]|>k >k

Then, whenever § > 0, we can find a continuous function ¢ : [0,1] x © — R? such that

le(r, 0)|| < C(1+0||*), ¢(r,8) = ¥(0,z(r)) for every r < s and ¢(r,0) = 0 whenever
r > s+ d. Considering such a function ¢ we have for L2:

I [ Ureat(®.26 1) — )60 < 1 [ 9dln = ]+ [ Nrstb(0, 7)) = 07, 0) | + 1)(7,6)
<1 [ @d(un = ll + 42 + C(1+ k7

where we used the fact that, in the second term, the integrand has a-growth and is only
non-zero for r € [s, s + d§]. Hence having chosen ¢ sufficiently small gives:

limsup || [ 1<59(6, 2(r))d(pn — ) (r, 0)[] < limsup || /sod(un — )l +5e < 5e,
n—oo

n—oo

where the first lim sup is 0 by definition of narrow convergence. We have thus shown that
for every s € [0,1], taking the limit as n — oo:

3(s) =2+ [ 0(0,3(r)du(Olr)ar,
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[.3. Gradient flow dynamics

i.e. 2 = x, is the flow trajectory associated to p and starting from z.

Part 3: |VR(p)l|L2(y) is T-lower semicontinuous on WSOT bounded subsets.

We previously considered the upper-gradient |[VR| defined in Eq. (1.28) as |VR|(u) ==
IVRIWl|£2(n)- However, Ambrosio, Gigli, and Savaré [Ambrosio, 2008b, Thm.2.3.3] state
that the obtained curve of maximal slope is a curve of maximal slope for another definition
of gradient, referred to as relazed slope. To show these two notions coincide here we show
that the map p — [[VR[ul| 12, is 7-lower-semicontinuous on W§OT-bounded subsets
(c.f. [Ambrosio, 2008b, Rm.2.3.4]).

As before consider a WEOT-bounded sequence (i) in P3P ([0, 1] x ©) which narrowly
converges towards some p € Py°([0,1] x ©). Then we previously have shown that for
every x € R? we have z,,, — x, in C([0,1],R?). Proceeding with similar arguments one
could show the same for the adjoint variable p, that is p, == pu, 2y — Puzy in C([0,1], RY).
Then using a generalization of Fatou’s lemma with varying measures (e.g. [Feinberg, 2020,
Thm.2.4]) we have:

liminf [[VR{p][22(,,,) = lim inf 1By Dot (8, 2 (r))  pi(r) [2dpin (. 6)

n=o0 J10,1]x©

> [ tmint [Ea,Dep(®' 27 palr) P dp(r,0)
[0,1]x©

n—oo
(r',0")=(r,0)

= IVRIuZ2() -

which is the desired property. ]

1.3.4.2 Uniqueness

We present here a uniqueness result for solutions of the gradient flow equation, which is the
content of the following Theorem I.4. The proof is standard and relies on the lipschitzness
of the gradient vector field VR[u] w.r.t. the measure p. It uses the following Assump-
tion I.B on the basis function v to ensure local lipschitzness of the adjoint variable p
(Lemma 1.3.5).

Assumption I.B. Assume that v is twice continuously differentiable with Dgﬁw uniformly
bounded, Dg’zdj having linear growth and Dg}xw having quadratic growth w.r.t. . Namely,

for every R > 0 there exists a constant C = C(R) s.t. for every x,x’ € B(0, R) and every
0.0' € © it holds:

DG g (0, 2)|| < C(R),  IDj .4 (0, )| < C(R)YA+I6]),  [DZ,0(0,2)]| < C(R)(1+[10]).

Theorem 1.4 (Uniqueness of curves of maximal slope). Assume 1 satisfies Assump-
tions 1.1 to 1.8 and Assumption [.B and that Vi€ is locally Lipschitz w.r.t. x. Let
o € PY2([0,1] x ©). Then the gradient flow for the risk R starting from o, if it exists,
18 unique.

Proof. Let (ut)i>0 and (u})i>0 be two gradient flow curves for the risk R starting from .
We will proceed to show that WO (s, 1)) = 0 for every t > 0.

We use the shorter notations v; = VR[], v; = VR[u;] to refer to the tangent
vector fields of u and p/ respectively. Observe that the map t — WSOT (1, ph)? is locally
absolutely continuous and by Lemma 1.2.3 its differential is given at almost every ¢ > 0
by:

d 1
T it =2 [ [ (0= 0,01(5.6) = i(s,)) dn(s.6.0),
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Chapter I. Training of infinitely deep and wide residual architectures

where ¢ € T'LP (1, 1) can be any optimal coupling.

Let T' > 0 and define & = sup,co ry max(&2(pu), £2(py)) < oo. Fix some t € [0,7]
and consider (x,y) in the support of the data ditsribution D with the shortcuts ; == x,,,,
Pt = Puy.zy and similarly x}, p; for pj. As the data distribution has compact support, we
have that there exists some R = R(E) such that |z(s)|], [z} (s)]], [lpe(s)Il, Ilpi(s)]| < R.

Then using Lemmas 1.3.2 and 1.3.5 as well as the assumptions on @ we have for every
(5,0,0") € [0,1] x ©2:

Dot (8, z4(s)) " pe(s) — Dot (6, 2 (s)) " pi(s) |
< |Dyp(8, z:1(s)) " pe(s) — Do (8, z4(s)) T pu(s)]|
+ Dot (8, 24(s)) "pi(s) — Do (6, 21 (s5)) TP} (5) |
< |Dgp(8, m1(s)) — Dot (0', me(s)) | [pe(s)
+ Do (0, 4(s)) — Dotb(6, () || pe ()
+ [Doxp (¢, 2 (s))ll|pe(s) — P(s)|
< C1)|0 = 0| + Cr(L+ 10/ 1)WSOT (g, 1) + Co(L + |0 NVWVSOT (pie, 1), (1.29)

with C; = C1(€) some constant. Fixing some v € TYP(uy, 1)), using that 2 (a,b) <
llal|? 4 ||b]|? and integrating the previous inequality over (z,y) and (s, 6,80") we get:

d
P SO (e, 1) §/

1o (10 = O+ vn(s, 6) = (s, 0)1%) dva(s, 0,6/) < CaWs™ (i)

for some constant Cy = C3(E). We can then conclude using Gronwall’s inequality to:
vt [0.T), W5 (e, p)* < €W 0T (o, p10)* = 0.
O

The above proof relied on the following lemma, showing that the adjoint variable map
[ > Dp.zy is locally Lipschitz under Assumption I.B.

Lemma 1.3.5. Assume ) satisfies Assumptions 1.1 to 1.3 and Assumption I.B and that
V.l is locally Lipschitz w.r.t. x. Then for fized (x,y) € RY x RY the adjoint variable map
1€ PYP([0,1] X ©) > puay € C([0,1],RY) is locally Lipschitz. Namely, for every € > 0
there exists a constant C = C(E) such that:

SUP [|Pp,z,y(8) — P ay(8) < CWSOT(/% ')

s€[0,1]
for every parameterization p, p' such that Ex(u), Eo(p') < €. Moreover, the constant C
can be chosen uniformly over (x,y) in a compact subset.

Proof. Consider (z,y) € R x RY, € > 0 and parameterizations u, i/ as in the proposition.
We denote by (z(s)) and (2/(s)) the forward flows and (p(s)) and (p/(s)) the backward
flows associated to z,y and to u and p’ respectively. Let R > 0 be such that ||z||+||y|| < R.
Using Proposition I.1.1 and Eq. (I.13) we can assume that the trajectories z, 2/, p and p/
are uniformly bounded by some R’ = R/(R, ). Then we get from Eq. (I.13) that at every
s €[0,1]:

lp(s) =P/ ()1l < llp(1) = p' (V)]

1
+ [ [ Dav(0.0(0) pr)u0lr) — [ D6, () B ()i Ol
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[.3. Gradient flow dynamics

Fixing r € [s, 1], the integrand on the r.h.s. can be decomposed as:

I [ Da(0.2() p(r)ap(61r) = | Dev(0,0') 9 () Ol
< [ D20, () = Das(6. () o)l dp(61r)
S}
+ [ IDev(0.2' () p(r) ~ 2/ ()| dp(elr)
S}
1 Do, ) ()0 = ) 6]
S}

=11 (r) + L2(r) + I3(7) .

Then using the assumptions on ¢ and Lemma 1.3.2:
1(r) < COVEOT (i) [ (14 101P)an(olr).
Iy(r) < Callp(r) —p'(r)]| /@(1 +[101%)du(8]r)

with C; = C1(R, &) and Cy = C2(R, ). For I3, considering v € Tp(u(.|r), 1/ (.|1)) gives:

I3(r) < /@2 Dz (6, 2 (r)) = Datp(6', ' (r)) ' () | d (6, 6)
< Os(1+ E(p(-r) + EW () Walullr), 1/ (Ir))

with C3 = C3(R, £). Assembling all the previous inequalities we get by Gronwall’s lemma::

Ip(1) = p' (V)] )

s) — (s 602(1+€2( )
Ip(s) =# ()] < ’ (+ WEOT (1, 1) (C1(1 + Ex(n)) + C3(1 + Ex(p) + E(1)'/?)

To conclude it suffices to note that by definition p(1) = V,£(z(1),y) and p'(1) = V,4(2'(1),y)
and using Lemma [.3.2 with the assumptions on £:

lp(1) = p' (D]l < CaVg Ot (i), where Cy = Cy(R, E).

1.3.4.3 Stability

We now turn to a stability result on the gradient flow equation. The following Theo-
rem [.5 is stronger than the above Theorem I.4. It implies that if a sequence of initial-
izations (ug)n>0 WgOT—converges to some initialization pg then the associated gradient
flows (u})n>0 WSOT-converge to py, uniformly over finite time intervals. For simplicity
we consider here that ¢ is the square loss ¢ : (x,y) — %H:U — y||?, but the result could be
extended to any other loss satisfying ||V ¢|| < ¢(¢) for a concave increasing function .
We also consider the following supplementary assumptions allowing to control the growth

of E(uy) along the gradient flow (Lemma 1.3.6).

Assumption 1.C. Assume that ¢ is continuously differentiable and such that D,y is
uniformly bounded and Dgv is of linear growth w.r.t. . Namely, there exists an absolute
constant C s.t.:

veeRY, V0 €O, |Div(da)|<C, |Dev(d.2)ll < C(L+9]).
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Theorem 1.5 (Stability of curves of maximal slope). Assume v satisfies Assumptions I.1
to 1.3 and Assumptions I.B and I.C' and assume £ is the square loss. Let (ut)e>0, (p})tet>0
be gradient flow curves for the risk R starting from pg, uf € P%eb([(), 1] x ©) respectively
and let & be such that Ex(1o), E2(pgy) < Eo. Then for every T > 0 there exists a constant

C = C(&,T) such that:
vt e (0,71, WO (e, i) < e“WEOT (o, pify) -

Proof. Let T > 0. By the energy bound of Lemma [.3.6 below, we know that we can find
a & = E(&,T) such that for every ¢ € [0, T):

Ealpe), Ealpy) < E.

Then using Assumption I.B and proceeding as in the proof of the above Theorem 1.4
(c.f. Eq. (1.29)) we get a constant C' = C(€) such that for dt-a.e. ¢t € [0,T7:

d
TV (s ) < OO (e, 1)?,

which gives the result using Gronwall’s inequality. 0

In the above proof, we used the following technical result giving an upper bound on
the energy & (ju¢) along a gradient flow curve (ju¢)¢>o.

Lemma 1.3.6. Assume 1 satisfies Assumptions 1.1 to 1.3 and Assumptions I.B and I.C
and { is the square loss. Let (jut)e>0 be a gradient flow for the risk R and let £ > 0 be s.t.
Ea(po) < E. Then there exists a constant C = C(E) such that Ex(i) < e“*(E2(po) + C)
for every t > 0.

Proof. For (x,y) € R? x RY use the shortcuts x; = Tpyy Dt = Puyay- Note that the
map t — Ea(p) = WEOT (ug, Leb([0, 1]) ® 6p)? is locally absolutely continuous and that
by Lemma 1.2.3 its derivative is given at dt-a.e. t > 0 by:

d
—& =2 0,E, ,Dotb (0, 24(s)) "pe(s) ) ds .
&l =2 [ (0.Eay Dot (0 i(s) Tpi(s)
By Assumption I.C there exists an absolute constant C7 such that [[D,F), (s || < C1 and
hence [|p(s)]| < e“||pi(1)| for every s € [0,1]. Using the initial condition on p;(1) and
the fact that ¢ is the quadratic loss:

Euyllpi(s)]| < e Bay (1) = yll < Cay/R() < Con/R(po)

for some universal constant Co. Then using that by Assumption I.C we have || Dy (6, x)|| <
C1(1+|0]|) and with the previous inequality we get:

SE2(e) £ 201Ca () + €2l ) /Ri).

Noting that R(up) < Cs for some constant C3 = C3(E), the result follows by Gronwall’s
inequality O
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Appendices

I.A° Well-posedness of the gradient flow equation for SHL
residuals

While Theorems 1.3 and 1.4 show existence and uniqueness to gradient flow equation of
the training risk R under mild assumptions on the basis function v, those assumptions
are however not met for residuals which are 2-perceptrons as defined in Eq. (34). Indeed,
in this case v is of the form:

Y((u, w,b),z) = uo(w'z+b), (1.30)

where z € R, (u,w,b) are parameters in © = R? x R? x R and o : R — R is a non-
linear activation. In particular, we will be considering such residuals in Section II.5. We
thus justify here why the existence and uniqueness results of Theorems 1.3 and 1.4 still
apply in the case of the SHL architecture where v is given by Eq. (1.30), even if Assump-
tions I.A and [.B are not satisfied. The idea is to restrict ourselves to compactly supported
parameterizations u € P¥"([0,1] x ©) where both assumptions are satisfied dy almost
everywhere.

In the rest of this section, we consider the parameter space © = R? x R? x R and the
basis function is supposed to be given by Eq. (I.30) with some activation o satisfying As-
sumption I1.3. Note in particular that Assumptions [.1 to 1.3 are satisfied and that the
representation result of Proposition 1.3.2 holds. The following preliminary result states
that if the initialization pg is compactly supported, so is a solution y; of the gradient flow
at every time t > 0.

Lemma I.A.1. Assume ) if of the form Eq. (1.30) with some activation o satisfying As-
sumption I1.3. Let pg € PYP(]0,1] x ©) be some compactly supported initialization with
Supp(uo) C B(0, Ry) for some Ry > 0. If (11t)1>0 s a gradient flow of the risk R then for

every T' > 0 there exists Ry > 0 such that:
Vt € [0,T], Supp(ut) C B(0,Rr). (1.31)

Proof. Let (pt)¢>0 be such as in the statement. In view of Proposition 1.3.2 such a gradient
flow is given for every t > 0 by p; = (X¢)# o, where X is a solution of Eq. (1.22). Let us
then consider some 7' > 0. The energy E2(u¢) is a continuous function along the gradient
flow time ¢ so that & = supycp ) E2(pr) < co. Then using Assumption 113 we have a
constant C' = C(€) such that for every t € [0,7] and every (s,0) € [0,1] x ©:

H%Xt(Sﬁ)ll < OO+ [[Xe(s, 0)]]) -

Hence by Gronwall’s lemma::
1 (s, 0)[| < e (/| Xo(s,0)[| + C1),
from which the result follows by taking Ry = e“T(Ry 4+ CT). O

Note that ¥ may not satisfy Assumption I.B when considering § € © but it does when
considering 6 in bounded regions B(0, R) C ©. Hence using the above Lemma I.A.1 and
restricting ourselves to finite time intervals, one can show uniqueness of the gradient flow
curves whenever the initialization is compactly supported.
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Proposition I.A.1. Assume v if of the form Eq. (1.30) with some activation o satisfy-
ing Assumption I1.3. Let uy € PY"([0,1] x ©) be some compactly supported initialization.

Then the gradient flow (ut)e>o0 of the risk R starting from uo, if it exists, is unique.

Proof. Let (ut)e>0, (1y)e>0 be two gradient flow curves starting from py. We will proceed
to show that WSOT (g, u}) = 0 for every t > 0.

Fix some T" > 0. By the above Lemma [.A.1, we can find some R > 0 such that for
every t € [0, 7] we have Supp(u¢), Supp(p;) € B(0, R). Then note that ¢ satisfies Assump-
tion I.B when restricted to § € B(0, R) in the sense that for every compact set K C R?
there exists a constant C' = C(K, R) s.t. for every z,2’ € K and 6,60" € B(0, R):

IDF pv(0,2)]| < O, |DG 0 (0, )| < CAL+0]l),  [IDZ w0, 2)ll < C(L+[9]%).

Also note that, for every ¢t € [0,7] and every optimal Conditional OT coupling v €
rdiag (1, 1), we have that ~; is compactly supported with Supp(vy;) € B(0, R) x B(0, R).
Hence proceeding as in the proof of Theorem 1.4 (c.f. Eq. (1.29)) we find a constant
C = C(R) s.t. for dt-a.e. t € [0,T7:

d
g SO (g, 11)? < OWS O (g, p17)?

from which it follows by Gronwall’s inequality that
WOt (e 13)? < W5 (0, p10)* = 0.
O

Finally, the following result states the existence of a gradient flow curve of the risk R
for the SHL architecture when the initialization is compactly supported.

Proposition I.A.2. Assume v if of the form Eq. (1.30) with some activation o satisfy-
ing Assumption IL.3. Let uo € PYP([0,1] x ©) be some compactly supported initialization.
Then there exists a gradient flow (j1t)e>0, defined for every t > 0, for the risk R starting

at -

Proof. Let pg be such as in the statement and consider some 7y > 0. Then by the
previous Proposition I.A.1, the gradient flow (j)¢>0 starting from po, if it exists, is unique
and by Lemma I.A.1 there exists a Ry, > 0 such Supp(ut) C B(0, Ry,) for every t € [0, Tp).

It is then easy to modify ¢ into some ¢ such that 1(6,2) = (6, z) whenever 0 €
B(0,2Rg,), ¢ satisfies Assumptions 1.1 to 1.3 but also Assumption I.A. For example,
consider for every x € R? and (u,w,b) € ©:

O((u, w,b),z) = m(u)o(w'z+b),

for some smooth map 7 : R? — R? (depending on Ry,) such that ||| and ||Dx|| are
uniformly bounded and 7(u) = u if ||u|| < 2R7,. Denote by L the modified risk associated
to the modified basis function ¢). Then Theorem 1.3 applies and there exists a gradient
flow (fiz)¢>0 for the modified risk L starting from pg. Consider the the time T defined by:

T* =sup{T =0 : Supp(ju) C B(0,2Ry,), Vt € [0,T]} .

Note that by the definition of T* and ¢, if T < T* then for every t € [0,T], VL[] =
VR[] in L?(ji¢) and hence (fit)tepo,r) 1s a gradient flow for the original risk R, starting
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from pg. We show by contradiction that T* > Ty, implying that there exists a gradient
flow for R starting from pg and defined up to time Tj.

Assume T* < Ty. Consider € = sup;¢(o 1,41) €2(fir). For any T' < T, we have that
(fit)ejo, s a gradient flow for R starting from o and in particular Supp(fir) C B(0, Rry ).
But then, reasoning as in the proof of Lemma [.A.1, there exists a constant C' = C(€&)
(independent of T') such that for every ¢ € [0, 1]:

Vt € [T,T+e], Supp(jir) C B(0,e“(Ry, + Ce)),

which is included in B(0,2Ry7,) for e sufficiently small. Hence chosing 7" sufficiently close
from T we get a T + ¢ > T™ such that Supp(fit) C B(0,2Ry,) for every t € [0,T + ¢].
This is in contradiction with the definition of T*. O
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II.1 Introduction

A central question in modern machine learning is to understand why neural networks

perform so well in practice, despite the apparent complexity of their training dynamics.

At the heart of this process lies a challenging non-convex optimization problem, typically
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Chapter II. Convergence in the training of residual architectures

approached using first order optimization methods such as (stochastic) gradient descent.
However, while there has been an important amount of work on the subject [Hardt, 2016a;
Bartlett, 2018; Zou, 2019; Li, 2017; Li, 2018; Du, 2018; Du, 2019; Allen-Zhu, 2019; Lee,
2019; Zou, 2020; Liu, 2020; Chen, 2020; Nguyen, 2021; Marion, 2023b], convergence prop-
erties of those algorithms still lacks theoretical understanding. Due to the exponential
increase in the size of state-of-the-art models, a particular focus was placed on overparam-
eterized architectures, whose number of parameters is very high w.r.t. the number of data.

Following Eq. (36), such architectures take the form of mappings Fig,),_._,, :R? — R4
defined by: ==
| M
F(Gi)1§¢§M HEUS Rd = M Zw(@, l’), (III)
i=1

where © is some space of parameters, ¥ : © x R — R? is some basis function and
(Oi)1<i<m € OM is some family of parameters whose size M, the width of the model, is usu-
ally large. Depending on the choice of © and v, Eq. (I1.1) can model various types of neural
network architectures ranging from simple single-hidden-layer perceptrons (Eq. (1.2)) to
more complex convolutional layers (Eq. (1.3)), used in the original ResNet architecture for
image classification [He, 2016a], or even multi-head attention layers (Eq. (1.4)), used in
Transformer architectures [Vaswani, 2017]. Several authors have then proposed to model
architectures with an arbitrary (finite or infinite) number of parameters by using parame-
terization in the space of measures. The obtained mean-field models, described in Eq. (39),
are mappings Fj, : R? — R? defined by:

F.:zeRims /@ B0, 2)du(0) | (IL.2)

where 1 € P(0) is a distribution of parameters. This setting first provides a convenient
framework for studying the training of overparameterized neural network architectures
with dedicated mathematical tools such as Wasserstein gradient flows. Moreover, this
setting also allows for favorable training properties such as the absence of spurious critical
points in the loss-landscape, permitting the development of a theory of convergence for
the training of shallow architectures at large depth [Chizat, 2018; Mei, 2018; Javanmard,
2020; Wojtowytsch, 2020].

Following on Chapter I, we focus here on studying the training dynamics of deep
neural networks and more precisely of deep Residual Neural Networks (ResNets) [He,
2016a], which we presented in Section 1.4.1. The defining characteristic of ResNets is
the use of skip connections, a mechanism enabling the efficient training of extremely deep
models, marking the beginning of the modern era of machine learning. Neural Ordinary
Differential Equations (NODEs), proposed by Chen et al. [Chen, 2018] and which we
described in Section 1.4.2, correspond to the limit of ResNets whose number of layers
tends to infinity and treat deep networks as ODE solvers with trainable parametric vector
fields. We consider here models of ResNets whose both depth and width are very large.
Such mean-field models of NODEs are ODEs whose velocity field (called residual) are
parameterized by a distribution of parameters. Let us recall Definition I1.1:

Definition I.1 (Mean-field NODE). For a family of probability measures ju = {u(.[s)};ci0.1) €

P(O)%Y and input = € R, we define the NODE model output as NODE, () = x,,(1)
where (2,,(5))selo,1] satisfies the Forward ODE:

L) = Fugolan(s)), wul0) =2 (L5)

80



II.1. Introduction

When there is no ambiguity, we simply write x(s).

We proposed in Chapter I to parameterize such models by measures in PX°P([0, 1] x ),
the set of probability measures over [0,1] x © with uniform marginal on [0, 1]. We then
showed in Proposition I.1.1 that the above definition is well-posed provided mild regularity
assumptions on the basis function 1 are satisfied (cf. Assumption I.1).

Supervised learning As in Chapter I we consider a supervised learning framework
where we are given a training data distribution D consisting of pairs of input data z € R?
and target or labels y € RY. Then for a parameterization u € PyeP([0, 1] x ©), the training
risk is defined as:

R(N) = E(m,y)Nye(NODEM(:U)v y) = E(m,y)~y£(xu(1)7 y) ) (H?’)

where £ : RY x RY — R>q is some loss function. Of particular interest in this section
will be the case of a finite number of data, that is of an empirical data distribution
D= 1 SN O(zi,y7), where N > 1 is the number of samples. In this case, R is the
empirical risk given by:

Rin) = 3 X (1.0,

We showed in Chapter I, that the training of deep ResNets for the minimization of this risk
is modeled by a gradient flow w.r.t. to a Conditional Optimal Transport metric structure
on the space of parameterizations P ([0, 1] x ©). Concretely, this gradient flow takes the
form Eq. (I.21), a nonlinear advection PDE solved by the parameter distribution. We in
particular showed in Section 1.3.4 that such a PDE is well-posed. We ask here the question
of the convergence of this dynamic:

Given an initial parameterization po, does the gradient flow (pt)i>0 converge
to an optimal parameterization pu* € argmin R ?

IT1.1.1 Related works and contributions

Recently, several works have addressed the problem of proving convergence of gradient
descent algorithms in the training of neural networks. If convergence properties of gradient
descent are well understood for models that are linear w.r.t. their input [Hardt, 2016a;
Bartlett, 2018; Zou, 2019; Achour, 2024], it is not the case for non-linear neural network
architectures.

Finitely deep architectures In [Li, 2017; Li, 2018; Du, 2018], the authors focus on
the training of “shallow” two layer fully connected neural networks and establish conver-
gence of GD in an overparameterized setting where width of the intermediary layer scales
polynomially with the size N of the dataset. The works of [Du, 2019; Allen-Zhu, 2019;
Zou, 2019; Lee, 2019; Zou, 2020; Liu, 2020; Chen, 2020; Nguyen, 2021] extend those
results to arbitrary deep neural networks in the overparameterized setting. Specifically,
the results in [Du, 2019; Allen-Zhu, 2019; Liu, 2020] apply to deep ResNets. A common
feature for the above cited works is to rely on the fact that, for a sufficiently high number
of parameters, the model can be well approximated by a linear model corresponding to its
first order expansion around the initialization. In [Chizat, 2019] this phenomenon, called
“lazy regime”, is attributed to an inappropriate scaling of the parameters. On the other
hand, [Liu, 2020] refer to this phenomenon as “linear” or “kernel regime” and relate it to
the constancy of the Neural Tangent Kernel (NTK) introduced in [Jacot, 2018].
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Infinitely deep ResNets Allen-Zhu, Li, and Song [Allen-Zhu, 2019], Du et al. [Du,
2019], and Liu, Zhu, and Belkin [Liu, 2020] give convergence results for the training of
deep neural networks with gradient descent and their results can be applied to ResNets.
However, in those works the width of intermediary layers has to depend on the depth of the
network. Therefore, these results do not apply to the training of the model in Definition I.1,
corresponding to the limit D — +o00. Marion et al. [Marion, 2023b] give local convergence
results for the training of infinitely deep ResNets / NODEs based on a local Polyak-
Lojasiewicz condition. They assume a model of finite width and their result therefore
does not hold in the mean-field limit where residuals are of the form Eq. (II.2). They also
consider parameter initializations that are Lipschitz w.r.t. depth which is not consistent
with applications where the parameters are initialized at random, independently at each
layer. As a comparison Eq. (I1.2) models residuals of both finite and infinite width and
we only assume the family {i(.|s)}c) 1) is measurable w.r.t. s € [0,1].

Mean-field models of NODEs The result presented here should be compared with
several other works [Lu, 2020; Ding, 2021; Ding, 2022; Isobe, 2023] that have also studied
the convergence of gradient descent for the training of infinitely deep and arbitrarily wide
ResNet models similar to Definition I.1. Ding et al. [Ding, 2021; Ding, 2022] — and also
Lu et al. [Lu, 2020], but with a different training dynamic — give a result of optimality at
convergence: if the parameter distribution converges then its limit is a global minimizer of
the risk. They do not however provide proofs of convergence and this convergence assump-
tion seems hard to justify a priori as the loss-landscape of ResNets can have non-compact
subsets. In fact, cases where the gradient flow fails to converge have been identified for
simple architectures [Bartlett, 2018]. In contrast, our results ensure the convergence of
the parameter distribution provided the risk at initialization is sufficiently low.

Borrowing tools from the study of asymptotic behavior of evolution PDEs, Isobe [Isobe,
2023] studies the asymptotic behavior of gradient flow curves associated to the training
of ResNets. Precisely, he shows the risk R satisfy functional inequalities similar to the
Polyak-tojasiewicz inequality in the neighborhood of critical points and shows convergence
of the gradient flow to a critical point. Aside from technical differences, our work differs
in at least two fundamental aspects. First, [Isobe, 2023] considers adding a regularization
term to the risk. Such a regularization ensures gradient flow curves stay in strongly com-
pact sets [Isobe, 2023, Prop.5.4] and admit convergent sub-sequences. Also, the obtained
functional inequality does not rule out the presence of non-optimal critical points and the
obtained limit is thus not necessarily a minimizer of the risk. In contrast, we consider
an unregularized risk whose level sets may be non-compact and show convergence of the
gradient flow towards a global minimum for well-chosen initializations.

Contributions We study in this chapter the asymptotic behavior of gradient flow curves
for the minimization of the risk R associated to the training of deep ResNets or NODEs.
Specifically, we show that, for standard examples of residual architectures, the risk R
satisfies a Polyak-Lojasiewicz (P-L) property around well-chosen initializations. The risk
has thus no saddles in these regions and decreases at a constant rate along the gradient flow.
We study the case of residuals that are random feature models [Rahimi, 2007] in Section I1.4
and the case of residuals that are 2-layer perceptrons in Section I1.5. Based on previous
works on the convergence of curves of maximal slope under the P-f. assumption [Hauer,
2019; Dello Schiavo, 2024], we can then formulate a convergence result: for initializations
with a sufficiently large but finite number of features and sufficiently low risk the gradient
flow converges towards a global minimizer (Theorems I1.6 and I1.7). The dependence of
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11.2. Polyak-tojasiewicz property and convergence of gradient flow

these convergence conditions w.r.t. the data distribution can be numerically quantified
and checked for common architectures and initializations. Our results are to be compared
with the ones of Lu et al. [Lu, 2020] and Ding et al. [Ding, 2022]. Both works give a result
of optimality under a convergence assumption but do not give conditions guaranteeing
convergence of the gradient flow. Moreover, their results hold under the assumption of
an infinite number of features whereas our convergence conditions can be obtained with a
finite number of features.

Finally, we implemented and trained ResNets for solving image classification problems
on the MNIST [LeCun, 2010] and CIFAR10 [Krizhevsky, 2009] datasets. In addition to
support our theoretical results, the numerical results presented in Section II.7 also show
that reduction of the training risk go along with an increase of the classification accuracy
on test data.

I1.2 Polyak-tojasiewicz property and convergence of gradi-
ent flow

Our approach to show convergence of the gradient flow is to show that the risk satisfies a
local Polyak-fojasiewicz (P-L) property around well-chosen parameterizations. The P-L.
inequality provides a lower bound on the ratio between the square gradient’s risk |V7€|2
and the risk R. It thus prevents the existence of spurious critical points and guarantees
that the risk decreases at a constant rate along gradient flow.

I1.2.1 The Polyak-tojasiewicz property in Hilbert spaces

We consider here the problem of minimizing a function f : H — R defined on some sepa-
rable (possibly infinite dimensional) Hilbert space H. In the context of training machine
learning models, the function f corresponds to some training objective such as the train-
ing risk and the task of minimizing f is solved by a gradient descent algorithm. For an
initialization zg € H, the gradient descent with stepsize 7 > 0 is the iterative scheme:

V>0, zgr1=2zk—7Vf(z).

For theoretical purposes, it is also convenient to consider the gradient flow dynamic, cor-
responding to the limit of gradient descent when the stepsize 7 tends to 0. For a function
f +H — R and an initialization zg € H the gradient flow for f starting from zq is defined
as the solution (z;);>0 to the Cauchy problem:

d
Vi > 0, &Zt = —Vf(Zt) . (II4)

Theory for the existence of solutions to such gradient systems under mild regularity as-
sumptions on f was originally developed in [Brezis, 1973]. We are here concerned with
analyzing the convergence of such optimization methods. A first question is the one of
the effective minimization of f, that is whether f(zp) (resp. f(z:)) tends to f* = inf f
when k& — 400 (resp. ¢ — 400). A second question is the one of the ability for these
methods to find a minimizer, that is whether z; (resp. z;) tends to some z* € argmin f
when k — +oo (resp. t — +00).

Along gradient flow curves, the decrease of f is given by % f(z) = =|IVf(2)]|?. Thus,
to obtain a constant decay rate for f, it is natural to ask that the square norm of the
gradient is lower-bounded by f itself, namely a condition of the form:

vzeH, |IVFEIPzm(f(z)-f), (IL.5)
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for some constant m > 0. Such Polyak-f.0jasiewicz inequality was originally used by Polyak
[Polyak, 1963] to establish the convergence of the gradient descent algorithm. It also
bears the name of Lojasiewicz who showed at the same time that (a generalization of) this
inequality is a generic property of analytic functions near their critical points [Lojasiewicz,
1963], a property later generalized by Kurdyka [Kurdyka, 1998]. A generalization to
infinite dimensional spaces was also introduced by Simon [Simon, 1983], with application
to the study of the asymptotic behavior of evolution PDEs [Chill, 2003]. More recently,
the Polyak-t.ojasiewicz inequality has proven convenient in non-convex optimization for
studying the convergence of various other first order optimization methods [Karimi, 2016],
including applications to the training of neural networks [Oymak, 2019; Chatterjee, 2022].
An advantage of Eq. (I1.5) is that it is a local condition which can be checked pointwise,
only requiring the knowledge of f and of its gradient. This stands in contrast with other
assumptions used to obtain convergence of first order methods which generally requires
the convexity of f and/or the existence of a minimizer z*. Moreover, unlike convexity,
this condition is robust to small perturbations or reparameterizations of the space H.

Still, Eq. (I1.5) is usually too strong to be satisfied in many applications. For example,
when studying the training of neural networks, it is known that the loss-landscape has
saddle points and Eq. (I1.5) can hence not be satisfied on the whole parameter space. For
this reason, we consider here a local variant of the Polyak-f.ojasiewicz inequality which
was proposed in [Oymak, 2019; Chatterjee, 2022].

Definition II.1 (Local P-L inequality). Let f : H — R>q be some non-negative contin-
uously differentiable function and consider zy € H. For constants R,m > 0, we say f
satisfies the (R, m)-Polyak-Lojasiewicz inequality around zy if for every z € B(zp, R) it
holds:

IVF)I? = mf(2). (IL.6)

Remark I1.2.1. Different formulations of the (R, m)-P-L property have been proposed in
the literature. For example [Chatterjee, 2022] introduced the local ratio:

. IVf(2)]?
= f —.
Ao = e 1)
f(z)>0

A direct consequence of the (R, m)-P-L property in Definition II.1 is that f admits no
spurious critical points (saddles, local maxima or local minima) around zo and that all
critical points are global minimizers. On its own, such a local property is however insuf-
ficient to conclude to convergence of gradient flow to a global minimizer z* € argmin f.
Indeed, Eq. (I1.6) only controls the decrease rate of f inside a ball and if the gradient
flow dynamic escape this ball, it might get stuck at a spurious critical point. Nonetheless,
using a confinement argument it is possible to conclude to a local convergence result: if
f is sufficiently small at initialization then the gradient flow of f converges with a linear
convergence rate.

Theorem II.1 (Convergence of gradient flow). Let f : H — Rx>q be some non-negative
continuously differentiable function with locally Lipschitz gradient and consider zy € H.
Assume that f satisfies a (R, m)-P-L inequality around zy for some R,m > 0 and that

f(z0) satisfies:

R%m

Flz0) < —
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11.2. Polyak-tojasiewicz property and convergence of gradient flow

Let (Zt)tz[o,T) be the gradient flow curve starting from zg, defined until some time T > 0.
Then the following statements holds:

(i) confinement: T' = +oo and z € B(zp, R) for every t € [0, +00),
(ii) convergence: zoo = limy o 24 exists, is in B(zo, R) and s.t. f(zo0) =0,

(iii) convergence rate: for every t € [0,+00) it holds:

fz) < f(z0)e™  and ||z — 2o < Re™™/2.

Proof. The above result is the content of [Chatterjee, 2022, Thm. 1.1] which generalizes
to infinite dimensional Hilbert spaces. However, we give here a proof for the sake of
completeness.

First, by application of the Cauchy-Lipschitz theorem, there exists a maximal time
T > 0 s.t. the solution z; to the gradient flow equation is uniquely defined for t € [0,7).
Note that, if there exists tg € [0,T) s.t. f(z4,) = 0, then a stationary point of the gradient
flow has been reached in finite time and all the above claim follow. Thus we can assume
w.l.o.g. that f(z:) > 0 for every ¢t € [0,T). Define for ¢t € [0,T):

e =54 9 s

and consider Tr = inf {t € [0,T") : ||zt — 20|| > R} and T* := T' A Tr . Then the map
t — £(t) is locally absolutely continuous on [0,7%) and for a.e. t € [0,7™) we have:

d oo IVFGE)IP
&6(15) T mf(z)

Thus £ is decreasing with ¢ and for every ¢ € [0,7%) it holds:

+IVF(z)l <0.

<R.

! ! 4f(20)
| IV s G <22

This shows that the curve (z;)¢c[o,7+) has finite length, hence that lim; 7+ 2; = 2* exists
and that it is in B(zp, R). Moreover, this also shows that

20 = 2| < <R

4£(20)
m

for every t € [0,7*) and as a consequence Tr > T* ie. T" = T. But then, since the
curve (z;) admits a limit when ¢ — 7', this means T" = +oco since otherwise the gradient
flow could be extended to a strictly larger time interval, leading to a contradiction with
the definition of 7. Thus we have shown that T' = +oo, that zx € B(zp, R) for every
t € [0,+00) and that lim, o 2; = 2o exists and is equal to z* € B(z, R).

For the convergence rates, observe that, following from the fact that z; € B(zg, R), we
have for a.e. t > 0:

d
) = =IVf@)|* < —mf(a),
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leading to f(2¢) < f(z9)e™™ for every t > 0. Also, for t > 0 it holds:

ot = 2ocll < [ 19 )

_ Y +< lim 5(t’)-5(t>)

t/—+o0
<4 (2t)
m
< R€_mt/2,
which finishes the proof. O

It is important to stress that, in the above theorem, there is a result of convergence of
gradient flow curves as well as a result of existence of minimizers. Indeed, we only assume
that f > 0 and the existence of a global minimizer z* € Z s.t. f(z*) = 0 is part of the
conclusion. Finally, the same result hold for gradient descent.

Theorem I1.2 (Convergence of gradient descent). Let f : H — R>q be some non-negative
continuously differentiable function with locally Lipschitz gradient and consider zy € H.
Assume that f satisfies a (R, m)-P-L inequality around zo for some R,m > 0 and that

f(20) satisfies:
R*m
4

f(z0) <

Then, for any o € ( 45;3) , 1), there exists T > 0 sufficiently small such that the iterates

(zk)k>0 of gradient descent with step-size T satisfy:
(i) confinement: z, € B(z9, R) for every k >0,
(ii) convergence: zso = lim o 21, exists, is in B(zy, R) and s.t. f(2s0) = 0,

(iii) convergence rate: for every k > 0 it holds:

flzr) < (1 —amm) ¥ f(z) and ||z — 20| < (1 — am7)*?||20 — 25| -
Proof. Proof of this result can be found in [Chatterjee, 2022, Thm. 1.2]. O

11.2.2 The Polyak-fojasiewicz property in metric spaces

We now consider the case where we want to minimize a function f : Z — R defined on a
complete metric space (Z,d). In this setting, there is no notion of gradient which could
be used as a direction of descent in an iterative algorithm. Instead, for an initialization
zo € Z and a step-size 7 > 0, one can consider the proximal descent scheme which produces
iteratively:

1
Vk >0, zpy1 € argmin f(z) + —d(z, z,)%.
z€Z 27

In turn, this proximal sequence defines a limiting dynamic when the stepsize 7 tends to 0,
thereby generalizing the notion of gradient flow to the setting of metric spaces. In Hilbert
spaces, gradient flow curves can be characterized as solutions to variational inequalities
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involving the gradient norm. For example, the curve (z;):cr is the solution to the gradient
flow equation Eq. (I1.4) if and only if it is an absolutely continuous curve satisfying the
Energy Dissipation Inequality (EDI):

d 1 d
— < —— —
VtE]R, dtf(Zt) =75 (HdtZt

2
2
+ IV (=)l > : (IL.7)
The above characterization then generalizes to the setting of metric spaces by replacing
the objects with their metric counterparts. The norm of the velocity H%th is replaced by

the metric derivative ‘%zt‘ ([Ambrosio, 2008b, Def. 1.1.2]) and the norm of the gradient
IV f(z)]| is replaced by the notion of upper gradient. Recalling Definition 1.4, a function
g:Z — [0,400] is an upper gradient for f if for every absolutely continuous curve (z;)er
on an interval I C R it holds:

to

7e) = £ < [ (a1

t1

d
—z|dt, VY <tyel.

dt

In Section [.3, we for example showed that ||[VR| 12(,) is an upper gradient for the training
risk R defined on the space of parameter distributions P¥*"([0, 1] x ©) equipped with the
metric WSOT (Proposition 1.3.4). Curves of mazimal slopes of f can then be defined as
absolutely continuous curves in Z for which Eq. (I1.7) holds. We recall here Definition I.5.

Definition 1.5 (Curve of maximal slope [Ambrosio, 2008b, Def.1.3.2]). Let (Z,d) be a
complete metric space, I € R be an interval and f : Z — R a function with |V f| an upper
gradient for f. We say that (zi)ier is a curve a maximal slope for f (w.r.t. |V f|) if it
satisfies:

(i) (z¢)ier is locally absolutely continuous,

(ii) the map t — f(z¢) is non-increasing,
d it hold d < _1 a. |? 2
(iii) for dt-a.e. t € I it holds g f(z) < —3 ‘@Zt‘ +|VFI7(2) ).

If limy_ing 1 2¢ = 2 exists then we say (z¢)ier is a curve of maximal slope starting at z.

There is an important amount of literature devoted to the study of gradient flow
dynamics in metric spaces [Ambrosio, 2008b; Ambrosio, 2013; Santambrogio, 2017]. Of
particular interest is the case of the space P(X) of probability measures over some metric
space X, equipped with the Wasserstein distance WV, for some p > 1. In this case, the
seminal work of Jordan, Kinderlehrer, and Otto [Jordan, 1998] has shown that some
evolution PDEs such as Fokker-Planck equations can be interpreted as gradient flows of
functionals defined on the space of probability measures w.r.t. the Wasserstein metric.
More recently, this formalism has attracted growing interest for studying the training
dynamics of neural networks, modeled by Wasserstein gradient flows on the distribution
of their parameters [Chizat, 2018; Mei, 2018]. Similarly, we showed in Section 1.3 that the
training of our mean-field NODE model can be modeled with a gradient flow w.r.t. the
conditional OT metric W2COT, corresponding to solutions of some advection PDE on the
space of parameters (Definition 1.3).

We are here interested in analyzing the convergence of curves of maximal slopes for a
function f: Z — R. The strategy is the same as in the case of Hilbert spaces, observing
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that the decrease of f along such curves is formally given by < f(2¢) = —|Vf|?(2). Thus,
the natural generalization of Eq. (IL.5) is:

VzeZ, |VfP(z) 2m(f(z) - ), (IL.8)

for some constant m > 0 and where f* = inf f. The above Polyak-Lojasiewicz in-
equality in a metric space setting has encountered applications in the analysis of non-
convex and non-smooth optimization problems [Bolte, 2010]. Following from the inter-
pretation of PDEs as gradient flows, Eq. (I1.8) takes the form of functional inequalities
used in the classical entropy method to establish quantitative contraction properties of
solutions [Blanchet, 2018; Hauer, 2019]. A classical example is the heat equation, where
the logarithmic-Sobolev inequality can be interpreted as a (metric) P-¥. inequality for the
Boltzmann entropy. As before, the general form in Eq. (I1.8) will however be too strong to
be satisfied and we will consider instead a local variant of Eq. (I1.8) which was proposed
in [Dello Schiavo, 2024].

Definition I1.2 (Local P-L property in metric spaces). Let f : Z — Rxq be a non-
negative function with upper gradient |V f| and consider zy € Z. For constants R, m > 0,
we say that [ satisfies a (R, m)-Polyak-Lojasiewicz inequality (w.r.t. |V f|) around a zy if
for every z € B(zo, R) it holds:

IVf2(z) = mf(z). (I1.9)

As for the case of Hilbert spaces, while such a local P-t. property is insufficient to
conclude to unconditional convergence of curves of maximal slope, it allows obtaining
convergence when f is already sufficiently small at initialization. The following result can
be found in [Dello Schiavo, 2024].

Theorem II1.3 ([Dello Schiavo, 2024, Cor. 1.5]). Let f : Z — R>o be lower semicontin-
uous and non-negative, let |V f| be an upper-gradient for f and consider zg € Z. Assume
that f satisfies a (R, m)-P-L inequality around zo and that f(zo) satisfies:

mR2
4

For T' > 0, let (2t)i>[0,1) be a curve of mazimal slope for f (w.r.t. upper gradient |V f|)
starting from zy. Then the following statements hold:

f(z0) <

(11.10)

(i) confinement: z; € B(zo, R) for every t € [0,T),
(ii) convergence: zp = limy_,p z; exists and is in B(zp, R),

(iii) convergence rate: for every t € [0,T] it holds:

f(z) < f(z0)e™™ and d(z,2r) < Re™™/?,
with the convention that e~ = 0.

Finally, we conclude this section by noticing that above convergence result is open in
the sense that if its assumptions are satisfied for some initialization zy then it is also the
case for any initialization z(, sufficiently close to zo.

Proposition II.2.1. Let f : Z — R>q be continuous and non-negative and let the as-
sumptions of Theorem I1.3 be satisfied at some zg € Z. Then there exists a neighborhood

U of zy such that the assumptions of Theorem I1.3 are also satisfied at any initialization
/

2o €U.
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Proof. By definition of the (R, m)-P-L property, if it is satisfied around zy then, for any
d € (0, R) a (R— 0, m)-P-L property is satisfied around z{, for any z{, € B(zp, ). Moreover
it follows from the continuity of f that the condition Eq. (I1.10) is open: if it is satisfied
at zp with R and m then it is satisfied at any 2z, € B(z0,d) with R — § and m provided §
is sufficiently small. O

I1.3 Convergence for general architectures

We explain here how one can prove convergence of the gradient flow towards a minimizer
of the risk R when training the NODE model defined in Definition I.1. Precisely, we show
that the risk satisfies a Polyak-Lojasiewicz inequality of the form Eq. (I1.8) where the
P-%. constant depends both on the dataset and on the parameterization. We then explain
how this constant is related to functional properties of the space of residuals and give
conditions to ensure its positivity. Those conditions are described here at a general level
but will be specified in Sections I1.4 and I1.5 for practical examples of architectures and
initializations.

Finite number of data As in Chapter I, we consider training the NODE model for
the minimization of the training risk associated to a distribution of labeled training data
R? x RY > (z,y) ~ D. Specifically, to obtain convergence results, we focus on the case
where the data distribution is the empirical distribution D = % SN 041,y for a dataset
{(xi,yi)}1<i<N € (R? x RY)N. In this case, the risk R for a parameterization yu is given
by the empirical risk:

%Zﬁ(xz(l),yi), (IL11)

i=1

R(p) =

where xL is the flow of Eq. (I.5) starting at 2° and with parameterization y, which we will
simply denote by ' when no ambiguity. Similarly we denote by pj, := p,, ;i i, or simply
p' when no ambiguity, the associated adjoint variables solution to Eq. (I.13). We also
suppose that ¢ satisfies Assumptions 1.1 to 1.3.

Assumption on the loss To show the convergence of gradient methods for the training
of our NODE architecture, we will show the empirical risk R satisfies a local Polyak-
Lojasiewicz property. In this purpose, a minimal working assumption is that the loss
function ¢ itself satisfies the P-t. property. This assumption is in particular satisfied in
regression problems by the quadratic loss ¢(x, y) = %Hx—yHQ or locally by the cross entropy

loss {(x,y) = —log <W) in classification. For the sake of simplicity, we assume

the P-L. constant is 2 but all the results of course still hold with other constants.

Assumption II.1. The loss function ¢ : R® x RY is smooth and satisfies the P-L£ property
w.r.t. z € R, uniformly w.r.t (z,y) € R* x R, that is:

V(z,y) €RExRY || Vol(z,y)|? > 26(z,y) .

I1.3.1 Conditioning of the tangent kernel implies the P-L property

We showed in Proposition 1.3.4 that, for the mean-field NODE model defined in Defini-
tion 1.1, an upper gradient of the training risk R is given by the norm the the gradient
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Chapter II. Convergence in the training of residual architectures

field VR[u] obtained in Eq. (I1.20). In the setting of a finite number of data samples, we
thus have for any p € PY*([0,1] x ©):

2
VR ZDow (0.2°()) 0 (5)| dpu(s.0)

/0 ( Z p ‘)](:E’(s),;pj(s))p](s)) ds,

1<i,5<N

where for a parameterization v € Py(0) we define the kernel K[v] : R x R? — R?*? a5
Vool €RY,  K[v)(z,2)) = / Dyib(8, 2)Dyes(6, ') Tdu(6) . (IL.12)
[4

For a point cloud z = (2%)1<;<nx € (RY)Y we will denote by K[v,z] € RIN*N the kernel
matriz associated to K[v] and defined as the block matrix:

K[, 2] = (K[V](zi,zj))lgmgN . (I1.13)

In particular, we see that the conditioning Apin (K[v, z]) of the kernel matrix will play an
important role in proving a local P-f. property for the risk R. Indeed, in terms of the
kernel matrix K, the square gradient can then be written :

VRP() = 57 [ Buls) Kl ), 55 pa(s) s, (IL14)

where for every s € [0, 1] we defined the point cloud x,,(s) == (z/,(s)) € (RN and where

we concatenated the adjoint variables into p,(s) = (pu( $))1<i<n € R¥. In the following,
when no ambiguity, we will write x = x,, € C([0,1], (R%)") and p = p,, € C([0, 1], R%Y).

Lemma I1.3.1. Assume 1 satisfies Assumptions 1.1 to 1.3 and £ satisfies Assumption I1.1.
Consider 1 € PYP(]0,1] x ©). Then there exists a constant C = C(Eq(p)) s.t.:

VR ( / Awmin (K[1(.]3), Xu(s)])ds> R(1) . (IL15)

Proof. Thanks to Assumption 1.3 and to the definition of pz, there exists a constant
C = C(&(w)) such that for every 1 <i < N we have the estimate:

P ()I* = e “llpWI?, Vs € [0,1].
Using that p,(1) = V.£(z,(1),y") and with the previous Assumption I1.1 we have
Ipu()1? = e Clpu(D]* = 2Ne™ “R(p) -
Putting this lower bound in Eq. (I1.14) then gives the result. O

The above Lemma I1.3.1 shows that the conditioning A\pin(K) of the kernel matrix
provides a lower bound on the ratio between the square gradient and the risk: assuming
Amin(K) > 0 — which will for example always be true in Section 11.4.2 — implies the
P-L. inequality Eq. (I1.9) for the risk. It in particular implies that the risk has no spurious
critical points — every critical point is a global minimizer. This remarkable property arises
from the combination of skip connections and the infinite-depth limit, which together
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enable NODEs to implement an invertible warping of the input space. This stands in
stark contrast to finite-width feedforward architectures, which typically exhibit numerous
saddle points [Achour, 2024].

The P-L constant in Eq. (I1.15) could for example be computed numerically during
training. However, at this point, it is not clear how one can be sure, before training,
that the P-L inequality will hold along the gradient flow. We investigate this problem
in the next sections for special kinds of architectures. Nonetheless, a direct corollary
of Lemma I1.3.1 is that gradient flow converges if it stays bounded and if we assume the
kernel matrix stays well-conditioned.

Corollary I1.3.1. Assume ¢ satisfies Assumptions [.1 to 1.3 and £ satisfies Assump-
tion I1.1. For an initialization o € PYP([0,1] x ©), let (u)i>0 be a gradient flow of
R starting from pg. If there exists a constant C > 0 s.t., for every t > 0, () < C

and fol Amin (K[pe(1]8), %, (8)])ds > C™L, then the gradient flow converges in the sense that

L1t imoo, oo € PYP([0,1] x ©) and there exists a constant C' > 0 s.t.:

R(uw) < e “"Ruy), Vt>0.

I1.3.2 Expressivity and functional properties of the set of residuals

The kernel K [u] defined in Eq. (I1.12) corresponds to the Neural Tangent Kernel (NTK)
associated to the architecture in Eq. (I1.2) [Jacot, 2018]. Properties of the NTK, and
especially conditioning of the associated kernel matrix, have been identified by several
works has a key ingredient to show convergence of gradient methods for the training
of neural networks [Allen-Zhu, 2019; Du, 2019; Lee, 2019; Zou, 2020; Liu, 2020]. In
turn, the positivity of the kernel matrix K here readily plays a role in Corollary 11.3.1 to
establish convergence of gradient flow for the training of NODEs. We explain here how this
conditioning is related to functional properties of the set of residuals and more precisely to
their expressivity. Later-on we will give examples of architectures and parameterizations
for which sufficient expressivity of the residuals can be ensured to show convergence of
gradient methods for the training of deep ResNets.

Positive kernels and RKHS By construction, the kernel K[u] defined in Eq. (I1.12)
is a (vector valued) positive kernel over RY. Indeed, for p € P2(0), we have that for every
(z9)1<i<n and every (p')1<;<ny € (RH)N:

2

> (LK) = [ 4ju(6) > 0.

1<ij<N

N
> Doto(0,2'(s)) " p'(s)
i=1

It is a classical result that every such kernel defines a unique structure of Reproduc-
ing Kernel Hilbert Space (RKHS) over R?, a Hilbert space of functions for which the
evaluation function is continuous [Steinwart, 2008; Carmeli, 2010]. The kernel Ku]
is here directly given by a feature representation, that is a representation of the form
Kp)(z,y) = x(x)"x(y) with a map x : R — L(R% H) for some Hilbert space H. If
such a representation always defines a positive kernel, one can conversely show that such
a representation always exists whenever K is a positive kernel [Carmeli, 2010]. This rep-
resentation can however not be expected to be unique and corresponds to a certain square
root of K|[u] viewed as an integral operator [Bach, 2017b]. Here, one can for example
consider H = L?(u) and x is given by:

Va,p € R, x(z)-p=Dyi(,,2) p.
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Chapter II. Convergence in the training of residual architectures

The associated RKHS is defined by:

F= {F s x(2)T - 00 = /@ Do (0,2)50(0)du(0) : 60 € LQ(M)} (IL16)
and
VF € Fu, [Pz, = inf {|60]| 12 : Flz) = x(@)"-60, ¥z € R} . (IL.17)

The RKHS F, can be seen as the linearization of the space of residuals at some param-
eterization u € P2(0©). Its functional properties depend on the choice of architecture,
materialized by the basis function v, which is fixed, but also on the choice of the param-
eterization, which will vary during training.

Universality of residuals A lower bound on the minimum eigenvalue of the kernel
matrix K is assumed in Corollary I11.3.1 to ensure convergence of gradient flow. For a
kernel K, the property of having its associated kernel matrix being (strictly) positive on
every separated point cloud is a property we refer to as strict positivity. We make the
following definition:

Definition IL.3 (Strict positivity). We say a positive kernel K is strictly positive if for
every family z = (2V)1<i<y € (RN of mutually disjoint points the associated kernel
matriz K[z] is positive definite.

The notion of strict positivity is related to the stronger notion of universality which
is the property for a RKHS to be dense in the space of continuous functions [Micchelli,
2006; Sriperumbudur, 2011] (the two notions are for example equivalent for radial ker-
nels [Sriperumbudur, 2011]). In particular, this condition is satisfied by a large class of
common kernels such as Gaussian or Matérn kernels. More generally, being strictly pos-
itive in the sense of Definition II.3 requires for the associated RKHS F to be at least of
dimension M > dN, since it implies that, for any family of N mutually-disjoint points
z = (2)1<i<y € (RN and any family of vectors (F?)i<j<n € (R?)Y there exists some
F € Fst. F(z') = F' for every index i € {1,..., N}. However, when considering a fixed
family z = (2)1<;<y € (RY)Y, the strict positivity assumption can be satisfied for finite
dimensional RKHSs of dimension M < N¢, for example by considering a polynomial ker-
nel, or by RKHSs of dimension M > poly(N) with high probability over the sampling of
random features.

For a RKHS F,, as in Eq. (I1.16), the expressivity of F, depends on ¢ and on the
parameterization p. An example we develop further in Sections I1.4 and I1.5 is the case of
2-layer perceptrons of Eq. (34) where trained parameters are weight matrices U, W € R&>M
and a bias vector b € RM and (U, W,b),z) = Us(W "z + b), with ¢ an activation
function applied component-wise. In this case, when considering the ReLLU activation or
the trigonometric activation cos, the strict positivity of the NTK is ensured provided the
width M > 1 is sufficiently large.

I1.4 Linear parameterization of the residuals

Most often in the literature studying the training properties of ResNets, the considered
residual transformations are Multi-Layer Perceptrons (MLP) [Du, 2019; Allen-Zhu, 2019;
Hardt, 2016a]. These consist in the composition of several trained linear layers alterna-
tively composed with a non-linear activation function. In contrast, we first consider here
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1I.4. Linear parameterization of the residuals

a simplified architecture where the residual term is linear w.r.t. the parameters while still
being nonlinear w.r.t the inputs. While retaining the expressivity properties of MLPs,
such a parameterization has the advantage of simplifying the learning dynamic.

Precisely, we consider residuals that are of the form Eq. (I1.2) where the parameter
space is © = H%, for some a Hilbert space H, and ¢ : © x RY — R? is defined as:

(01, 0(2))
VO = (0;)1<ica €O, VzeRY (0,2)=0-¢(zx)= ; eR?,  (IL18)

(O, &()) 5

where ¢ : RY — H is some measurable map which we call feature map.

Examples of ResNets with linear parameterization Depending on the choice of a
feature map ¢ and on the choice of a Hilbert space H, the above defined class of residuals
encompasses several interesting examples of architectures.

o Linear residuals: This corresponds to the case where H = R% and ¢ = Id. In this
case the set of parameters identifies to © = R%*¢, the set of matrices of size d x d,
and the residuals simply consist in the left matrix-vector multiplication.

o Perceptrons with fixed hidden layer: Recalling Eq. (34), the single-hidden-layer per-
ceptron model is defined by:

Fuwp v €RY = Uoc(W Tz +1b), (I1.19)

where U, W € R¥™M gare trainable weight matrices and b € RM is a trainable bias
vector. In comparison, Eq. (I1.20) encompasses the case of random feature mod-
els [Rahimi, 2007] where the inner weight matrix W and the bias vector are fixed.
This corresponds to a feature space H = R™ and a feature map ¢ : = — O'(WTQ?—FI)).
We will show convergence for ResNets with this type of residuals in Section 11.4.3,
provided the width M is sufficiently large.

RKHS parameterization of residuals Linear parameterization of i greatly simpli-
fies the parameterization of the residuals since, leveraging the linearity w.r.t. 8 € O, a
parameter distribution is equivalently described by its mean. Recalling Eq. (I1.2), the
output of a residual F, parameterized by u € P3(0) on an input z € R? is:

Fu(w) = [ 0- 6@)d(6) = E,[6] - 6(z).
As a consequence, the space of residuals can be described by a single parameter 6 € ©:
F={F:z2—0-¢(x) : 00O} . (I1.20)

In particular, this space of residuals is a vector space which is independent of the parameter
distribution. Concretely, for every parameter distribution p € P2(0), we have F, = F
where ¥, is the linearization of the space of residuals defined in Eq. (I1.16). Moreover,
this space is in fact isometric to the space of parameters. The following result is a direct
application of [Carmeli, 2010, Prop. 1].
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Proposition I1.4.1. The vector space F is a Reproducing Kernel Hilbert Space of vector
fields over R® whose kernel is given by:

Vo, 2’ € R, K(z,2') = (¢(x), p(a')), 1d € R, (I1.21)

Moreover the mapping T : 0 € © — F =0 -¢(.) € F is a partial isometry and it holds:
d
VFecF, |F||%=inf {||9\|%9 =Y _16ill3, : F(z)=6-¢(z), Vz € Rd} :
i=1

Upon restricting © to Ker(T)T, we will assume in the following that T is injective and
hence an isometry, which is equivalent to assume that Span({¢(z), = € R?}) is dense in
H. Moreover, we abuse notations and extend the operator T to L?([0,1],0) by defining
for € L?([0,1],0):

T(0)(s) :=T(0(s)), fora.e. sel0,1].

Then T : L2([0,1],0) — L?([0, 1], F) is an isometry and its inverse T~! is defined similarly.

We also denote by 7 : PYeb([0,1],0) — L%([0, 1], F) the (surjective) mapping associating

to a parameter distribution its corresponding residuals and defined for u € PY<b([0,1],0)

by:
for a.c. s € (0,1, m(u)(s) =T (By(10]) = Epp[0] - &) € F . (11.22)

It admits a natural right-inverse which we denote by 7! : L2([0, 1], F) — PY>([0,1],0)
and which consists in considering parameter distributions that are single dirac masses at
each layer. Namely, if F € L?([0, 1], F), then § = T~}(F) € L*([0,1],©0) and we define:

1
7 HF) ::/ do(s)ds
0

i.e. the measure p € Py([0,1], ©) whose disintegration is {p(s) }se(0.1]-

The RKHS-NODE model In this section, we are interested in understanding the
convergence properties of first order methods such as Gradient Descent (GD) on infinitely
deep ResNet models for which the residual layers are encoded in a vector-valued RKHS.
Instantiating the NODE model in Definition 1.1 to the case of residuals in a RKHS give
the following definition of RKHS-NODES:

Definition 11.4 (RKHS-NODE). Let F be a RKHS of vector-fields over R%. Then for
F € L*([0,1],F) and a data input x € RY, the RKHS-NODE model is given by:

NODEF(:E) = HZF(l)
where xp 1s the solution to the forward problem:
Vs €10,1], zp(s)==x +/ F(r,xp(r))dr. (I1.23)
0

Note that there is a slight abuse of notation as we denote by NODE the model pa-
rameterized either by parameter distributions pu € Py°([0,1],0) (Definition 1.1) or by
residuals F' € L2([0,1],F) (Definition 11.4). Indeed, for every parameter distribution
1 € Py*([0,1],©) and every input = € R%, we have x, = 2,(,) and hence:

NODE,,(.) = NODE(,(.),

where 7 : PY°P([0,1],0) — L2(]0, 1], F) is the surjection defined in Eq. (I1.22).
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Relevance of the RKHS-NODE model. The main difference between the model
of Definition II.4 and standard ResNets is linearity in the parameters of the residual blocks.
As a comparison, a 2-layer MLP is nonlinear w.r.t. the parameters of the hidden layers.
However, this linearity assumption does not impact the expressivity of the model, but only
its training dynamic. (i) Indeed, considering F to be a random feature approximation
(c.f. Eq. (I1.33)) of some universal RKHS, the residual blocks are as expressive as a 2-
layer MLP since both are dense in the space of continuous functions. (ii) Up to the
cost of adding a supplementary variable, the dynamical system parameterized by a 2-
layer MLP can be expressed as a model which is linear w.r.t. its parameters [Vialard,
2020, Section 3.2]. Only the training dynamic between these two architectures differs.
Also, this assumption of linearity in the parameters also prevents the use of normalization
layers. In this direction, Zhang, Dauphin, and Ma [Zhang, 2018] have shown that ResNets
without normalization but proper initialization of the weights can lead to robust training
and similar generalization on the test set than standard ResNets. Finally, the model
of Definition II.4 still retains the effect of depth and the nonlinearity w.r.t. the input. Due
to composition of these residual blocks the model’s output is still highly non-linear w.r.t.
parameters. For these reasons, we consider this model as an important step towards the
study of the general case.

In turn, this linearity in parameters naturally leads to an RKHS parameterization
which has two important benefits on the theoretical side: (i) Flows of vector-fields as
implemented by our model in Eq. (I1.23) have already been studied theoretically and
for applications in image registration problems [Younes, 2010; Beg, 2005; Niethammer,
2011]. Under some regularity assumptions on the considered RKHS F, one can show that
the model’s output corresponds to the invertible action of a diffeomorphism by compo-
sition on the input [Trouvé, 1998]. This property was already used in [Salman, 2018]
to implement models of Normalizing Flows [Kobyzev, 2020] with applications in genera-
tive modeling. (ii) There is an important literature in Machine Learning about Kernel
methods [Scholkopf, 2002]. In practice, various sub-sampling methods exist in order to
approximate infinite-dimensional RKHSs with finite-dimensional spaces generated by ran-
dom features [Rahimi, 2007; Rahimi, 2008].

To further support the practical applicability and the relevance of this model in com-
parison with standard architectures, we report in Section II.7 numerical experiments on
MNIST and CIFAR10 datasets. They show that — as predicted by our theory — the
model can be trained in these cases to almost zero loss. But more importantly, they show
that the model is able to generalize well on the test dataset with performances that are
similar to those of classical ResNets.

Supervised learning We consider a supervised learning problem where the RKHS-
NODE model of Definition I1.4 is trained for the minimization of the training risk associ-
ated to the data distribution R¢ x RY 3 (z,4) ~ D and, as in Section I1.3, we consider
a finite training dataset D = {(z%,y")}, ;cy € (R? x RY)N. Then, instantiating the risk
defined in Eq. (1.8) to the case of a linear parameterization of residuals, gives here:

R(F) = Z {(NODEg(z Z {(x (I1.24)

where F € L?([0,1], F) is the family of residuals and z%. is the flow of Eq. (I1.23) starting
at 2’ with parameterization F. Note that there is again a slight abuse of notation with the
risk R defined in Eq. (I.8). As before, this is justified since for every parameter distribution
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1 € PYb([0,1], ©) we have:

R(p) = R(m (1)),
where 7 : PY°"([0,1],0) — L?([0, 1], F) is the surjection defined in Eq. (11.22).

I1.4.1 Gradient flow equation in the case of RKHS residuals

Gradient flows for the mean-field models of NODEs were defined in Definition 1.3 as solu-
tions to some non-linear advection PDE. Before turning to the convergence analysis of such
dynamics, we discuss the interpretation of this PDE in the case where the parameteriza-
tion of residuals is linear w.r.t. parameters. Precisely, in this case, leveraging the isometry
T between the parameter space © and the residual space F (cf. Proposition 11.4.1), we
show this dynamic corresponds to an actual gradient flow on the space of parameters.

To place ourselves in the setting of Chapter I we will consider in this section that the
feature space H is finite-dimensional, though most results could probably apply to the
case where H is an arbitrary separable Hilbert space. More importantly, we make the
following regularity assumption on the feature map ¢.

Assumption II.2 (Admissibility).

We say that the RKHS F is admissible if the feature map ¢ : R® — H is in C2(R%, H).
This in particular implies that F is continuously embedded in C*(RY,R?) and for every
F e F it holds:

1 Flle2(ra,ray < |@llc2map0)l| Fll 7

Note that the above Assumption I1.2 implies that the basis function ¢ defined in Eq. (I1.18)
satisfies all the assumptions considered in Chapter [, namely Assumptions .1 to [.3 and As-
sumptions LA to I.C. In particular, for residuals F' € L%([0, 1], F) and data (z,y) € R?xR?
the adjoint variable is defined by pr, = Dy 2,y Where one can consider any parameter-
ization p € PYP([0,1] x ©) s.t. 7(u) = F. As in Eq. (1.13), the backward ODE reads
here:

Vs € [0,1], pray(s) = Val(zr(l),y) + / Do F(r, 21(r))  pray(s).- (IT.25)

In this section, for every index i € {1,..., N}, we will denote by p%. the adjoint variable
associated to the data point (x, 7).

In Chapter I, the adjoint variables were used in Definition 1.3 to define a notion of
gradient velocity field. For a parameter distribution 4 € P¥P(]0, 1] x ©), the velocity field
VR[u] € L?(u) reads here using the definition of 1:

V(s,0) € [0,1] x©, VR|u ZDW Zpu u(3))-

Notably, due to the linearity of v w.r.t. the parameters, this velocity field is here indepen-
dent of # € ©. Thus, leveraging the isometry between the space of parameters © and the
space of residuals F, this dual vector can be used to define a dual vector on the space of
residuals. Namely, for u € P¥"([0,1] x ©) and F = 7(u) € L?([0, 1], F) we define for a.e.
s € [0,1]:

N N
VR(F)(s) =T (}V AL ¢<xz<s>>) = K als)(s) € F, (1126)
=1 =1
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where the second equality comes from the reproducing property of the kernel K. This
definition is unambiguous since the flows wu and the adjoint variables pu only depend on
the residuals F' = 7(u) € L?([0, 1], F). We show here that it corresponds to a true notion
of gradient for the risk R defined on the space of residuals.

Proposition 11.4.2. Assume F is admissible according to Assumption I11.2. Then R is
continuously differentiable and VR defined in Fq. (11.26) is its gradient.

Proof. Let I C R be an open interval s.t. 0 € I and let (F;)ier be a smooth (at least
continuously differentiable) curve in L2([0,1], F) s.t. Fy = F. Define, for every ¢t € I,
0; = T~Y(F) € L?([0,1],0) and define 1y = 7' (F}) = [ dp,(s)ds € PLeb([ 1],©). Then
by construction, we have R(F;) = R(u) for every ¢ € I. Also, the curve t € I +— py is
absolutely continuous in PYP([0,1],©) and satisfy the continuity equation:

Orpr + div(pe(0,60)) =0 over I x [0,1] x O,
where 0, = T~1(F}). Thus, applying Corollary 1.3.3, the risk is differentiable at ¢ = 0 and

writing without ambiguity x4 = z),, = zh F, and Pl = puo P, we have:
d
AR(E :/ VR[0](5.0), 0 (5)) e dpio (5. 0) .
TR = [ (TRIl(5,0), 05))e dpo(s. 0

Using that 6 = T~!(F{) and the definition of VR in Eq. (I1.26) this equation reads:

d
—R(F,

t=0

:/ < ZK xh(s))ph(s), Fy(s )> ds = (VR(F), Fo) 120,11, 7) -
F

This hence shows that VR, as defined by Eq. (I1.26), is the directional (or Gateaux)
derivative of R. Since the applications F + z% and F + p& are continuous (cf. Lem-
mas 1.3.2 and 1.3.5) it follows that the map F' — VR(F) is also continuous. By classical
results, this imply R is continuously differentiable and VR is its gradient (see e.g. [Younes,
2010, Prop. C.1)). O

Note that, for F satisfying Assumption I1.2, the forward flow map F — xp and
the adjoint flow map F' +— pp., are locally Lipschitz by Lemmas 1.3.2 and 1.3.5. As
a consequence, the gradient map F € L?([0,1],F) — R(F) is locally Lipschitz and the
gradient flow equation is well-posed. That is, for any Fy € L?([0,1],F), there exists a
unique solution F € C. ([0, +00), L*([0,1], F)) of the Cauchy problem:

d

t > —F, = — F;).
V_Ov dtt VR( t)

We show now that the notion of gradient flow of the risk w.r.t. the parameter distribution
e as defined in the previous chapter (Definition 1.3) here corresponds to the classical notion
of gradient flow w.r.t. the Hilbert metric structure on the space of residuals F.

Proposition 11.4.3. Let yo € PY([0,1] x ©) and (11t)t€]0,400) be a gradient flow for the
risk R starting from po given by Theorem I.3. For t € [0,+00), define F; = w(u) €
L?([0,1], F). Then (F1)te[0,400) 18 the solution of the gradient flow equation:

d

Vt>0, —F =-VR(F).
dt
Conversely, consider (Ft)ic[o,1+00) the solution of the above gradient flow equation for

some Fy € L*([0,1],F). Then, defining puy = n~*(F}) for every t € [0,+00), the curve
(14t)te[0,400) 15 the gradient flow of the risk starting from pq.
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Proof. Note that by Jensen’s inequality the mapping 7 : PYb(]
defined in Eq. (I1.22) is a contraction. Indeed, for u, i’ € P¥"(]

[=N=

1
2
7 (1) = 7 (W) 220,015 :/0 [ [6] = By 6] ds

1
< [ Walulls). 4 (1s) s
< W5 (u, ')
Thus, it directly follows from the local absolute continuity of (iit):c[0,400) that the curve
(F})te[0,+00) is locally absolutely continuous in L*([0,1], ). As a consequence (see e.g. [Am-

brosio, 2008b, Rem. 1.1.3]), it is almost everywhere differentiable with a differential
F/ e L} (]0,+0c0), L%([0,1],F)) and for every t; < t2 € [0, +00) it holds:

loc

to
F, =F, +/ F/dt.
t

1

Hence, to conclude it suffices to show that F} = —VR(F}) for a.e. ¢t € [0,400). For this,
let us consider some G' € L?([0,1], F). Using the density of C*([0, 1], F) in L?([0, 1], F)
we can consider w.l.o.g. that G is smooth and using the isometry between © and F we
write G(s) = T(w(s)) for some w € C*([0,1],0). Then by construction for every ¢ > 0:

(G F) 12(o,),7) 2/01 <W(S)7Eut<.|s)[9]>@ds=/01/6<w(s),9>@ dpe(s,0)

Since, (G(s),0)g is smooth and bounded by a function of linear growth it follows from
definition of gradient flow curves (Definition 1.3) that for a.e. t € [0, +00):

d
(G Pronm == [ 0), TR 0)6 dimn(s,0) = (G VR(E) 1o,

where we used Eq. (I1.26). Hence, for every t; < to € [0,400) it holds:

)

to to
(G, Foy = Fy) 20,7 = —/ (G, VR(F})) 120,17, At = <G» - VR(Ft)dt>
t t £2(0,1],7)

which shows that Fy, — Fy, = — ttf VR(F;)dt and implies the desired result.

For the converse result, note that, for every t > 0, us = fol d9,(s)ds where 0; = T-YF).
Then, for a test function ¢ € C°([0, 1] x ©) and for ¢ > 0:

o) = [ el dn(s.0) = [ (.00,

Hence differentiating w.r.t. ¢:

d 1 )
G @)= [ (Vo 0. e ds = = [ (Vil5,0), VR (5. 0))g (s, ).

where we used Eq. (I1.26) and that T(0;) = F/ = —VR(F}). O

98



1I.4. Linear parameterization of the residuals

I1.4.2 Convergence of RKHS-NODE

Following the line of proof sketched in Section I1.3, we show how to derive P-¥. inequalities
of the form Eq. (IL.5) for the empirical risk associated with the RKHS-NODE model. For
this purpose we will rely on expressivity properties of the set of residuals F and more
precisely on the strict positivity of the kernel matrix, as defined by Definition II.3.

Similarly as the space of residuals, the associated kernel is independent of the parameter
distribution. Indeed, instantiating Eq. (I1.12) with 1 of the form Eq. (I1.18) gives that for
every v € P2(0) and every z,2’ € R%:

Klp)(z,2') = K(z,2") = (¢(), ¢(a'));, 1d,

i.e. K[v] is the kernel K associated to the RKHS F. As before, we denote by K the kernel
matrix defined for z = (2%)1<;<ny € (RY)V as the block matrix

Kz] = (K (2%, 27))1<i j<n € RN, (I1.27)
The square norm of the gradient in Eq. (I1.14) thus reads here for F' € L%([0,1], F):

HVR(F)H%Z’([OJ]J) = % /01 (pr(s),K[xp(s)|pr(s))ds, (11.28)

where x(s) = (7%(5))1<i<n € (RN and pr(s) == (p'(s))1<i<y € R for every s € [0, 1].
Then, as in Lemma I1.3.1, one can show that the risk R satisfies a P-¥. property whenever
the kernel K is assumed to be strictly positive.

Proposition I1.4.4 (RKHS-NODE satisfy P-L.). Assume F satisfies Assumption II.2, its
associated kernel K is strictly positive in the sense of Definition I1.3 and the input data
has separation § = min;4;||z* — 27| > 0. Then, for every R > 0, the empirical risk R
satisfies the (R, m)-P-L property of Definition I11.1 with m given by:

m = %)\K (56_“R> e 2l (I1.29)

where k = k(@) and Mg : R>og — Rsg is the positive increasing function (possibly depending
on N ) defined by:

A (0) == inf Amin (K[z 11.30
RO)i= | nt () (11:30)
min;; [|2' =27 (|28

Proof. Let R > 0 and consider F' € L%([0,1], F) s.t. IF'[|2(j0,1,7) < R. First, note that
it follows from Assumption I1.2 and from the forward and backward ODEs in Eqs. (I1.23)
and (I1.25) that we have for every index 4,j € {1,..., N} and every s € [0, 1]:

zh(s) — x%(s)” > el
and

I ()| = e | Vat (i (1), 47)]I
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Chapter II. Convergence in the training of residual architectures

where k = ||¢||c2. Then, plugging this into Eq. (I1.28) and using the definition of \x gives:

1
IVRON o0 = 3z |, Pr(o). Kixe(s)lpr(s)) ds

> 5 [ i Kl lIpr(s) s

1 —K —2K al 7 %
> k(e B8)e 2N I Val(ap (1), 41|
i=1
1 N :
> k(e ) S (1), o)
i=1
1
= NAK(B_“R(S)e_Z“RR(F) ,
where we used Assumption II.1 in the penultimate line. ]

Since the empirical risk R satisfies a local P-L property, the analysis of Section I11.2
gives the convergence of gradient flow curves, provided the risk at initialization is already
sufficiently low. This condition depend on the kernel K through its conditioning Ax
defined in Eq. (I1.30). While we keep here an abstract condition for the sake of generality,
the quantitative dependence of A\ w.r.t. the data separation § > 0 will be made explicit
for a large class of kernels in Section I1.4.3.

Theorem I1.4. Let the assumptions of Proposition I1.4.J be satisfied and consider the
associated constants 6,k and the function Ak defined in Eq. (11.30). Let Fy € L?([0,1], F)
be some initialization and write ||Fy|| 2 = Ro. Assume there exists R > 0 s.t.:

ANR(Fy) < R2*Ag (de i+ Fo)yg=2r(R+Fo) (I1.31)

Then, the gradient flow (Fi)i>0 of R with initialization Fy converges to some Fy €
L?([0,1], F) and for every t > 0 it holds:

R(F) < e ™R(FY), and ||F, — Fal 2o < e ™/*R,

where m = + A (de= "+ H0) e =2 (Rt Ro),

Proof. Tt follows from the assumptions and from Proposition I1.4.4 that R : L?([0,1],F) — R
satisfies the (R, m)-P-L property of Definition II.1 around Fy with

m = i)\K((Se*K(RJrRO))6*2N(R+R0) )

N

The result then follows from an application of Theorem II.1. O

Moreover, a similar conclusion holds for gradient descent on the risk R. The following
result is an application of Theorem II.2.

Theorem II.5. Let the assumptions of Proposition I1.4.4 be satisfied and consider the
associated constants , k and the function Ak defined in Eq. (11.30). Let Fy € L*([0,1], F)
be some initialization and write || Fy| 2 = Ro. Assume there exists R > 0 s.t.:
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1I.4. Linear parameterization of the residuals

mRZ
a sufficiently small step-size T > 0, s.t. the iterates (Fy)r>0 of gradient descent on R with
initialization Fy and step-size T satisfy for every k > 0:

Define m = =g (de= o)) e=26(F+R0) - Then, for any a € 2R(Fy) 1), there exists

R(Fp) < (1= amm)*R(FY),  and ||Fy — Fsollr2(o,7) < (1 — amr)*?R,
where Fy, € B(Fy, R) is s.t. R(Fx) = 0.
Proof. Tt follows from the assumptions and from Proposition I1.4.4 that R : L%([0,1], F) — R
satisfies the (R, m)-P-L property of Definition II.1 around Fy with

1
m= N)\K(56—H(R+Ro))e—2fe(R+Ro) )

The result then follows from an application of Theorem II.2. ]

Note that there are two important parameters determining the P-¥. constant m in Propo-
sition I11.4.4 and thus the convergence rate of gradient flow in Theorem II.4 and of gradient
descent in Theorem IL.5. The first one is the data-separation § = min;; ||z* — 27| which
is a priori imposed by the dataset but which could be increased by an appropriate pre-
processing of the data such as normalization, rescaling or embedding in high dimension.
The other parameter is the function Ag which depends on the choice of the kernel K and
thus on the choice of a functional space F for the residuals. In Section 11.4.3, we use re-
sults on condition number for radial basis function interpolation problems [Schaback, 1995]
to provide a lower bound on Ag in the case of radial kernels (e.g. Gaussian or Matérn
kernels). However, if in theory, prior knowledge of the data might allow to optimize the
choice of kernel, we expect the selection of an optimal kernel to be an intractable problem
in practice. Instead, cross-validation techniques can be used to select a suitable kernel.

Finally, the degeneracy of the P-L constant m as R — +oo readily appears in Propo-
sition 1I.4.4. Thus one should not expect these bounds to imply global convergence of
gradient descent without making any further assumption. Indeed, cases where gradient
descent fails to converge towards a global optimizer of the loss are observed in [Bartlett,
2018]. Instead, Theorems II.4 and I1.5 are local convergence results in which the condition
in Eq. (I1.31) expresses a threshold between two kinds of behaviours: (i) if R(F?) is suf-
ficiently small, the training dynamic converges towards a global minimizer. The limiting
behaviour is when the Lh.s. of Eq. (I.31) tends to 0. Because of a regularizing effect of
gradient descent (i.e. that |[F* — F°||;2 < R), the parameter stays in a ball of arbitrary
small radius R all along the training dynamic. In this limit, we recover a “linear” or
“kernel” regime where the model is well approximated by its linearization at F° [Chizat,
2018; Liu, 2020; Jacot, 2018]. (ii) If R(FY) is too large, the result says nothing about the
convergence of gradient descent. However, it is still observed in practice that the training
dynamic often converges towards a global minimizer of the loss [Zhang, 2021]. Explaining
this phenomenon in a general setting remains a challenging open question, even for simple
linear models.

I1.4.3 Convergence with finite width

While Theorems I1.4 and I1.5 describe local convergence results for the training of deep
ResNets with gradient descent and gradient flow, the strict positivity assumption requires
the space of residuals to be of very high dimension. Actually, typical examples of RKHSs
satisfying Assumption 1.2 and having a strictly positive kernel in the sense of Defini-
tion II.3 would be Sobolev spaces H” of regularity v > d/2 + 2. Those are described
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Chapter II. Convergence in the training of residual architectures

by considering as feature map the Fourier coefficients ¢(z) = (e”Tw)weRd and as feature
space H = L?(p,), where p, € P(R?) is the probability distribution with density:

2 v
VweR?, p, o el
w , pu(w) x < 5

The associated kernel K, is the translation-invariant kernel whose Fourier transform is p,:
Ve, o' € R, K, (z,2)) = ky(x,2))ld  with Kk, (z,2) :/ e’(x*x/)dep,,(w). (I1.32)
R4

Note in particular that, taking the limit v — +00, one recovers a Gaussian kernel, which
we denote by Ko, = koold. In any case, for every v € (d/2 + 2, +oc], the RKHS H” has
infinite dimension.

In contrast, in standard ResNets, the space of residuals usually consists of a parametric
function space of large but finite dimension. In the case of a linear parameterization, a
typical example would be a random feature model [Rahimi, 2007] consisting in a 2-layer
perceptron (Eq. (34)) whose hidden layer weights are fixed. For a width M > 1 and
parameters § € R>M  the residuals are of the form:

2
Ve € R,  Fy(z) =/ i 0-0c(W'z+b), (11.33)

where ¢ is some activation, W = (wq]...Jwas) € R>M is a fixed weight matrix, whose
column are called features, and b = (b;)1<i<m € RM is some bias vector. In particular, if
considering the trigonometric activation o = cos, i.i.d. features w; ~ p, for v > d/2 + 2
and i.i.d. biases b; ~ U([0,7]), it follows from Proposition I1.4.1 that the space of residual
maps F described in Eq. (I1.20) is the RKHS associated to the kernel:

Ve, o' e RY, K, (z,2') = ky(x,2))Id, (I1.34)
with
. 2 MU
ky(z,2") = i 12::1 cos(w, x + b;) cos(w; &’ + b;) .

Using the law of large numbers, we see after some calculations that:

ky(z,2') Moo, 9 ) cos(w 'z + b) cos(w' 2’ + b)dp, (w)db = k, (z,2') .
R2x[0,7]

Thus, this space of residuals, which we will from now-on denote by HY, is a finite-
dimensional approximation of H”. In the rest of this section, we show that the con-
vergence results in Theorems I1.4 and IL.5 hold for residuals in HY provided the width M
is sufficiently large w.r.t. the number of samples.

We start by showing that the admissibility and strict-positivity assumptions are both
satisfied by A, respectively almost surely and with great probability over the sampling
of random features. We will then conclude to convergence in Theorem I1.6.

Lemma I1.4.1. Let v € (d/2 + 2, +00] and, for M > 1, let F = H” be the RKHS with
kernel K, defined in Eq. (11.34). Then, almost surely, F satisfies Assumption I1.2 with a
a constant & independent of M > 1.
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Proof. Note that the feature map associated to the RKHS F = HY is defined by:

A 2
Vr € RY, qﬁl,(a:):q/ﬂa(wTa;—i—b) e RM,

In particular, since here o = cos, we have sup, [|¢, ()| < v/2 . Moreover, for 2 € R%:

R R 9 M 9 M
Do, (z) Doy (x) = i Z cos(w; x + b;)2ww, < i Z || w;||1d .
i=1 =1
Since v > d/2+ 1, p, has finite second-order moments and this sequence converges almost
surely by the law of large numbers. In particular, sup, ||D¢,(z)|| is almost surely bounded
w.r.t. M > 1. Using that v > d/2 + 2, a similar argument shows that sup, |D%¢, ()| is

almost surely bounded w.r.t. M > 1. This shows the result. O

Lemma IL1.4.2. Let v € (d/2 + 2,+c] and, for M > 1, let F = H” be the RKHS with
kernel K, defined in Eq. (11.34). Consider a number of data sample N > 1 and let K,
and K, be the kernel matrices associated to the kernels K’,, and K, respectively. Consider
g,v>0 and R > 1. There exists a constant C > 0 s.t. if M > Ce 2N?(1 + log(R) + ),
then with probability greater than 1 —e™7, for any F € L*([0,1], F) s.t. || 2 oy,7) < R
it holds:

s € [0,1], Auin (Ku(x(5))) > Amin (Ko (x(s))) — ¢,
where x(s) = (2'(s))1<i<n are the solutions to the forward ODE Eq. (11.23).

Proof. Consider &, independent of M > 1, such that F = HY satisfies Assumption I1.2
with constant &. Then, for ||F[[z2(j0,1,7) < R, it holds for every index i € {1,..., N} that
lz¢(s)]| < ||2°(0)]| + &R for every s € [0,1]. Then using [Sriperumbudur, 2015, Thm.1],
there exists a constant C' = C(d,v) s.t.:

l::l,(a:i(s),a;j(s)) o ky(a:i(s),a;j(s))H > C(l —i—log(R)) + \/ﬂ> < e 7.

P sup sup  sup
I1F|l 2 <R1<i,j<N s€[0,1]

=

This gives the desired result by considering that Ay, is N-Lipschitz continuous on the set
N x N symmetric matrices. ]

As a consequence of the two above lemma, we recover convergence of gradient flow
and gradient descent for the training of the RKHS-NODE model defined in Definition I1.4
with residuals of the form Eq. (I1.33), provided the width M is sufficiently large. Note
that, in the following theorem, one can distinguish between two kind of assumptions: the
assumption that the risk at initialization is sufficiently small, allowing the application of
the local convergence results in Theorems 1.1 and 11.2, and the assumption of a sufficiently
large number of random features, allowing for the RKHS H" to recover the expressivity
property of H” with great probability. In particular, taking the limit M — oo, one
recovers that convergence hold with probability 1 when considering residuals in the infinite
dimensional space H".

Theorem IL.6. Let v € (d/2 + 2,400] and, for M > 1, let F = H" be the RKHS with
kernel K, defined in Eq. (I1.34). Consider N > 1 input data samples (¢)1<i<n € (RHN
with data separation § = min;,; |z° — 27| > 0. Consider the initialization Fy = 0 €
L2([0,1], F). Then there erists a constant C' > 0, s.t. for every v > 0 the conclusions
of Theorems I1.4 and I1.5 apply with probability greater than 1 — e~ if:
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o Sobolev / Matérn kernel (v < 4+00):

R(0) < CINTY=4  and M > CN2%4(1++),

o Gaussian kernel (v = 400):

R(0) < CTIN"1579%~C0  and M > CN2524e 209 (1 4+ 4).

Proof. The result follows from lower bounds on the conditioning of translation-invariant
kernels of the form K, in Eq. (I1.32) [Schaback, 1995]. We make the proof in the case of
Matérn kernels, that is for v € (d/2 + 2, 400), but the arguments straightforwardly adapt
to the case of Gaussian kernels, i.e. v = +o0.

For v € (d/2 + 2,400), Schaback [Schaback, 1995] gives that, for a data separation
0’ > 0, a lower bound on the conditioning of the kernel K, is:

/\K,,(d/) > 01—1(6/)2V—d’

where C; = C1(d,v). Let & be the constant provided by Lemma I1.4.1. Consider R = 1
and ¢ = $C71(de %)?~¢ in Lemma 11.4.2. Then there exists a constant Cy = Ca(d, v)
such that, for every v > 0, if M > C96%¢~* N?(1 + v), with probability greater than
1—e™, for every F € L*([0,1], F) s.t. || F||f2(jo,1,7) < 1 it holds:

Ain (o (x(5))) 2 A (K, (x(5))) — £ > O e g,

where x(s) = (2°(s))1<i<n are the solutions to the forward ODE Eq. (I1.23). As a conse-
quence, the risk R satisfies the (R, m)-P-L property of Definition II.1 around the initial-
ization F = 0 with R = 1 and m = C3 'N~16%~4 for some constant C3 = C3(d,v). The
condition on R(0) then allows applying Theorem II.1 for the convergence of gradient flow
or Theorem II.1 for the convergence of gradient descent. O

I1.5 The case of SHL residuals

In the above Section I1.4, we derived convergence results for the training of deep ResNets
or NODEs whose residuals are linearly parameterized. We study here the case where
residuals are single-hidden-layer (SHL) perceptrons of the form in Eq. (34). For M > 1,
weight matrices U, W € R*M and bias vector b € RM, a SHL perceptron of width M is
described by:

1
Ve e R, Fwp(z) = MUO’(WT:E +b),

where ¢ : R — R is an activation function applied component-wise. In particular, it is
similar to the random feature model (Eq. (I1.33)) previously considered in Section II.4
with the notable difference that both outer weights in U and inner weights in W,b are
learned parameters.

Note that we consider the mean-field scaling factor 1/M. With this choice of scaling,
the SHL architecture is an instance of Eq. (I1.2) which we define by setting the parameter
space © = R? x R% x R and the map:

Y ((u,w,b),2) €O xR = uo(w 'z +b). (I1.35)

104



II.5. The case of SHL residuals

Indeed, if (ui)1<i<m and (w;)i<i<m are the columns of U and W respectively then for
every x € R%:

1M
Fowp(x) = i Zuia(w;—x +b;).
i=1

We will generically make the following assumption on the activation o to ensure that the
results of Chapter I on existence and uniqueness of the gradient flow dynamic still hold
when considering the basis function .

Assumption II1.3. The activation o : R — R is a twice continuously differentiable func-
tion with a uniformly bounded derivative. Defining C = C(o) == |o(0)| + ||0’]|c0, we then
have for (x,0) € R? x ©:

1 (0, 2)|| < O+l (1 + [10]%) ,
Dot (0, )| < C(L+ [+ 16]]) (I1.36)
Do (6, )] < ClO]1*.

Thus, this assumption ensures that Assumptions 1.1 to 1.3 are satisfied. It does not however
imply Assumptions I.A and I.B. Still we are able to show that Theorems 1.3 and I.J both
hold for SHL architectures (c.f. Propositions I.A.1 and I.A.2 in Section I.A).

Remark I1.5.1. Assumption I1.3 is in particular satisfied for the popular choices that
are o = tanh or any smooth approxrimation of ReLU such as GeLU or Swish, but con-
sidering the ReLLU activation itself is expected to create two kinds of issues. First, the
non-differentiability of ReLU at 0 could create singularities in the continuity equation. As
a consequence, while existence of solutions to the gradient flow equation (Definition 1.3)
might still hold, one should not expect those solutions to be unique (Theorem 1.4). Then,
and perhaps most importantly, those solutions might not coincide with curves of maxi-
mal slope. Indeed, a cornerstone of our analysis is Theorem 1.2, identifying gradient flow
curves (Definition 1.3) with curves of mazimal slopes for the risk (Definition 1.5). This
result requires minimal reqularity on ¢ and allows showing existence and uniqueness of
gradient flow curves in Section 1.3.).

Following the lines of Section I1.3, our proof strategy to show convergence of gradient
flow for the training of deep ResNets with SHL residuals will be to study the conditioning
of the associated Neural Tangent Kernel (NTK) during training. Recall the definition
Eq. (II.12) of the tangent kernel K associated to the architecture defined by ¢ and to
some parameterization pu € Pa(0):

Vol €RY, Klul(wa!) = [ Do(0,2)Dari(6.2) dp(6) . (1L.37)
(C]
In the case of the SHL architecture defined by Eq. (I1.35), the associated kernel can be

decomposed into two parts. For u € P2(0) we have K[u] = k'[u]ld + K?[u] where we
define for every z,y € R%:

Epl(z,y) = /]Rdedx]R o(w'z +b)o(w'y + b)du(u, w,b), (I1.38)
K2l = [ oo+ 0Ty )Ty 1) s )i, b).
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Observing that both k'[u] and K?[u] define positive kernels over R? we have that K[u] >
k'[u]Id in the sense of positive kernels. Therefore Apin (K1 [12(.|5), %, (s)]) provides a natural
lower bound for Amin(K[p(.|s),x,(s)]) where, similarly to Eq. (II.13) the kernel matrix
K![p, 2] € RV*N is defined for a point cloud z = (2%)1<;<x and for u € P2(0) as:

K[z = (Rl 2), e BV

In Theorem I1.7, we will rely on the conditioning of the kernel k! during training to ensure
convergence of gradient flow.

I1.5.1 Comparison with the case of a linear parameterization

An important improvement of this section w.r.t. the analysis performed in Section 11.4 is
that we consider a more realistic setting where residuals are 2-layer neural networks whose
hidden layer weights are learned.

Leveraging the linearity of ¢ w.r.t. the outer layer weights, one can replace u with its
conditional expectation w.r.t. the inner layer weights (w,b). For a parameterization p €
P5(0), the residual is then equivalently represented by the marginal u? of p w.r.t. (w,b)
— the feature distribution — and by the conditional expectation u(w,b) = E,[u|w,b] €

L*(p?):

Ve e RY, F,(z)= /e uo(w' z + b)dpu(u, w,b) = /Rd Ru(w, b)o(w 'z + b)du?(w,b).
X
Such a residual belongs to the RKHS associated with the feature space H,, = L?(u?) and
the feature map ¢ : x +— o(w 'z +b). The associated kernel is k'[u], which as in Eq. (I1.21)
reads:
Ve, o' € RY, k' ul(x, 7)) = ((2), <Z>(:U')>L2(u2) = /]Rd Ra(wTac +b)o(w'z' + b)du®(w,b).
X

Thus, fixing the inner weight distribution u? one would recover the setting of Section 1.4,
with residuals in a RKHS independent of the parameterization. In contrast, in Theo-
rem II.7, the distribution of the inner layer weights evolves during training. Tracking
evolution of the feature distribution in deep neural networks is however a difficult the-
oretical problem. In Theorem II.7 we will overcome this issue by assuming the risk at
initialization is sufficiently small for the training dynamic to stay close from some “nice”
feature distribution. We will quantify this condition w.r.t. the number of data sample N
in Corollary II.5.1 but, as a consequence of not being able to track the learning of the
feature distribution, we will ask for the risk at initialization to scale as N~3 in contrast
to N~! in Theorem I1.6. This gap motivates a detailed analysis of the evolution of the
feature distribution in shallow architectures which will be the content of Chapter III.

Mathematically, training of inner weights also materializes as a change of metric on the
space of residual mappings which is no longer isometric to its parameter space. Here the
NTK in fact decomposes as a sum of two terms: k' corresponds to gradients w.r.t. linear
parameters while K2 corresponds to gradients w.r.t. nonlinear parameters. The space of
residuals is described by the so-called “Barron space”

B = {F:xH/ua(wa—i—b)du(u,w,b) : MEPQ(RXRdXR)} .

In the case 0 = ReLU, E and Wojtowytsch [E, 2022] show that B can be endowed with a
Banach norm:

WF € B, |F|g= inf {/ lul (]| + [B))dpe : € Po(R x RE xR, F = Fu} .
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II.5. The case of SHL residuals

However, if it satisfies enjoyable approximation properties such as density in the space of
continuous functions [Cybenko, 1989], this Banach space is generically not separable nor
reflexive.

I1.5.2 Convergence of NODEs with SHL residuals

We show here a local convergence result for the training of NODEs with gradient flow in
the case of SHL residuals. Theorem II.7 here assumes the risk at initialization is already
sufficiently small and we will show in Section I1.5.3 that this assumption can be quantified
explicitly when specifying the activation and the initial parameterization.

First, we show the conditioning of the kernel k! defined in Eq. (I1.38) is well behaved

w.r.t. to the metric WS'OT on the parameter set Prb(]0,1] x ©).

Lemma I1.5.1. Assume o satisfies Assumption I1.3. Then the map

1
o [ A (K ] 5), . (5)) s

is locally-Lipschitz continuous on (PY¥P([0,1] x ©), WSOT). Moreover there exists some

constant C' such that if p, p' are such that Eo(u), Ea(1') < E then :

1 1
[ i B 31) = [ i (B 30]) | £ NCECEODWEOT 1)

Proof. Let C = C(0) be the constant appearing in Eq. (I1.36) and let R > 0 be such that
Supp(D) € B(0, R). We have by Proposition 1.1.1 that for p € P3P([0,1] x ©) and for
x € Supp(D,) the flow verifies:

Vs € [0,1], |lzu(s)]| < COFEE(R 4+ C(1 + E(n))) < Crer&2W)

where C1 = C1(R, o). Using the previous bound on the trajectories as well as the bounds
in Eq. (I1.36) we see following the proof of Lemma 1.3.2 that if Eo(u), E2(p’) < & then for
every s € [0,1]:

[2(5) = (s)]| < €“E(1+ CreTE) V2 +4EWFOT (u, 1) < Coe2* WO (u, 1)

where Cy = C2(R, o). Also, it follows from the assumptions on o that, for fixed p € P2(0),
the map (z,y) € R* — k'[u](z,y) is locally Lipschitz and, for any z, 2/, y, 3’ € RY,

’kl[u](fv’y) = k@ )| < C2 & A+ lI2'] + ly)(lz — 2" + lly = /1)

For fixed z,y € RY, the map pu € Pa(O) ~— k'[u](z,y) is also locally lipschitz and using As-
sumption I1.3 we have that if E3(u), E2(p') < € then for some constant Cy:

va,y € R | (e, y) — K ()@ )| < Ca(L+ flall + Iyl (1 + VEWau. i)
Compiling the previous inequalities we have that if £ is such that Ey(u), E2(pn') < € then:
||K1 [, %] — K [Mlvxu’]noo < C5eCS€W2COT(M7M/)

where C5 = C5(R,0) and ||.||c is the supremum norm on matrices. Finally, the result
follows from the N-Lipschitz continuity of the map S +— Apin(S) on the space of N x N
symmetric matrices provided with ||.||sc- O
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Chapter II. Convergence in the training of residual architectures

The following result gives sufficient conditions for the convergence of the gradient flow
towards a global minimizer of the risk in the case of a NODE with SHL residuals.

Theorem I1.7. Assume 1) is of the form FEq. (I11.35) with an activation o satisfying As-
sumption I1.5 and that £ satisfies Assumption IL.1. Then for any po € PyP([0,1] x ©)
there exists a positive constant C' = C(E2(pg)) s.t. if

1
Ao ::/ Amin (K [120(|8), X0 ()])ds >0 and  R(uo) < CN 3N, (11.39)
0
then any gradient flow (pu)i>0 starting from uo satisfies:

CA s e
R(pe) < R(uo)eXP<—Tot), and i = pioe € P5((0,1] x ©).

Proof. Let C7 be the universal constant appearing in Lemma I1.5.1 and consider the
radius R = min {1, ﬁ)\oe_cl( 82(“0)+1)2}. Then we have that for every u € B(uo, R),

Ea(1) < (v/E2(1o) + 1)? and hence by the local Lipschitz property of:

1 A
| Amin @ s x,]) > 50
0

Then, as a consequence of Eq. (II.15), we obtain that R satisfies the (R, m)-P-L property
of Definition I1.2 around pg with m = N~le=C2)\g and Cy = C9(E2(po)) is a constant
depending on 9. Combined with Theorem I1.3 we obtain that the condition in Eq. (I1.39)
is sufficient for the gradient flow initialized at pg to converge towards a global minimizer
of the risk.

Note that by Lemma I1.5.1, Eq. (I1.15), and Assumption I1.3 we can take the constant
C' in Eq. (I1.39) to be of the form C' = Ce~Cs€2(10) for some constant Cs. O

I1.5.3 Examples of activations and quantitative convergence results

As one can see in the previous Theorem I1.7, the better the conditioning of the kernel
matrix, the better the constants in the local P-t. property, and hence the easier it is to
satisfy the condition for convergence. This conditioning depends on the choice of activation
and initialization and it is important to keep in mind that the P-¥. property is not expected
to hold around any initialization. For example, there is a saddle at every initialization pg
with feature distribution p3 = O(w,p)=0> Whenever o(0) = ¢'(0) = 0. However, in general,
the feature distribution p? having dense support is a sufficient condition to ensure strict
positivity. The following proposition is a direct consequence of [Sun, 2019, Thm.II1.4]
and [Carmeli, 2010, Cor.4.3].

Proposition I1.5.1. Assume o has linear growth and is not a polynomial. Then if the
feature distribution p® € Po(R? x R) has dense support in R? x R, the kernel k'[1?] is
strictly positive.

In the following, we provide examples of activations o and initializations pg for which
the kernel matrix is well-conditioned. Moreover, in the case of the trigonometric activation
function o = cos, quantitative lower bounds on the conditioning of the kernel matrix allow
us to give quantitative conditions for convergence of the gradient flow.
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II.5. The case of SHL residuals

Identity (or FixUp) initialization It will be particularly convenient to consider ini-
tial parameterization of the form g = Leb(]0,1]) ® dp ® pd for some p2 € P2(R? x R),
i.e. parameterization whose disintegration pg(.|s) = 6y ® pg is independent of s € [0,1]
and has support in {0} x R% x R. Such an initialization has been proposed for ResNets
in [Zhang, 2018] and is shown to be associated with robust training and good generaliza-
tion performances. Moreover, note that such an initialization is particularly natural for
NODEs: in this case F),, is identically 0 and the associated NODE flow is the identity. As
a consequence the kernel matrix K![ug] is independent of s and can be expressed as the
block matrix:

K2 fuo] = (K [uol (&', #7))

only depending on the feature distribution p2 and on the input data distribution.

Positively homogeneous activation with uniform distribution of the features
on the sphere The kernel k![u] has been particularly studied in the case of a positively
homogeneous activation o [Cho, 2009; Bach, 2017b]. Motivated by applications in machine
learning, a popular choice for such activation is the Rectified Linear Unit (ReLU):

ReLU : z +— max {z,0}

However, for o = ReLU, the associated basis function ¢ would only satisfy Assumptions I.1
and [.2 and the only choice of positively homogeneous ¢ satisfying Assumption 1.3 would
be the trivial choice o = Id.

Nonetheless, whatever the choice of activation o, Eq. (I1.38) still defines a positive
kernel k’;l; over R%. Properties of this kernel in the case where o is a positively homogeneous
activation have been extensively investigated in the literature. In the case of ¢ = ReLLU the
previous Proposition I1.5.1 can be improved thanks to the homogeneity of the activation:

Proposition I1.5.2. Assume o = ReLU. Then if the feature distribution p?> € Po(R? xR)
has dense support in the sphere S%, the associated kernel k[p?] is strictly positive.

Proof. The result is a direct application of [Sun, 2019, Prop.IIL.5] and [Carmeli, 2010,
Cor.4.3]. ]

Remark I1.5.2. In the case o = ReLU® with some non-negative integer o, [Cho, 2009]
provides an explicit computation of k' as a so-called arc-cosine kernel in the case p? =
U(SY) is the uniform distribution on the sphere. Properties of these kernels and of the
corresponding RKHSs have been studied in [Bach, 2017aj. It is for example shown that
the induced RKHS is the Sobolev H® of order s =d/2 + a+ 1.

Trigonometric activation with strictly positive feature distribution An impor-
tant case is also the choice of the trigonometric activation o = cos for which, considering
p € Pa(0), Eq. (I1.2) gives:

Ve e RY,  Fy(z) = / wcos(w ' & + b)du(u, w,b),
RAxRIXR
and the definition k!'[y] in Eq. (I1.38) gives:

ve,y e RY,  kp)(z,y) = /d cos(w' x + b) cos(w "y + b)dp*(w, b) .
R xR
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Chapter II. Convergence in the training of residual architectures

In the case where p? = ™ @ U([0,7]) for some probability measure p® € Py(R?) this last
expression can be simplified into:

Bll(ey) = 5 [ costw (o = )i (w). (IL40)

That is k'[u] is a positive translation-invariant kernel over R? whose Fourier Transform is
p®. It is a well-known theorem of Bochner (see [Wendland, 2004, Thm.6.6]) that having
a non-negative Fourier Transform is a necessary and sufficient condition for a continuous
function to define a positive translation-invariant kernel. Moreover, for some initial feature
distributions, lower bounds on the conditioning of the kernel matrix as a function of the
data separation are given in [Schaback, 1995].

Corollary I1.5.1. Let ¢ be of the form Eq. (I11.35) with activation o = cos. Assume
the input data points {xi}1<i<N are located in the ball B(0, R) of radius R > 0 and have

separation § := min;z; ||z* — 27| > 0. Consider the initialization o = Leb([0,1]) @ u for
some weight distribution p € Po(©). Then the assumptions of Theorem I1.7 are satisfied
if:
o Sobolev / Matérn kernel yu = §o@ u® @U([0, 7]) with p®(w) oc (14 ||wl||?)~" for some
v>d/2+2 and R(up) < CN~35=4/2) | for some constant C = C(R,v,d).

||;U|L2
0
and R(ug) < CN36731e=C07* ' for some constant C = C(R, p, d).

o Gaussian kernel jp = dp @ p* @ U([0, 7]) with p*(w) o exp(—

) for some p > 0

e Random features: Finally assume po = Leb([0,1])® 1 where i = M1 Zi‘il O (g w3,b7)
and (uj, w;, b;) are sampled i.i.d. from a distribution p € Pa(0O) s.t. Leb([0,1]) @ u
satisfies the assumptions of Theorem I1.7. Then for every € > 0 there exists M, > 0
s.t. the assumptions of Theorem I1.7 are satisfied with probability greater than 1 — ¢
(over the sampling of {(u;, w;i, b;)}1<,<p;) whenever M > M.

Proof. This is a consequence of results on the conditioning of translation-invariant kernel
of the form Eq. (I1.40).

« Sobolev / Matérn kernel: using Eq. (I1.40) the RKHS associated to k![u] corresponds

to the Sobolev space H”(R?) and [Schaback, 1995] gives that there exists a constant
C = CO(e,d) s.t.: Amin (K, x]) > C~152v =4,

« Gaussian kernel: using Eq. (I1.40) the kernel k'[u] is the gaussian kernel given by
k' [u)(z,y) = exp(—3p?|lz — yl|*) and [Schaback, 1995] gives that there exists a
constant C' = C(p,d) s.t. Amin (K[, x]) > C 157407,

e Random features: the assumptions of Theorem I1.7 are satisfied with high probability
when M tends to infinity as all the involved quantities in Eq. (I1.39) are continuous
w.r.t. the weight distribution pu € P2(0).

O]

Note that, in order to obtain convergence in the above Corollary I11.5.1, we assume
the risk at initialization scales like N=3§3(2*=4) which is the cube of the scaling required
in Theorem I1.6 when training only linear parameters. This bad scaling is a consequence
of Lemma I1.5.1, giving a worst case estimate of the conditioning of the tangent kernels
during training if the feature distribution became degenerate. In contrast, one would
expect training with gradient flow to lead to the learning of meaningful features, thus
improving on the conditioning of the tangent kernels.
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Remark I1.5.3. In this section we have leveraged the conditioning of the kernel matrix
K, that is the square norm of the gradient w.r.t. the outer weights u, to show a Polyak-
Lojasiewicz inequality holds along the gradient flow. One might ask to what extent the
kernel K2 which takes into account the morm of the gradient w.r.t. the weights (w,b)
might help improve on our convergence result. In fact, this kernel plays a negligible role
in our analysis for the following reasons:

We consider a “Fizup” initialization where the outer weights w are initialized to 0 at
every layer. Initially proposed in [Zhang, 2018], this kind of initialization is shown to have
favorable properties when training ResNets without normalization layer. Observing that
K? is quadratic w.r.t. u, we have in this case that K* =0 and 0, K> =0 att = 0. Thus,
the kernel K2 can only significantly improve the convergence result for large times in the
gradient flow and cannot provide us with a good condition number at the beginning of the
flow.

In addition, following the lines of Proposition 4.2, one could show the kernel matriz K>
(defined analogously as the kernel matrices K and K') is locally Lipschitz w.r.t. u with a
Lipschitz constant scaling linearly with N, under additional mild hypotheses on the measure
. Moreover, Theorem 4.2 ensures that during gradient flow the weight distribution will
stay in a ball of radius R ~ \o/N around the weight distribution at initialization. Thus
Amin (K2[12]) will be at most of order \o, which is the same order as Amin (K [1]).

As a consequence of these two arguments, the local convergence result cannot be ex-
plained by the kernel K2.

I1.6 Ensuring convergence with lifting and scaling

The conditions derived in Sections I1.4 and I1.5 for convergence of the gradient flow notably
asks for the loss at initialization to be sufficiently low, a condition which is difficult to check
in practice. We conclude the present chapter by showing how this condition can always be
enforced, that is how, for a given training dataset, one can modify the ResNet architecture
in such a way that the convergence conditions are satisfied. The modification we propose is
inspired by the work of Chizat, Oyallon, and Bach [Chizat, 2019] and consists in embedding
the data in a higher dimensional space and performing a rescaling.

As before, we consider an empirical data distribution D = % Zﬁ\il 0 with data

(z%,y") € R% x RY. Consider also respectively the embedding and projection matrices:

i 0
T,y

A= (Idd,Od’d,)T c ]R(d+d/)><d7 B = (Od/7d7]:dd/) c Rd/X(d+d’) '

Using the matrix A we embed the input variables ¢ € R? in the space R4T% by defining
2' := Ax’. We then consider the NODE model of Definition 1.1 with either:

 the linear parameterization of the residuals described in Section I1.4, that is ) of the
form Eq. (I1.18),

e residuals that are SHL perceptrons as described in Section I1.5, that is ¢ of the
form Eq. (I1.35).

For an input 2! = Az’ and a parameterization u € PY®([0,1] x ©) we denote by 2!, the
associated flow defined by Eq. (I.6). Also, for a scaling factor o« > 0, we consider the
modified loss function /% defined by:

! ! ].
¥(z,y) € RTE xR, £%(2,y) = S llaBz — g
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Chapter II. Convergence in the training of residual architectures

We consider training the parameter p € PY*([0,1] x ©) by performing gradient flow for
the risk R® defined as:
1 X A .
R (1) = - (A (D). 0).

=1

Note that, by construction, £ satisfies the P-L inequality ||V .£%(z,y)|?> > 2a2((z,y).
Thus, analogously to Eq. (I1.15), we obtain the following P-¥ inequality for R®:

(6% 670
IVR? (1) > 2 N (/01 )\min(K[M(-|3),Z“(S)])dS> R*(p) , (I11.41)

where 2z, is the point cloud (Zi)lgz‘gN, the kernel matrix K is defined by Eq. (I1.13) and
C = C(&(p)) is a constant depending on p. Together with Theorem II1.7, the above
inequality implies that gradient flow converges towards a minimizer of the risk whenever
« is sufficiently big.

Proposition I1.6.1. Assume one of the following condition if satisfied:

e In the case of a linear parameterization of the residuals, assume that the associated
RKHS has a strictly positive kernel in the sense of Definition I1.3. Moreover consider
the initialization po = Leb([0,1]) x & € PY<P([0,1] x ©).

o In the case of SHL residuals, consider the initialization pg = Leb([0,1]) ® dp ® ud
for some p € Po(RHIHY) 5t Ng = A\uin(K [0, 2]) > 0, where K! is defined
in Eq. (I1.38).

Then there exists ag > 0 s.t. if @ > «g then the gradient flow initialized at pog converges
towards a global minimizer of R®.

Proof. Using Lemma I1.5.1 in the case of SHL residuals or Proposition 11.4.4 in the case
of RKHS residuals, we know a local P-t, inequality is satisfied around pg. Then note
that, as at initialization R® (o) = N~ 3N, ||y?||? is independent of o and as increasing
« increases the P-L in Eq. (I1.41), the convergence condition in Eq. (I1.10) is necessarily
satisfied for « sufficiently large. O

I1.7 Numerical results

We derived in this chapter theoretical results showing that deep ResNets or NODEs trained
with gradient descent are able to interpolate the training dataset. The goal of this sec-
tion is to verify those predictions numerically and to quantify how much our NODE
models with RKHS and SHL residuals are able to generalize on unseen data. This is
also useful to compare the performances of our models with those of standard ResNet
architectures (which for example integrate batch normalization). We implemented our
model in Pytorch [Paszke, 2017] and trained it on two image classification datasets,
MNIST [LeCun, 2010] and CIFAR10 [Krizhevsky, 2009]. Source code is available at
https://github.com/rbarboni/FlowResNets.

Classification task In the context of classification problem with K classes, the output
dimension of the model is &’ = K and targets y € RX are one-hot vectors encoding the
target classes. In both MNIST and CIFAR10, the number of classes is K = 10. We
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consider evaluating the model using the Cross Entropy loss ¢ defined in Eq. (28). For a
prediction z and a target one-hot vector label y € RX we have:

K 2
j=1Y;€~

{(z,y) = CrossEntropy(z,y) = —log | —x——— | -
j=1¢"

Note that £ does not satisfy Assumption II.1, however, it does satisfy locally a modification

of the Polyak-f.0ojasiewicz inequality. Indeed, assuming without loss of generality that

y = e, is the indicator of class 1, then V. £(z,y) = 1 — e~ “*¥) leading to

_ o\ ?
Vo) > (1 e C0)2 > (1,3) ).
0

when £(z,y) < {p.

Training As in Section I1.3, our training dataset are constituted of a finite (large) num-
ber N of data samples. Then for a predictor F : R — R® with parameters 6 € © the
empirical risk reads:

KOES-DICICORDE
=

We consider training NODE models with Stochastic Gradient Descent (SGD) for the min-
imization of this training risk. Note that while the convergence results in Sections 1.4
and I1.5 only apply for full batch gradient descent, several similar convergence results un-
der the P-L. assumption hold for stochastic optimization methods [Karimi, 2016]. Finally,
the performance of the models are assessed by the Top-1 error on a set of test data.

11.7.1 Experiments on MNIST

We implemented the NODE model in Definition 1.1 with RKHS and SHL residuals on
Pytorch using the torchdiffeq package [Chen, 2018] and performed experiments on the
MNIST dataset [LeCun, 2010].

Implementation We implement the NODE model in Definition 1.1 with residuals that
are 2-layer convolutional neural networks. This corresponds to a modification of the
residuals originally considered in [He, 2016a] where the final nonlinearity and batch nor-
malizations are removed.

Given a depth D > 1 the trained parameters consist of convolution matrices W, €
RE*Cintx3x3 and U, € REmt*Cx3x3 for d € {0, ..., D}, with C' the number of channels of
the input image and Cj,; some number of channels for the hidden layers. The residuals
are then defined at discrete time steps {d/D}o<q4<p by:

Fd/D(x) = Wd*ReLU(Ud*l’) s

where z € RE*™ X" js the input signal and « is the discrete convolution operator defined
in Eq. (32). When the inner convolutional filters Uj, are fixed, this corresponds to the
RKHS residuals considered in Section II1.4. On the opposite, when the U} are learned,
this is similar to the SHL residuals considered in Section I1.5. Then, for any s € [0, 1], the
residual at time s is defined by affine interpolation. For an input signal z € RE*nx",

Fy(@) = Fyp(@) + (¢D = d) (Flay1)/p(z) = Fyyp(2)) ,
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with k = [sD]. The forward pass through the network consists in integrating the ODE
in Eq. (I.5) with the residuals F' = (Fj)sc[,1] using the torchdiffeq.odeint method
from Chen et al. [Chen, 2018]. For an input signal 2 € RE*"*" the output of the NODE
is given by:

NODEw, v, = torchdiffeq.odeint(F,z, [0, 1]).

1<d<D

Hyperparameter tuning. Several hyperparameters can affect the training.

e The convolution matrices Uy: as detailed in Section II.4, the way the weights Uy
are sampled determines the RKHS of residuals and has thus a significant impact on
training. For the sake of simplicity we choose to sample the coefficients of U; as i.i.d.
Gaussians.

o The initialization of (W}): the weights of the convolution matrices W, are initialized
to 0. This is a standard choice when considering NODEs without normalization
layers [Zhang, 2018].

e The integration method: torchdiffeq.odeint allows the user to choose an integra-
tion method. We observed an explicit midpoint method to offer a good trade-off
between performance and numerical stability w.r.t. other fixed-steps methods such
as explicit Euler or RK}.

o The number of layers D: we tested our model for D € {5,10,20}. This parameter
controls the total number of parameters of the model.

e Pre- and postprocessing: We consider pre- and postprocessing the signal with small
neural networks A and B respectively. While MNIST is composed of gray-scale images
of size 28 x 28 with 1 channel, the purpose of this is to downsample the image while
adjusting the number of channels C > 1. As explained in Section I1.6, rising the
number of channels is expected to ease the training problem. To isolate the effect of
training the NODE, both A and B are fixed during training but we consider different
level of pretraining of the concatenation B o A, corresponding to the NODE when
initialiazed with W; = 0. In any case, we see that training the NODE improves on
the performance of the simple concatenation B o A.

Results. Fig. II.1 shows the evolution of the performances of the NODEs with both
RKHS and SHL residuals while trained on the MNIST dataset. One can observe in
both cases that the training risk converges to 0 at a linear rate, supporting the results
of Section I1.4 and Section I1.5. Decay of the risk is also directly related to the decay of the
classification error showing the NODE models exhibit generalization abilities. Without
pretraining of A and B (Fig. II.1a), the models start with random guesses (10% accuracy)
and achieve up to 98% accuracy on the test set for RKHS residuals and up-to 99.5%
accuracy for SHL residuals. When A and B are pretrained (Fig. I1.1b), the NODE still
improves on the starting accuracy: in this setting more than 99% accuracy is reached for
both RKHS and SHL residuals. While there is a difference between the performance of
NODEs with RKHS and SHL residuals one can thus observe here that it is not significant
when inner layers of the residuals are sampled appropriately. One can see the effect of
varying the depth D of the model and observe that deeper model seem to have poorer
performances. We explain this by the fact that deeper models are harder to train.
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Figure I1.1: Performances of NODE with 32 channels while trained on MNIST with SGD.
Left column reports evolution of the empirical risk and right column reports evolution
of classification error, both for ResNets with RKHS residuals (plain) and SHL residuals
(dashed). The z-axis is the number of pass through the dataset. Experiments are per-
formed with different levels of pretraining of A and B, corresponding to different starting
accuracy ((a)-(b)), and with different number of layers. Learning rate and batch size are
fixed, learning rate is divided by 10 after 35 iterations. Plots are average over 20 runs, lines
are means and, for RKHS residuals, colored areas are mean + one standard deviation.
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I1.7.2 Experiments on CIFAR10

Implementation. For experiments on the CIFAR10 dataset, we did not rely on numer-
ical integration of the NODE using torchdiffeq but instead use a ResNet architecture
inspired from ResNet18 [He, 2016a].

As before, residual blocks are simplified by removing the final non-linearity and the
batch-normalization. For an input image x € RE*™*" the output of a residual is:

Fd(:L‘) = Wd * ReLU(Ud * x),

where Uy € RCintxCx3x3 17, « REXCintx3X3 are convolution matrices, C' is the number of
channels of the input image and Cj,; is the number of channels of the hidden layer. Also,
while ResNet18 consists of 4 blocks each containing 2 residual layers, we keep 2 of our
residuals in the first, second and fourth block but stack an arbitrary number D of residual
layers in the third block. Thereby, we refer to this third block as the NODE block.

Initialization The weights of the convolutional filters W, are initialized at 0, corrre-
sponding to the initialization proposed in [Zhang, 2018]. Also, the weights of the convo-

lutional filters U, are initialized as i.i.d. Gaussians and rescaled by a C;Li/ ? factor.

Results. Fig. I1.2 reports the training of our ResNet model on the CIFAR10 dataset.
Fig. I1.2a reports evolution of the training risk and classification error when inner weights
Uy are fixed (RKHS residuals) and is to be compared with Fig. II.2b, showing the same
quantities when hidden weights are learned (SHL residuals). In particular, one can observe
that the training risk is reduced to nearly 0 at the end of training with SGD, as predicted
in Sections I1.4 and I1.5 for gradient descent. This reduction of the training risk goes with
an augmentation of the accuracy. Our experiments show that similar performances can
be achieved with RKHS or SHL residuals: both ResNets achieve up to 88% accuracy on
the test dataset. As a comparison, the ResNet18 original architecture can be trained to
achieve up to 94% accuracy in a similar setting.

Finally, Fig. I1.2 also compares the performances of the model depending on the number
of layers inside the NODE block. One observes significantly different behavior when there
is no NODE (1 layer) and one there is (10 and 20 layers): more layers are related to better
performances both on the train dataset and on the test dataset and both when hidden
layers are trained or not. However, one sees that the improvement related to adding
more layers is limited: performances with 10 and 20 layers are very similar and a NODE
block with 1 layer already achieves 82% accuracy with RKHS residuals and 84% accuracy
with SHL residuals. This hints towards the fact that our discrete ResNet model indeed
converges towards a NODE when the depth increases.
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Figure I1.2: Performances of ResNets while trained on CIFAR10 with SGD (256 images
per batch) and trained (a) or fixed (b) hidden layers. Left column reports evolution of
the empirical risk on the train set and right column reports the classification error on the
test set. The x-axis is the number of pass through the dataset. Learning rate and batch
size are fixed, learning rate is divided by 10 after 260 iterations. Plots are average over 20
runs, lines are means and colored areas are mean + one standard deviation.
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I1.8 Conclusion

Relying on the mathematical framework previously developed in Chapter I, we showed in
this chapter that convergence of mean-field models of ResNets can be proved by using a
Polyak-Lojasiewicz inequality. This inequality is satisfied locally around well-chosen ini-
tializations for which the residuals have sufficiently (but possibly finitely) many features,
ensuring their expressivity. As a consequence, assuming the risk is already sufficiently
small at those initializations, the gradient flow provably converges towards a global min-
imizer of the risk with a linear convergence rate. For practical examples of architectures
— such as random feature models [Rahimi, 2007] or SHL perceptrons — and parameter
initializations, we also quantified explicitly the convergence condition as a function of the
number of data points.

This is the first convergence result of this type for mean-field models of ResNets
with unregularized risk as previous works only showed results of optimality under the
assumption of convergence. Moreover, we showed through numerical experiments that
deep ResNets or NODEs trained with gradient descent are indeed amenable to zero train-
ing risk while still being able to generalize on test data.

We point out some limitations and possible extensions of these results:

e We make regularity assumptions on the basis function ¢ that might be improved on.
In particular, Assumption 1.3 assumes 1) to be at least continuously differentiable
which does not allow us to consider SHL residuals with ReLLU activations. This
assumption might be weakened, for example by using the recently introduced notion
of conservative gradient [Bolte, 2021].

e We only considered in our convergence analysis the case of an empirical data distribu-
tion D = % vazl O(ai 4iy- This assumption is crucial as the P-L constant in Eq. (I1.15)
scales as N~! and become degenerate for large N. It would therefore be interesting
to extend our analysis to the case of a data distribution with density.

e An important aspect of our convergence analysis is to only leverage information
about gradients w.r.t. the outer weights of the residuals (denoted by u) to obtain
the Polyak-t.ojasiewicz inequality. In doing so, we are unable to provide information
about the behavior of the feature distribution during training and unable to ensure
that gradient flow will escape the “kernel regime”.

Quantifying in what extent feature learning helps the training of neural networks is
indeed an active area of research. In this direction, we will perform in Chapter III
a detailed analysis of the evolution of the feature distribution during the training of
simpler shallow architectures.
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Feature learning in shallow architectures:
a study of two-timescale learning
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II1.1 Introduction

Machine learning methods based on artificial neural networks have recently experienced
a significant increase in popularity due to their efficiency in solving numerous supervised
or unsupervised learning tasks. This success owes to their capacity to perform feature
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Chapter III. Feature learning in shallow architectures

learning, that is to extract meaningful representations from the data during the training
process [Goodfellow, 2016, Chap. 15], standing in contrast with kernel methods for which
feature representations are designed by hand and fixed during training [Hofmann, 2008].
Indeed, we have observed in Sections 1.4 and I1.5 that the learning of appropriate feature
representations at each layer plays a fundamental role in the training of deep architectures.
Moreover, feature learning is also believed to play an important role in the generalization
performance of neural networks. For example, adaptivity to low-dimensional representa-
tions of the data can prevent the curse of dimensionality [Bach, 2017a; Ghorbani, 2020].

However, the process through which features are learned remains largely misunder-
stood. Indeed, adaptivity of the representations comes in neural networks at the price
of a nonlinear parameterization, making the training dynamic more difficult to analyze.
Specifically, for overparameterized neural network architectures where the dimension of the
parameter space greatly exceeds the number of training samples, recent works have put
forward the crucial role played by the choice of scaling w.r.t. the number of parameters in
the training dynamic [Chizat, 2019; Liu, 2020; Yang, 2021]. For single-hidden-layer neural
networks, the “kernel regime”, corresponding to a scaling of 1/ VM where M is the width,
has been identified as a scaling for which the model is well-approximated by its lineariza-
tion around initialization, therefore reducing to a kernel method [Jacot, 2018]. Relying
on the good conditioning of the “Neural Tangent Kernel (NTK)” (Eq. (38)), this regime
provides convergence of gradient descent towards a global minimizer of the risk at a linear
rate [Allen-Zhu, 2019; Du, 2019; Lee, 2019; Zou, 2020]. However, this regime has also
been shown to suffer from a “lazy training” behavior preventing significant modification of
the feature distribution and associated to poor generalization guarantees [Chizat, 2019].

In contrast, another line of work has been focused on the “mean-field” regime (Eq. (39))
corresponding to a scaling of 1/M for which the neural network is parameterized by a
probability distribution over the space of weights [Chizat, 2018; Mei, 2019; Rotskoff, 2019;
Sirignano, 2020]. While such a choice of scaling has been shown to enable nonlinear feature
learning behaviors [Yang, 2021], existing convergence results are primarily qualitative,
lacking explicit convergence rates. To bridge this gap, we are interested in this chapter
in the dynamic of the feature distribution in the training of mean-field models of shallow
neural network architectures. We study more particularly a wvariable projection or two-
timescale learning strategy which allows reducing the learning problem to the training of
the feature distribution.

II1.1.1 Mean-field neural networks and two-timescale learning

We consider in this chapter shallow neural networks with a parameter space that decom-
poses as © = R x Q where R is the space of linear parameters and €2 is the space of
nonlinear parameters of the model. In the following, we will assume €2 to be either the
n-dimensional torus T" = R™/Z", or a closed, bounded and convex domain of R". Follow-
ing Eq. (36), such shallow neural networks can be expressed as a sum of basis functions
of the form:

V(u,w) R X Q, Yz €RY, P((u,w),z) = ud(w, z),

where ¢ : Q x R — R, is some feature map. For an integer M > 1, the obtained single-
hidden-layer (SHL) neural network of width M with inner weights {w; J1<i<y € QM and
outer weights {u;}1<i<m € RM is the map:

1 M
. d
F{(wz,ul)} rx e R — i i:E 1 u,-d)(wi,x) eR, (IH.l)
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taking inputs in the input space R? and returning values in the output space R. Follow-
ing Eq. (39), using the interchangeability of the indices and the normalisation factor 1/M,
the above model can then be reparameterized in terms of the empirical distribution of the
inner weights {w;}1<i<ar. Given an arbitrary probability distribution p € P(2) on the
space of inner weights and a measurable map u € L!(z) we define:

Fuu:v€R /Qu(w)qzﬁ(w, z)du(w) € R. (I11.2)

In particular, for the empirical distribution 2 = 4 M 6., and outer weights @(w;) = u;
we recover the finite width SHL Fj 4 = Fy(y,u,)3- Such a “mean-field” model of neural
network has been proposed by several authors to study the training of neural networks at
arbitrary large width [Chizat, 2018; Mei, 2019; Rotskoff, 2019; Sirignano, 2020].

Supervised learning As in Chapters [ and II we consider a supervised learning frame-
work where training a neural network consists in minimizing a training risk associated to
the evaluation of the model on some training data. Precisely, we consider in this chapter a
univariate regression setting where the neural network weights are trained for minimizing
the mean square error with a target signal Y € L?(p) evaluated on training data with
distribution p € P(R?). However, in contrast with Chapters I and II we add here a
supplementary regularization term on the linear parameters of the model.

For a regularization strength A > 0 and p € P(Q), u € L'(1) we define the training
risk as:

1
R)\(N7 U) =3

5|1 Fu = Y[72 + MullZz g » (II1.3)

where we assume R (i1, u) = +oc if u ¢ L2(u). Training the neural network then amounts
to finding parameters (u,u) € arg min R

Example of applications Note that the mean-field neural network model of Eq. (I11.2)
can be seen as a linear model acting on (signed) measures. Indeed, for p € P(Q2) and
u € L'(p), we have F,,, = ® % (up) where for every finite Borel measure v € M () we
define:

Oy = /Q (w, )dv(w). (IT1.4)

This structural property is in strong contrast with the ODE based models considered
in Chapters I and II and will be crucial to our analysis in this chapter. Also, minimization
of functionals of the form in Eq. (II1.3) with linear models acting on the space of measures
have numerous applications depending on the choice of the feature map ¢.

o Two-layer perceptron: The perceptron model defined in Eq. (34) is arguably the
prototypical example of a neural network. It consists here in considering a parameter
space Q C R4 and a feature map ¢ : (w,z) — o(w'z) where # = (z,1) € R™! and
o : R — R is some nonlinear activation function such as the Rectified Linear Unit
(ReLU) or hyperbolic tangent. Owing to their great expressivity [Cybenko, 1989],
this class of models is ubiquitous in applications where an unknown signal is to be
recovered from data observations.

» Radial Basis Function (RBF) neural networks and signal deconvolution: RBF neu-
ral networks [Pereyra, 2006; Karamichailidou, 2024] is an example of a simple ar-
chitecture in which the feature map consists of a translation invariant kernel k i.e.
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Q cR?and ¢ : (w,x) — k(w—x). The network F),,, then implements a convolution
with the kernel k£ and minimization of the risk R* amounts to solve a form of decon-
volution problem. This has important applications in signal processing where one
wants to recover an unknown signal given noisy or filtered observations [De Castro,
2012; Duval, 2015].

Training with gradient descent and two-timescale learning In supervised learn-
ing, minimization of the training risk is usually performed using first order optimiza-
tion methods such as gradient descent or stochastic variants on the neural network’s
weights [Bottou, 2018].

We consider here the two-timescale version of gradient descent described in Eq. (47).
For a SHL of finite width M > 1 with weights {(w;, u;)}1<i<ar € (2 x R)M the associated
risk is R ({(ws, ui) }i<i<ar) = RMf1, @), where fi = LM 6, and d(w;) = u;. For an
initialization {(w?,u?)}1<i<nrr, a step-size 7 > 0 and a timescale parameter n > 0, the
two-timescale gradient descent dynamic reads:

W = WF — MV, RM{(WF, uf) h<icar)
Vk >0, Vie {1,.., M}, ) (I1L.5)
ui T = uf = MV, RAN{(Wf, ) h<icar) -

For the purpose of theoretical analysis we study here the limit of the gradient descent
algorithm when the step-size 7 tends to 0. For an initialization {(w;(0), u;(0))}1<i<ns, this
gradient flow dynamic reads:

. {ﬁtht) = MV, RM{(wilt), ui(t) }1<icn)
Vie{l,.., M}, R (I11.6)
Luit) = MV, RM{(wit), wi(t) hi<i<m) -

Note the role of the timescale parameter n > 0 controlling the ratio of learning timescales
between inner and outer weights. When 1 < 1 the outer-weights u; are learned more
“slowly” than the inner-weights w; and conversely, when n > 1 the outer-weights u; are
learned more “quickly” than the inner-weights w;. In particular, the limiting training
dynamics when n — +o0o correspond (formally) to the case where the outer weights are
learned “instantaneously”, that is, at each time ¢ > 0, we have

{ui(t) hi<i<m € ar%ﬂfg}n RM{(wilt), ui) h<i<nr) -

Such limiting dynamics correspond to the variable projection algorithm described in Eq. (48).

Variable Projection The Variable Projection (VarPro) algorithm performs elimination
of the linear variable u and enables here reducing the training of a neural network to the
sole problem of learning the feature distribution. Introduced in [Golub, 1973] for the
minimization of separable nonlinear least squares problems, such a strategy has proven
to be efficient in various applications [Golub, 2003; Osborne, 2007] including the training
of neural networks [Sjoberg, 1997; Pereyra, 2006; Newman, 2021; Karamichailidou, 2024].
A reason for this popularity is that partial optimization over one variable can lead to a
better conditioning of the Hessian [Sjoberg, 1997; Vialard, 2019].

Exploiting here the linearity w.r.t. the outer weights in the definition of F', it is con-
venient to read a neural network’s output F(, )} () = L > uip(w;, ) as a linear com-
bination of the features {¢(w;, z)}*,. From this point of view, neural networks should be
compared to kernel methods for which the features are built in advance and fixed during
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training, whereas only the weights of the linear combination are learned [Hofmann, 2008].
In contrast, both inner weights {w;}}4, and outer weights {u;}}, of a neural network
are usually trained. In the following, we refer to the parameters w € {2 as the neural
network’s features and to p € P(RQ) as the feature distribution. More generally in the
mean-field limit, for u € P(Q2) and u € L' (u), we have:

Fuu= /ch(w, Ju(w)dp(w) =@, - u, (IIL.7)

where we introduced the feature operator ®, : u € L' (n) — [ u(w)o(w,.)du(w) € L*(p).
One can thus notice that the problem of minimizing the risk R* belongs to the class
of separable nonlinear least squares problems as, by definition, for a fixed inner weights

distribution p € P(Q):
1
RN, u) = SLA Yl[72(, + AMull7z(, -

Thus the problem of minimizing R* w.r.t. u is a ridge regression problem which can be
efficiently numerically solved by inverting a linear system. For A > 0, there exists a unique
solution u*[u] € arg Min,er2(,) R, u) given by u?[u] := (@;@u + 2)\)*1CI>ZY. Plugging
this in R gives rise to a reduced risk which we define for any p € P(2) by:

) = (RN u]) = min =

2 2
= in o3P w = Vi) + llullzzg (LIL.8)

This definition also extends to the limiting case A — 0™ by considering:
0 — : 2
L(p) = o0, [JullZ2 - (IIL.9)

where the infimum is taken to be 4+-0o whenever the signal Y is not in the range of ®,. In
the case where Y € Range(®,), this minimization problem admits a unique solution and
L) = [Jul[1]]|2. (u) Where utly] = @L Y and @L is the generalized pseudo-inverse of @,
restricted to L?(u).

The VarPro algorithm consists here in performing gradient descent over the reduced
risk £*. For a neural network of finite width M > 1 with features {witi<i<m € QM the
associated reduced risk is £)({w; }1<i<nr) = LM(fi), where fi is the empirical distribution
[ = ﬁ Zf\il dw,. For an initialization {W?}lgigM e QM and a step-size 7 > 0, the VarPro
dynamic reads:

VE >0, Vie{l,..M}, it =uF-Mrv, L0} icicn).

As before, the gradient flow of EA} is the continuous counterpart of gradient descent when

the step-size 7 tends to 0. For an initialization {w;(0)}1<;<p € QM it is defined for every
time ¢ > 0 as the solution {w;(t)}1<i<am € QM to the ODE:

vie{1,.. M, %wi(t) = MV L (fus() hrciens) (IT1.10)

Note that the above gradient can be efficiently calculated numerically once optimization
on the outer weights u; has been performed, for example by means of standard automatic
differentiation libraries. Indeed, if {u;(t)}1<i<ar € argmingcpar RM{(wi(t), wi)}1<icnmr),
then by the envelope theorem V. R ({(w;(t), ui(t))}1<i<ar) = AV, LX{wi(t) }i<icnr)-
For the same reason, the above dynamic can be seen, at least formally, as the limit of
the gradient flow dynamic Eq. (IT1.6) over the (unreduced) risk R* when the timescale
parameter 1 tends to +oo. Thus, we equivalently refer to Eq. (II1.10) as the VarPro
gradient flow or as the two-timescale regime of gradient flow.
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Wasserstein gradient flows and ultra-fast diffusions Relying on the mathematical
framework provided by theory of gradient flows in the space of probability measures [Am-
brosio, 2008b; Santambrogio, 2017], we show in Section III.4 that the dynamic of the
feature distribution when trained with gradient flow for the minimization of the reduced
risk £ is solution to an advection PDE of the form:

O — div (VL me]) = 0,

for some nonlinear velocity field Vﬁ?[,ut]. We study in Section II11.5 the asymptotics of
this equation when the training time t tends to +oo and the regularization strength A
tends to 0. We are more particularly interested in the case where the signal Y itself can
be exactly represented by a neural network. We consider the following assumption:

Assumption ITI.1 (Teacher student setup).
Let ®x be defined by Eq. (111.4). We assume that,

(i) there exists a finite measure v € M(Q) s.t. Y = & x v,
(ii) the operator ®x : M(Q) — L*(p) is injective.

In this case, we refer to v € M() as the teacher measure and to i == |v|/||v||rv € P(Q)
as the teacher (feature) distribution.

In such a “teacher-student” framework, we are interested in determining to what extent
the teacher feature distribution can be learned by the student neural network. Observe
that, under Assumption II1.1, £° can be simply expressed in terms of the y?-divergence

_ 2
between the teacher feature distribution i and u. By definition x?(fi|p) = [q ‘3—5 - 1‘ du
and it follows from Eq. (II1.17) that:

do |? dp
0= [ 122 a0 ot [ | £ -1
() o ldp p=7lry ol dp

Then, following Eq. (50), the Wasserstein gradient flow of £° corresponds to a nonlinear
diffusion equation of the form:

2
dp + 1) = |7)3vOE (Rlw) + 1) .

O = div (gv <Z>m> : (ITL.11)

with m < 0 and 1 € P(Q), referred to as ultra-fast diffusion equation [lacobelli, 2019b].
Note that this class of nonlinear diffusion equations stands out from the class of linear
diffusion and porous medium equations (corresponding to the case m > 1 [Vazquez, 2006;
Vézquez, 2007]) by the fact that the exponent m is negative and the diffusivity p™~! is
singular at 0. In [Tacobelli, 2019a; Caglioti, 2018; Iacobelli, 2019b], the study of solutions
to Eq. (II1.11) is motivated by the convergence analysis of algorithms for the quantization
of measures. In particular, Tacobelli, Patacchini, and Santambrogio [lacobelli, 2019b]
show the well-posedness of Eq. (III.11) on the d-dimensional torus or on bounded convex
domains with Neumann boundary conditions and prove convergence of solutions towards
the stationary state fi in L?. We prove in Theorem II1.5 that Wasserstein gradient flows of
our reduced risk £} converge towards solutions of the ultra-fast diffusion equation when
the regularization strength A\ vanishes.

Remark III.1.1. Some remarks about Assumption I11.1:
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o At fired X\ > 0, the teacher-student assumption that Y = ®*v is not restrictive since
one can always replace Y by its orthogonal projection on the set {®*xv, v € M(Q)},
thereby only modifying L by subtracting a constant term. However, this assumption
becomes crucial in the limit A — 0% to ensure the feasibility of the optimization
problem in Eq. (111.14).

o The injectivity assumption on ®x ensures uniqueness of the reference measure v. In
the limit where A\ — 07, this allows rewriting £° only in terms of a divergence between
v and p (Eq. (111.17)). In the case A > 0, L* is an infimal convolution between this
divergence and a kernel discrepancy (Eq. (II1.18)) and the injectivity assumption
ensures this discrepancy is a distance on the space of measures (Lemma II1.A.1).
It will be useful in Section I11.5 to prove convergence of Wasserstein gradient flows
of L to solutions of the ultra-fast diffusion equation. In the case of a two-layer
perceptron, the feature map is of the form ¢((w,b), z) = o(w ' z+b) and the injectivity
assumption is satisfied as soon as o is not a polynomial and the data distribution
has full support on R ([Sun, 2019, Thm. III.4)).

I11.1.2 Contributions and related works

Contributions This chapter studies the convergence of the VarPro algorithm — or
two-timescale regime of gradient descent — for the training of mean-field models of neural
networks. Precisely, we study the dynamic of the feature distribution p € P(£2) when
trained with gradient flow for the minimization of the reduced risk £*, for A > 0. In
the teacher-student scenario defined by Assumption III.1, we establish guarantees for the
convergence of u towards the teacher feature distribution p:

e In the case A = 0, we show in Section II1.4 that the training dynamic corresponds
to an ultra-fast diffusion equation. Relying on the work of Iacobelli, Patacchini, and
Santambrogio [Iacobelli, 2019b], this allows stating convergence towards the teacher
feature distribution i (Theorem III.3), with a linear convergence rate.

o At fixed A > 0, we establish in Theorem II1.4 convergence of u towards the teacher
feature distribution g with an algebraic rate.

e In the limit A\ — 0", we show that, under regularity assumptions, the dynamic of
the feature distribution p converges locally uniformly in time to the solution of the
ultra-fast diffusion equation with weights iz (Theorem II1.5).

e Finally, we show in Section III.6 that numerical results on low-dimensional learning
problems with synthetic data are well-aligned with our theory. Overall, these exper-
iments indicate that, when the regularization is sufficiently low, the VarPro dynamic
indeed enters an “ultra-fast diffusion regime” where the student feature distribution
converges to the teacher’s at a linear rate. We also show with experiments on CI-
FARI10 that the VarPro algorithm can be adapted to the training of more complex
architectures such as ResNets and achieves generalization on supervised learning
problems with large datasets.

Convergence analysis for the training mean-field neural networks Several works
have studied the convergence of gradient based methods for the training of neural network
models similar to Eq. (II1.1) with the mean-field scaling 77. Chizat and Bach [Chizat,
2018] show that, for two layer neural networks with a homogeneous activation, if gradient
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flow on the weights distribution converges then it converges towards a global minimizer
of the risk. Rotskoff et al. [Rotskoff, 2019] show a similar result for a modification of the
gradient flow dynamic where a supplementary “birth-death” term is added.

Several works have also analyzed the convergence of noisy gradient descent, or Langevin
dynamic, for the training of mean-field models of two layer neural networks [Chizat, 2022;
Mei, 2019; Nitanda, 2022; Hu, 2021; Suzuki, 2023]. Thanks to the addition of an entropic
regularization term, these works provide a convergence rate for the sampling of an invariant
weight distribution.

Two-timescale learning While two-timescale learning strategies have a broad range
of applications in the fields of stochastic approximation and optimization [Borkar, 1997;
Borkar, 2008], there has been a recent interest in these methods for the training of neural
networks [Marion, 2023a; Berthier, 2024; Wang, 2024; Bietti, 2023; Takakura, 2024].
Specifically, Berthier, Montanari, and Zhou [Berthier, 2024] study the training of two-
layer neural networks and exhibit a separation of timescales and different learning phases
whose respective sizes depend on the timescale parameter 7. Marion and Berthier [Marion,
2023a] study two-timescale gradient descent for a simple model of 1-dimensional neural
network and show that the teacher network is recovered as soon as both the number of
neurons of the student and the timescale parameter are sufficiently large. Bietti, Bruna,
and Pillaud-Vivien [Bietti, 2023] consider a multi-index regression problem. Relying on
the assumption of high dimensional Gaussian data, they consider a linear layer composed
with a nonparameteric model whose projection can be computed in the Hermite basis.
They show this instance of the VarPro algorithm results in a saddle-to-saddle dynamic on
the linear layer and establish guarantees for the recovery of the teacher model.

Finally, Takakura and Suzuki [Takakura, 2024] and Wang, Mousavi-Hosseini, and
Chizat [Wang, 2024] study the training of mean-field models of neural networks in the
two-timescale limit with noisy gradient descent. In contrast with these works, we do not
consider here additional entropic or L?-regularization on the feature weights.

Wasserstein gradient flows of statistical distances Under our Assumption III.1,
Eq. (IT1.18) shows £* is an infimal convolution of statistical divergences between the fea-
ture distribution p and the teacher v, interpolating between the x2-divergence x?(|u) —
or more generally a f-divergence D ¢(7|u) — when A — 0" and a (squared) kernel discrep-
ancy MMD (7, 1)? when A — oo. In the case A — oo, gradient flows of MMD-discrepancies
and applications to sampling were studied in several works [Arbel, 2019; Sejdinovic, 2013;
Hertrich, 2023a; Hertrich, 2023b; Hertrich, 2024; Boufadéne, 2023]. Those flows are known
to get trapped in local minima but discrepancies associated to non-smooth kernels have
been observed to behave better in terms of convergence [Hertrich, 2023b; Hertrich, 2024].
In the case of the coulomb kernel, Boufadéne and Vialard [Boufadeéne, 2023] prove that the
discrepancy loss admits no spurious local minima and that the discrepancy flow converges
towards the target measure under regularity assumptions.

In the intermediate regime A € (0,00), several other works have also proposed regu-
larization of f-divergences based on the infimal convolution with a kernel distance. For
Glaser, Arbel, and Gretton [Glaser, 2021], the KL Approzimate Lower bound Estimator
(KALE) kernelizes the variational formulation of the KL-divergence and for Chen et al.
[Chen, 2024] the (De)-regularized Mazimum Mean Discrepancy (DrMMD) kernelizes the
x2-distance. More generally, the work of Neumayer, Stein, and Steidl [Neumayer, 2024]
studied kernelized variational formulations — or “Moreau envelopes in a RKHS” — of
f-divergences. Similar to our Lemma II1.3.3, they showed I'-convergence of these func-
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tionals towards the generating f-divergence when the regularization parameter A tends
to 0. They also studied numerically the convergence of the associated Wasserstein gra-
dient flow towards the target distribution. The most notable difference between these
regularized distances and the functional £* appearing in this chapter is that (w.r.t. [Neu-
mayer, 2024, eq. (14)]) the role of the target v and parameter u, over which optimization
is performed, are interchanged. In other words, we consider optimizing over a statistical
discrepancy which is the “reverse” of the one considered by Neumayer, Stein, and Steidl
[Neumayer, 2024] and for this reason, though the mathematical tools to analyze it might
be similar, the gradient flow dynamics will a priori have different behaviors.

Mathematical preliminaries and notations In the following, 2 will either be the
n-dimensional torus or a closed bounded convex domain of R", for some n > 1. We
denote by M () the set of finite Borel measures over €2 and by P(2) the subset of M ()
consisting of probability measures. We will denote by 7 € P(£2) the uniform distribution
over Q. For a measure v € M(Q), |v| is its total variation measure and ||v|Tv is the
total variation of v. For p € [1, +00), we denote by W, the Wasserstein-p distance defined
in Eq. (51). For probability measures u, /' € P(Q),

1/p
Wolpost) = _in ([ o wPdrws)
YET (1,1") \JQxQ

where T'(u, 1) C P(Q2 x Q) is the set of couplings between p and p’ defined in Eq. (52).
Standard references on the properties of the Wasserstein distance are the textbooks of Vil-
lani [Villani, 2009] and Santambrogio [Santambrogio, 2015]. If not otherwise specified,
M(Q) and P(Q2) are endowed with the topology of narrow convergence, that is the weak-*
topology of M(€2) in duality with continuous functions. Importantly, because Q2 is com-
pact, this topology on P() is equivalent to the W,-topology for any p € [1,+o00) and
P () is compact.

For an integer k > 0 and for s € (0, 1], we denote by C**(Q) (or just C**) the Hélder
space of k-times continuously differentiable real-valued functions over Q with s-Holder k-
derivative. We denote by |.|cr.. the Holder norm on C¥#(2). For a probability measure
p € P(R?) and p € [1,+00], we denote by LP(p,C**) the space of measurable functions
¢: QxR = Rst. ¢(.,x) € CH(Q) for dp-a.e. v € Q and

1/p
6l inpeny = ([ 1000 Eundole)) < oo,

We will often use that, if ¢ € L?(p,C¥*) and a € L2%(p), then the Bochner integral
Jra @(., 2)a(w)dp(x) is in C¥* with:

| [ ¢taata)dna) |

S gllzz e lellzzg) -

III.2 Reduced risk associated to the VarPro algorithm

We study in this chapter a VarPro algorithm or two-timescale regime of gradient descent
for the training of neural networks. This strategy amounts to performing gradient descent
on the reduced risk defined as the result of a partial minimization on a regularized version
of the risk.
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I11.2.1 Primal formulation of the reduced risk

Whereas regularizing the risk with the Euclidean square norm of the weights is a popular
practice, the variable projection procedure can be used with other kinds of regularization.
Generally, for a convex function f : R — R and a regularization strength A > 0 we consider
for € P(Q) and u € L' (u):

1 1
R} 0) = 5 1 = a2 [ Slddpe = 5 18w = YEagy + A [ S,
(I11.12)

where we assume R?(u, u) = 400 if f(u) is not integrable w.r.t. u. As before we consider

the reduced risk obtained by minimizing R? w.r.t. the outer weights u. For every u € P()
we define:

1
YR AP ey _
Ly(p) = uengllx(l#) )\Rf(u,u)—uenLnl )2>\ | Py - u— Y||L2(p +/ flu)du, (III1.13)

and this definition extends to the limiting case A — 0™ by considering:

0
= I11.14
£5(0) = i [ S0 1
In the following, we always assume that ¢ € L%(p,C%(Q)) (Assumption I11.3). This
in particular implies that, for any u € P(Q), the map @, : L'(u) — L?*(p) is weakly
continuous. We also consider the following assumption on the regularization function:

Assumption II1.2. The function f : R — R U 400 is nonnegative, strictly convex and
superlinear i.e. such that limy % = +4o00.

By Lemma II1.2.1, this is sufficient to ensure the existence of a unique minimizer

u}{u] € argmin R (s, ).

when A > 0, and
u?c € argmm/ flw)dp,
®u=Y
when A = 0. Of particular interest in this chapter and more precisely in Section I11.4 is
the case where f(t) = |t|"/(r—1) for some r > 1. In this case we denote the corresponding
reduced risk by Ei‘. In particular, for » = 2 we recover the “L?-regularized” reduced risk
defined in Eq. (II1.8) and Eq. (IIL.9).

Lemma II1.2.1. Assume Assumption II1.2 holds. Then, for every u € P(), the func-
tional

Tp:u€ L'(p) — /Qf(u)du

is strictly convex, weakly lower semicontinuous and has weakly compact sublevel sets. In
particular, Eq. (I11.13) (and Eq. (I11.14) if feasible) admits a unique minimizer u}[u]

Proof. Clearly Iy is strictly convex. Weak lower semicontinuity is a classical consequence
of the fact that Z; is convex and strongly lower semicontinuous (using Fatou’s lemma),
hence its epigraph is convex and strongly closed and hence also weakly closed. For weak
compacity of sublevel sets, if (u,)n>0 is a sequence s.t. [, f(uy)dpu < C for every n > 0,
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then using that f has super-linear growth, for every € > 0 there exists a T > 0 s.t.
|t| < ef(t) for every |t| > T and for every n > 0:

/ o |un|dp < 6/f(un)d,u <eC.

Thus the sequence (uy)n>0 is uniformly integrable and admits a weakly converging sub-
sequence by Dunford-Pettis theorem. O

I11.2.2 Partial minimization on the space of measures

The reduced risk can also be obtained as the result of partial minimization of a convex
functional over the space of measures. Whereas we have previously separated the role of
the outer weights u and of the feature distribution p in Eq. (II1.2), our neural network
model can equivalently be seen as a linear operator acting on the space M(Q) of finite
measures on {2.

For p € P(Q) and u € L'(u), we have by definition of ®x in Eq. (IIL.4) and of ®,
in Eq. (II1.7) that ¢, - u = ® x v where v € M(2) is s.t. dv = udp. Also

[ / F(§)an =Dy ().

where, for f satisfying Assumption IIL1.2, Dy is the divergence defined by:

if v < p,

II1.15
otherwise. ( )

V(v,p) € M(Q) x P(Q), Dy(v|p) = { Jo £ () du
—|—oo
In particular, in the case where f is an entropy function and v € P() is a probability
measure, D ¢(v|u) is the standard Csiszar f-divergence [Liero, 2018]. Performing a change
of variable, one can thus define the functional [,} as the value resulting from a minimization
problem over the space of measures. For p € P(2), minimizing over v € M(2) instead of
u € LY(u), we get:

in L|®xv—Y|2+D if A\ >0

. yerili?m”” *v=Y|*+Dy(v|p) if A>0,

Li(p) = D) N (I11.16)
yeri\l/ll?)bquu Y Fip oA=Uu

As presented in Assumption III.1, of particular interest is the case where the signal
Y itself can be exactly represented by a neural network, that is Y = & x v, for some
v € M(). Then in the case A = 0, using the injectivity of ®*, v is the only feasible
solution in Eq. (II1.16) and we obtain:

/ = dﬂ Dy (v|u). (IIL.17)

In the case A > 0, £? can be interpreted as the infimal convolution between a Maximum
Mean Discrepancy (MMD) and the divergence D . Indeed, naturally associated to the data
distribution p € P(R?) and to the feature map ¢ is a structure of Reproducing Kernel
Hilbert Space (RKHS) of functions on Q. We refer to Section III.A for results on the
theory of RKHSs we use in this chapter. The RKHS H is defined in Eq. (II11.47), and
corresponds to the kernel x : 2 x 2 — R defined by:

Vw,w' € Q,  K(w,w) = /qbwm (W', z)dp(z) .
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It then follows from the definition of k¥ and H that, under Assumption III.1, the data
attachment term in Eq. (II1.16) can be interpreted as a kernel distance between v and v.
By Eq. (II1.49) we have ||® x (v — /)| 12(,) = MMDy(v, 7) where MMD,; is the Mazimum
Mean Discrepancy (MMD) with kernel x [Muandet, 2017; Gretton, 2012]. For A > 0, the
functional L? can then be expressed for every pu € P(Q) as:

1
A _ . L 2 —
Ly(p) = VEII/&I(]Q) 2)\MMDM(V, V) +Dys(v|p). (III.18)

This last formulation of the functional E? resembles the notion of Moreau envelope in a
RKHS of the divergence Dy introduced by Neumayer, Stein, and Steidl [Neumayer, 2024].
This notion encompasses the particular cases of De-regularized MMD studied in [Chen,
2024] and KL Approzimate Lower bound Estimator studied in [Glaser, 2021]. Nonetheless,
w.r.t. [Neumayer, 2024, eq. (14)], the role of the target measure v and of the optimized
measure u are here interchanged, which is expected to play an important role in the
gradient flow dynamic.

I11.2.3 Dual formulation of the reduced risk

In Egs. (II1.13) and (II1.14), the objectives E? and L'(} are expressed as the value of a
minimization problem over the outer weights u. Taking the dual of those minimization
problems, /J? and .C?c can be expressed as the value of a maximization problem over the
dual variable @ € L?(p). In contrast with the primal formulation Eq. (II1.13), the dual
formulation of Proposition I11.2.1 has the advantage of conveniently expressing E} for both
A >0 and A = 0 as the value of an optimization problem over the space L?(p) which is
independent of pu.

Proposition ITI.2.1 (Dual representation). Let Assumption II1.2 hold and consider u €
P(2). Then we have for X > 0:

A
A % 2
Ef(u) = QIEHaQ}E(p) / (@' a)dp + (a, Y>L2(p) 5 l|le]] L2(p) » (III.19)

where f* is the Legendre transform of f and ®" : L*(p) — C%(Q) is defined by:
Va € L3 (p), ®'a = /d (., x)a(x)dp(z) .
R

The supremum in Fq. (111.19) is attained at some oz?[u] € L%(p) and for u?[,u] € L'(u)
the optimizer in Fq. (I11.13) it holds:

Aajlu] = @ - uf{u] =Y and  f(uplp]) + (@} {p]) = wf{u) (@ au]) . (111.20)
Moreover, Eq. (I11.19) also holds in the case A = 0 under Assumption III.1.

When A > 0, this result yields a convenient reformulation of the functional E}. For
n € P(§), a}[,u] € L*(p) being the maximizer in Eq. (I11.19) and u}[,u] € L'(un) the
minimizer in Eq. (II1.13), we have:

L}(p) = g ot

ZL%) + /Q f(ujlu))dpe. (I11.21)
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Proof. Consider 1 € P(Q2) and A > 0. First, by definition of ®' we have for every
a € L%(p) and every u € L'(u) that [o(® T a)udp = (o, @, - u>L2(p) ie. ®' is the adjoint
of @, : L'(u) — L*(p). Also, it follows from the assumption on f that the map Z; : u €
LY(u) — [q f(u)du is a convex, weakly lower semicontinuous functional whose Legendre
transform is given for h € L>(u) by:

If = sup /hud,u /f )dp = /f )du,
ueLl(p

with f* the Legendre transform of f and where the supremum is attained for u € L'(p)
satisfying the duality relation f(u)+ f*(h) = uh [Rockafellar, 1968, Thm. 2]. Similarly,
for u € L' (1) we have:

A 1
- b, - u—-Y N —— 2 = ||®, - u—-Y 2 '
a:}gzp) (Oéa T >L2(p) 2||a||L2(p) 3\ I U ”L2(p)
where the supremum is reached at @ = A(®,-u—Y) when A > 0. Moreover, the

functional a +— %Ha\\%g(p) being continuous, we can apply [Rockafellar, 1967, Thm. 3]
and Eq. (II1.19) holds by strong duality. The optimums are attained in both Eq. (II1.13)
and Eq. (II1.19) and thus Eq. (II1.20) expresses the optimality conditions.

Finally, for the case A = 0, when Assumption III.1 holds we have by Eq. (II1.16) that
£9‘(M) = Dy(v|p). Also, the assumptions on f ensures dom(f*) = R and using [Rockafel-
lar, 1971, Thm. 4] we obtain:

Eﬂ)MWLSw/M%/f

heCo(Q

The result follows as the injectivity of ®x ensures Range(® ") is dense in C°(2) (Lemma IT1.A.1).
t

Observing that ® " defines a partial isometry from L?(p) to the RKHS H (Eq. (I11.47)),
a similar dual formulation of E? also holds in duality with H.

Proposition II1.2.2. Let Assumption II1.2 and Assumption II1.1 hold and consider p €
P(2). Then we have for X > 0:

£3() = sup — /f d,u+/hdu——||h||ﬂ, (IT1.22)
heH

where f* is the Legendre transform of f. For X > 0, the supremum in Eq. (I11.22) is

attained at some h}[u] € H and for 1/]/} (1] € LY(p) the optimizer in Eq. (I11.18) it holds:

dvplul dv}(u]
) gl = e ==

A} ] = @T® % (v}u] — ) and  f( (I11.23)

Proof. The formula Eq. (IT1.22) is directly deduced from Eq. (IT11.19) and the character-
ization of the RKHS #H in Eq. (IIL.47). Also Eq. (II1.23) is a rewritting of Eq. (II1.20)
since l/f[ | € M(2) and h}[u] € H are related to u?[u] € L'(u) and a?[,u] € L*(p) by

dvjlp) = ujlpldp and  h}u) = @Taj(u].
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I11.2.4 Kernel learning in the case of quadratic regularization

The case of a quadratic regularization is of particular interest since the partial optimization
problem over v admits a closed-form solution which can be efficiently obtained numerically
by solving a linear system. In this case, the task of minimizing the reduced risk is equivalent
to solving a Multiple Kernel Learning problem [Bach, 2004].

For the L2-regularization f(t) = [t|?, the reduced risk £3[u] is the value of the ridge
regression problem in Eq. (II1.8) and for A > 0, the optimizer is given by

Bl = (@0, +20) 9]y,

where @; : L?(p) — L*(u) is the adjoint of the operator ®, restricted to L?(u). Also, the
dual problem in Eq. (II1.19) here reads:

1
£ = —= K 2A Y
2(k) N (o, (B +2X0)a) 12, + (@ Y) o)
where K, : L?(p) — L*(p) is the self-adjoint operator defined by K, = <I>u<I>Z. The

supremum is attained at aj[u] = (K, + 2A)~'Y and by Eq. (II1.21) we obtain for every
p e P(Q):

£3(p) = 5 (Y, (K +20)7'Y) (I11.24)

N =

L*(p)
This is the optimal value of the kernel ridge regression problem with kernel K, where K,
is parameterized by the feature distribution pu. Moreover this parameterization is linear

w.r.t. u € P(Q) since, considering for w € € the rank the rank-one self-adjoint operator
k(w) == ¢(w,.) ® ¢(w,.), we have:

KM:/Qk:(w)du(w).

Therefore, minimizing the reduced risk Eé\ over the feature distribution g amounts to
finding the best kernel for solving the ridge regression problem in Eq. (IT1.8) among convex
combinations of “simple” basis kernels (k(w))weq i-e. a Multiple Kernel Learning task.
Other convex optimization strategies for solving such task have been studied in [Lanckriet,
2004; Bach, 2004].

I11.3 Properties of minimizers of the reduced risk

Before turning to the analysis of gradient methods for the minimization of the reduced
risk E} in Sections I11.4 and II1.5, we study here variational properties of E}.

II1.3.1 Existence and uniqueness of minimizers

We first investigate existence and uniqueness of minimizers of E}. Importantly, we use
here that E} is obtained as the result of a partial minimization. Namely, for A > 0 and
w € P(£2), we have from Eq. (II1.16) that L'}(,u) = min,er(Q) SJ%‘(V, ), where 8} is defined
for v € M(Q) and p € P(Q) by:

Di(v|p) + 55| xv —Y|2 if X >0,

E(vop) = (I11.25)
Df(V‘,u,) + L=y if A=0.
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In particular, it follows from variational formulations of f-divergences that D is (jointly)
convex and lower semicontinuous w.r.t. its arguments (v, u) € M(Q) x P(Q) [Rockafellar,
1971, Thm. 4]. The following Lemma II1.3.1 uses this fact to establish convexity and
lower semicontinuity of £}, implying the existence of minimizers. We then discuss cases

in which E} has in fact a unique minimizer.

Lemma II1.3.1. Assume [ satisfies Assumption II1.2. Then, for A >0, ﬁ? :P(2) =R
is a convezx, lower semicontinuous function (w.r.t. the narrow convergence on M(2)).

Proof. By the definition of the divergence Dy in Eq. (IIL.15) and by [Rockafellar, 1971,
Thm. 4], we have for every (v, pn) € M(2) x P(Q):

Ds(v|n) = sup /hdu—/f
heCo(Q)

Thus Dy is a (jointly) convex and lower semicontinuous function as a supremum of (jointly)
convex and lower semicontinuous functions. As a consequence, for A > 0, 5}\ is also
(jointly) convex and lower semicontinuous. The convexity of E} = min, 5}‘(1/, .) follows as
partial minimization preserves convexity. Also, if (f,)n>0 is a sequence in P(£2) converging
narrowly to some p € P(£2), then we have E?(un) = Ef(un,,un) for some v, € M(Q).
Without loss of generality one can assume E?(un) is bounded, thus D¢ (v, |uyn) and then
lvn|lTv are bounded as f is superlinear. Then, up to extraction of a subsequence, (v,)
converges narrowly to v € M(2) and we get by lower semicontinuity of 5}‘:

hmlnfﬁf(,un) = hmmfé’f(yn,un) > Sf (v, ) > Cf( ),

n—oo

which shows that E} is lower semicontinuous. O

The above result implies the existence of minimizers of the reduced risk E? for every

A\ > 0 but it does not establish uniqueness and £} ¥ may, a priori, have several minimizers.
However, there are cases in which uniqueness can be ensured. We give two examples:

o In the teacher-student setup where Assumption II1.1 holds, if ¥ is a positive measure
with m = () > 0 and if f is nonnegative, strictly convex and s.t. f(m) = 0 then the
teacher feature distribution i = v/m is the unique minimizer of E?, whatever A > 0.
Indeed, from Eq. (II1.18) we have that E}(ﬂ) = 0 and E?(u) > 0 for every p # [i.
With these assumptions, we prove in Theorem II1.4 that the gradient flow of L?
converges towards the teacher feature distribution 1 with an algebraic convergence
rate.

e For general data Y, relying on a variational characterization of the total variation,
the following Lemma II1.3.2 establishes uniqueness of a minimizer to £} in the case
the regularization is of the form f(t) = [t|" for some r > 1.

Lemma II1.3.2. Let A\ > 0 and assume f(t) = |t|” for some r > 1. Then L} admits a
unique minimizer i} € P(Q).

Proof. We use arguments similar to the one of [Wang, 2024, Prop. 3.3]. By duality
inf,ep ) LMNu) = inf,e v G)(v) where G is defined for v € M(Q) by

)= IRy T g3ll@xr =Y if A >0,
[V ry + tow=y if A\ =0,
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where we used the variational representation ||V, = inf,cp(q) Jo ’g—Z‘r dp (the case r = 2
is used in [Wang, 2024; Lanckriet, 2004]). Indeed, for measures v € M(Q2) and p € P(Q)

s.t. v < p we have:
r dﬂ 1—r
= [ ()
Ll = (qpy)  am

1—
The Lagrangian of the convex problem inf,, [, (%) ' d|v| is given by:

J(/m)=/Q((ﬁg)l_rdlvwrv(/ﬂdu%) :

The optimality condition gives that % is constant and the minimum is attained for

dv
dp

d—z Td,u = |lv||py. Finally, the map v — |||y is strictly

p o= |v|/llvlrv, giving [ (g
convex so that G} admits a unique minimizer ) € M(f), thus £} has also a unique
minimizer i} € P(Q) and we have the duality relation i = |}|/||7}||Tv. Notably, in
the case where Assumption III.1 holds and A = 0, we have #¥ = v and i = i for every
r> 1. ]

II1.3.2 Convergence of minimizers

Of particular interest to us is the case A = 0 for which minimizers of £(} are related to the
teacher measure v by Eq. (ITI1.17). However, in practice, minimization of E? is easier in
the presence of a regularization parameter A > 0. For this reason, we are interested in the
asymptotic behavior of minimizers of E? when A — 0T,

We show here, when A — 0, that any converging sequence of minimizers to E} con-
verges to some minimizer of ESZ. In particular, if L’[} has a unique minimizer i then any
sequence of minimizers to E? converges to ji°. This result is a consequence of the follow-
ing Lemma II1.3.3 which states the I'-convergence of the functionals C} to ES)C. We refer
to [Santambrogio, 2023, Chap. 7] for an introduction to I'-convergence. This is in par-
ticular stronger than pointwise convergence and is the appropriate notion of convergence
for studying the behavior of minimizers. In the case where Assumption III.1 holds and
E} admits the representation Eq. (II1.18), a similar result was established by Neumayer,
Stein, and Steidl [Neumayer, 2024], with a notable difference being here that we prove
I'-convergence w.r.t. the variable u instead of v.

Lemma I11.3.3 (I'-convergence). Assume Assumptions II1.1 and II1.2 hold, ¢ € L*(p,C%')
and f* € Co’l(]R). Then the family of functionals (E}),\>0 I'-converges towards E? as

loc
A — 07 in the sense that for every sequence (Ap)n>0 converging to 07 and every p € P(Q)

it holds:

(i) for every sequence (pn)n>0 converging narrowly to p,

lim inf £3" () > L)y,

n——+00
(ii) there exists a sequence (fin)n>0 converging narrowly to j s.t.

lim sup £ (1) < L3(1)

n—-+o0o
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III.4. Training with gradient flow

Proof. For the second part of the result it suffices to consider the constant sequence
tn = p for every n > 0. Indeed, it then directly follows from the definition of E} and

£Y in Eq. (IIL13) and Eq. (II1.14) that £}(u) < £9(p) for every A > 0.

To prove the first part of the definition, consider a sequence (jiy)n>0 converging nar-
rowly to p in P(€2). By the dual formulation of L(} in Eq. (III.19), we can also consider a
sequence (ay)r>o in L?(p) such that:

* k‘ oo
— [P @ andut (an,Y) 2 L5,
Then, by the dual formulation of L'? in Eq. (II1.19), for every n,k > 0:
A *(FH T )\n 2
() 2 = [ F@T ) + (ax.Y) = Sz,
* An *
== [ @ adiu — ) = Flonlits, — [ £1@a)dn+ (or.Y)

> |1 @ )

An .
o Walitns 1) = Sl = [ (@7 s+ (s, Y)

But then, since Wi (n, u) — 0 and A, — 0, one can find an increasing sequence (ky)n>0
s.t.:

n—-+o0o

Mallon, 32y =250 and || F(@Ta, )| o, Wik, #) ==+ 0.

co.1

Thus E?" (pin) > E?(u) + o(1) for every n > 0 and the result follows. O

It is a direct consequence of the above I'-convergence result that the limit when A — 0%
of a sequence of minimizers of E? is a minimizer of E(} [Santambrogio, 2023, Prop. 7.5]. In
the case where L? has a unique minimizer ﬂ(}, this implies every sequence of minimizers

of E} converges to ﬁs)c when A\ — 0T,

Proposition II1.3.1 (Convergence of minimizers). Assume the result of Lemma II1.3.3

. 3 P _\ A—0T
holds.  For every A > 0, consider py € argminL} and assume py —— p. Then

+
W € arg min E(}. Notably, if ,C(} has a unique minimizer ﬁ(}, then [L? A207, ﬁ(}.

III.4 Training with gradient flow

In the rest of this chapter we consider the optimization over the feature distribution
p € P(R) for the minimization of the reduced risk E?, for A > 0. Specifically, we consider
a gradient flow algorithm. In the case of a finite number of features {w; }1<i<nr € QM such
gradient flow is defined as the solution of the equation:

Vie{l,.., M}, gwi(t) = —MV,L3({wi(t) h<icm) (I11.26)

dt

where ﬁ?({wi}lgigM) = E}(ﬂ) and /1 is the empirical distribution i = & >, 4,,,. More
generally, in terms of the feature distribution p € P(2), the above equation corresponds
to a Wasserstein gradient flow over the functional £}, namely:

§L%
Oppy — div (utvélj[uto =0, on (0,00) xQ, (I1.27)
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A
where for p € P(Q), (ZL—J[H] is the Fréchet differential of L’} at u [Santambrogio, 2015,
Def. 7.12]. Importantly, Jordan, Kinderlehrer, and Otto [Jordan, 1998] have shown that
Wasserstein gradient flows can be obtained as limits of proximal update schemes when the
discretization step tends to 0. Here, the curve (ut)¢>0 is the limit of the piecewise-constant
curve with values (uj,)r>0 where, given a time-step 7 > 0 and an initialization pf € P(€2),
the sequence (i, )r>0 is defined recursively by:

1
Vk >0, pj.q €argmin E?(,u) + —Wa(u, u})? . (I11.28)

©eEP(Q) 27
We study in this section the well-posedness of the above Wasserstein gradient flow equation
by distinguishing the case where A > 0 and the case A = 0. In the latter case, we show the

Wasserstein gradient flow corresponds to a weighted ultra-fast diffusion equation [lacobelli,
2019b).

I11.4.1 Wasserstein gradient flows in the case A\ > 0

In the case where A > 0, the presence of the regularization induces sufficient regularity on
the objective to study the training dynamic through the lens of classical results from the
theory of gradient flows in the Wasserstein space [Ambrosio, 2008b; Santambrogio, 2017].
In particular, one can derive the gradient flow equation leveraging the dual representation
of E}. Indeed, Eq. (II1.19) expresses E? as a maximum over linear functionals, and thus
by the envelope theorem one can formally differentiate E? w.r.t. u and obtain the Fréchet
differential:

A

it}

op

with a?[,u] € L?(p) the maximizer in Eq. (II1.19). We show that the gradient field of this

potential indeed defines a notion of “gradient” for the functional E}\ w.r.t. the Wasserstein
topology on P().

Locally absolutely continuous curves (ii)yc[o,1) in the space P((2), equipped with the
Wasserstein distance W, are characterised as solutions to a continuity equation:

[l(w) = —f*(@T aju])(w),

Opry + div(pgvy) =0 on (0,400) X Q (I11.29)

for some velocity field v such that [|v¢|l12(,,) € Li,.((0,+00)) [Santambrogio, 2015, Thm.
5.14]. This equation has to be understood in the sense of distributions, that is in duality
with the set C2°((0, +00) x Q) of smooth compactly supported test functions, i.e.:

1
/ / (B + (Veo,0)) dpgdt = 0, Ve € C((0, +00) x Q). (IT1.30)
0 JQ

The following result shows that the functional E}(ut) is differentiable along those curves

oL
and expresses its derivative in terms of the gradient field VTJ'

Lemma ITI.4.1 (Wasserstein chain rule for E}) Assume ¢ € L*(p,Cl), f satisfies As-
sumption I11.2 with f* € CL.(R) and consider A > 0. Let (ji)e(0,+00) be @ locally abso-
lutely continuous curve in P()) solution of the continuity equation Eq. (I11.30) for some
velocity field v such that ||vi][2(,,) € L} ((0,40)). Then (E}(Ht))te(o,-s-oo) is locally ab-
solutely continuous and for a.e. t',t € (0,400):

t/
A A A
L) = L3 = [ (TLudven) , ds,
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where for u € Pa(2) the velocity field VE}[,LL] € L%(p) is defined by:
YweQ, VL) ==V (@ o)) (@),

with a}[,u] the mazximizer in Eq. (I11.19).

Proof. Consider the dual formulation of [I}\ in Eq. (II1.19). For every p € P(£2) we have:

A
L) = sup Vi) — Sl + (),
a€L?(p)

where for a € L?(p) we defined:
Val) == [ (@7 a)@)du(w).

In particular, at fixed a € L?(p), it follows from the assumptions on ¢ and f* that
the potential f*(®'a) is in C1(Q) with [|f*(® T a)|ler < C(llel[2(p)) for some continuous
function C. Thus, by properties of the continuity equation, V, (1) is absolutely continuous
and its derivative is given for a.e. t € (0,400) by:

%Va(ﬂt> = —/Q<Vf*(<I>Ta),vt> dpe -

Moreover, for p € P(Q), using Eq. (IT1.21) and the fact that /L} < %HYH%Q(M + f(0) (by
taking u = 0 in Eq. (III.13)) we have at the optimum in Eq. (II1.19) that

1/2

o}z < A7 (V12 + A£0)) 7 = Ra.

Thus, E} is equivalently defined by restricting the supremum to o € L?(p) such that

lallz2(p) < Ra. For such o we have ‘%Va(ut)’ < (' for some constant C' = C'(f*,\)

independent of a. Thus we can apply the envelope theorem in [Milgrom, 2002, Thm. 2],
which shows the desired result. O

The preceding result has defined a notion of gradient field for the functional [,?. One

can thus define gradient flows of E} for the Ws metric as the curves solution to the
continuity equation:

Oppe — div(ue VLY pe]) = 0 on (0, 00) x Q. (I11.31)
We make the following definition:

Definition ITI.1 (Gradient flow of L’,}) Let pog € P2(2). We say (ut)e>o0 is a gradient

flow for E? starting at po if it is a locally absolutely continuous curve on (0,+00) s.t.
lim;_ o+ e = po and if it satisfies the continuity equation Eq. (II1.31) in the sense of
distribution, i.e.:

/ / (8t<p —Vep- VE}[/%]) dpdt =0, Ve € C°((0,+00) x Q). (II1.32)
0o Ja
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Remark III.4.1 (Boundary conditions). Note that, in the case where ) is a closed,
bounded, smooth and convex domain, our definition Eq. (I11.30) of solutions to the con-
tinuity equation enforces no-flux conditions on the boundary 0S). Indeed we consider test
function ¢ € C°((0,1) x Q) that can be supported on the whole domain 2 (which is always
assumed closed). Thus, Eq. (I11.30) enforces (uive, ) = 0 in the sense of distribution,
where 1 is the outer normal vector to the boundary OS2.

In case of the gradient flow equation Eq. (111.32), this boundary condition is for example
satisfied if one assumes (V,¢(w,x),R) = 0 for every x € R? and every w € 0. Another
way of ensuring the no-flux condition is to remove the outer part of the gradient field Vﬁ}
on the boundary 0, which can be performed by clipping the features.

Well-posedness of the gradient flow equation To show the well-posedness of gra-
dient flows, we rely on convexity properties of the functional [,}. Indeed, by the dual
formulation in Eq. (IT1.19), we can express £} as a supremum over semiconvex function-
als. As a consequence, the Lemma 111.4.2 below shows that, for A > 0, E? is semiconvex
along (generalized) geodesics of the Wasserstein space (see [Ambrosio, 2008b, Def. 9.2.4]
for the definition of generalized geodesics). However, note that such an argument can not
be extended to the case A = 0 since the semiconvexity constant blows-up when A — 0T,
For example, in the case f(t) = |t|? this constant scales as A~2.

Lemma II1.4.2 (Geodesic semiconvexity). Assume ¢ € L?(p,C%Y), f satisfies Assump-
tion II1.2 with f* € C2H(R) and let A > 0. Then ,C} is C-semiconvez along (generalized)

loc
geodesics for some constant C' = C(f*, \).

Proof. Consider the dual formulation of £? in Eq. (II1.19). For every p € P(£2) we have:

£ = suwp = [ F(@T@)@0auw) ~ Flall + (0 )

Then, at fixed a € L?(p), it follows from the assumptions on ¢ that ® "o € C1(Q) with

T
19" allgrr < llallzag) [0l L2(ocrr) -

Then, from the assumptions on f*, the composition f*(®"a) is also in C11(Q) and by
[Ambrosio, 2008b, Prop.9.3.2] the functional p — [o f*(® ' a)du is C-semiconvex along
generalized geodesics for some constant C' = C(f*, || p2(p) [|#]|L2(pc11)). Moreover, simi-
larly as in the proof of Lemma I11.4.1, one can restrict the definition of [,} to the supremum

over v € L*(p) with [|alr2(,) < Ra. The result then follows by taking a supremum over
(uniformly) semiconvex functionals. O

The semiconvexity of E} along generalized geodesics ensures the existence and unique-
ness of gradient flows in the sense of Definition III.1.

Theorem III.1 (Well-posedness of the gradient flow equation for A > 0). Assume the
assumptions of Lemma II1.4.2 hold. Then for any A > 0 and any initialization pg €
Po(2) there exists a unique gradient flow for ﬁ? starting from pg in the sense of Defini-

tion III.1. Moreover, if (u)i>0, (1} )i>0 are gradient flows for /J? with respective initializa-
tions po, iy € P(L) then for every t > 0:

W?(,Utv M;) < eCtW2(:u’07 M{)) ’

for some constant C = C(f*, \).
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III.4. Training with gradient flow

Proof. The chain rule formula established in Lemma I11.4.1 shows that for every u € P(Q)
the vector field L'? [1] is a strong subdifferential of L’? in the sense of [Ambrosio, 2008b, Def.
10.3.1 and eq. (10.3.12)]. Existence, uniqueness and contractivity properties of the gradi-
ent flow then follow from the geodesic semiconvexity of E} established in Lemma I11.4.2
and the application of [Ambrosio, 2008b, Def. 11.2.1] O

Finally, it is a classical property of weak solutions to continuity equations that gradient
flows of 5? can be represented in terms of push-forward by a flow map.

Proposition I11.4.1. Let the assumptions of Lemma II1.4.2 hold. Then, for any A > 0
and any initialization py € P2(Q), the gradient flow (pt)i>0 ofﬁ? starting from ug satisfies
pe = (X¢)ppo for every t > 0, where (Xi)i>0 is the flow-map solution of the ODE:
d .
V>0, X = VL ] o Xy, with Xo =1dg.

In particular, if (w;i(t))e>o0 fori € {1,..., M} are solutions to Eq. (111.26) then the empirical
distribution [y = ﬁ sz\i1 dui(t) s a gradient flow for E? in the sense of Definition I11.1
and thus w;(t) = X¢(w;(0)) forie{1,...,M} and t > 0.

Proof. For every t > 0, similarly as in the proof of Lemma II1.4.1, we have that the dual
variable is bounded by Ha} (1]l 22(p) < Rx and from the assumption on the regularity of
¢ it follows that:

IF* (@ aflpe)llern < O

for some constant C' = C(f*,\). Then by definition VL [1;] = —Vf*(fI)Ta?[ut]) e cot
and the first part of the result follows from classical results of ODE theory [Hale, 2009]
and on representation of solutions to continuity equations [Ambrosio, 2008b, Thm. 8.1.8].
For the second part of the result, it suffices to remark that, by the definition of ﬁ? and

VE?, for {wi}lﬁiSM e OM and YRS {1, ...,M}:
MV, L {wihi<icm) = VLA (w)) (II1.33)

where i = ;21 6u;. Therefore, by Eq. (II1.26) we have that for any test function

== —p(t,wi(t))dt = — V- VLY 1)) didt

meaning (fi;);>0 is a gradient flow for £> according to Definition ITI.1. O

Particle approximation In the case where A > 0, associating the contraction rate of
the gradient flow obtained in Theorem III.1 with classical results on the approximation of
measures by empirical distributions we obtain an approximation result for the minimiza-
tion of E} with a finite number of features. For conciseness, we only state the result in
the case d > 3, but similar results hold for d € {1, 2}.

Corollary I11.4.1 (Particle approximation). Let the assumptions of Lemma I11.3.1 hold
and let d > 3. Consider some initialization py € P(2) and, for some N > 0, denote
by fip = N1 Zfil 0w, the empirical measure where {w;}i1<i<n are i.i.d. samples of uo.
For A > 0, let (1)i>0 and (7)o be the gradient flow of L'? starting from po and fio
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respectively. Then there exists a constant A = A(d,Q) s.t. for every t > 0 and every
e >0:

A
P (Wi}, 1) > €) < ZN~HA,
€
where C = C(f*,\) is the constant in Theorem II1.1.

Proof. Using [Fournier, 2015, Thm. 1] we obtain at initialization ¢ = 0:
E Wi (i), )] < AN

for some constant A = A(d,2) > 0 depending on the dimension and on the domain (.
Then using the contraction rate in Theorem III.1 we have a constant C' = C(f*,\) > 0
such that for every ¢ > 0:

E (Wi (i}, m)] < AN~HeCt.
The result then follows by applying Markov’s inequality. O

II1.4.2 Wasserstein gradient flows in the case A = 0 and ultra-fast diffu-
sions

We now consider the limit of the proximal scheme Eq. (II1.28) when the step size 7 tends
to 0 and A is set to 0. We focus on the case where Assumption III.1 holds and the
regularization is of the form f(t) = |¢t|"/(r — 1) for some 7 > 1 and recall that we use the
shortcut £ == E?e. Then, following Eq. (II1.17), we have for u € P(Q):

r

1
r—1

dD da|"

oldu

_ 7lry

0 _
L (p) = —

D, (7|p) =

(I11.34)

The first variation of L9 55? w(w) = =7y (%)r and
thus, following Eq. (IT1.27), the Wasserstein gradient flow of £ is formally defined as the
solution to the continuity equation:

Oppir = —||v |y div (utv ( ) ) (I11.35)

Moreover, calculating formally, V (%)r = r%V (ﬁ) ~ and Eq. (IT1.35) can be written

equivalently:
p/ r—1
Oupiy = |7y div (w (£) ) .

When the target distribution is uniform, i.e. with density g = 1, this corresponds to a
nonlinear diffusion equation of the form Eq. (II1.11) with the coefficient m =1 —r < 0,
that is an wltra-fast diffusion. Such an equation, with general inhomogeneous weights [
was studied in [lacobelli, 2019a; Caglioti, 2018; Iacobelli, 2019b] in the context of particle
algorithms for finding an optimal quantization of the measure . We rely particularly here
on the work of Tacobelli, Patacchini, and Santambrogio [lacobelli, 2019b] which establishes
the well-posedness of Eq. (I11.35) as well as the convergence of the solution p; towards the
target measure . We consider the following definition of solutions for Eq. (II1.35):
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Definition II1.2 (Gradient flow of £2 (Def. 1.1 in [lacobelli, 2019b])). Let ug € P(R)
admit a density po € L™2(Q). We say (ut)i>0 is a weak solution of Eq. (I11.35) or a
gradient flow for L0 starting from ug if it is a narrowly continuous curve in P(§) with
limy o+ e = po, s.t.

/ / <8tg0 Ve - (/’;‘) ) dupdt = 0, Vi € C((0,00) x Q). (IIL36)
0 Q t

and satisfying:

(Zt)r—l € 13,((0,00), H'(9)), £ € 13,.((0,00), H'(©).

loc loc
Mt

Existence and uniqueness of solutions In [lacobelli, 2019b], the authors establish
the existence and uniqueness of gradient flows for the functional £°. More precisely, they
show that, under appropriate assumptions on the initialization pg and on the target i,
the iterates of the proximal scheme in Eq. (II1.28) converge towards a curve (iu)i>0 that
is a gradient flow of the functional £2 in the sense of Definition III.2.

Theorem III.2 ([lacobelli, 2019b, Thm. 1.2]). Assume po and fi are absolutely continuous
and have bounded log-densities. Then there exists a unique weak solution of Fq. (111.35)
starting from pg in the sense of Definition I11.2.

Convergence towards the target distribution In the case A = 0, lacobelli, Pat-
acchini, and Santambrogio [lacobelli, 2019b] establish a linear convergence rate of the
weighted ultra-fast diffusion Eq. (I11.35) towards the target distribution j. Precisely, they
show convergence in the L?-sense of the density u; towards the target density fi. We state
their result in the following theorem.

Theorem IIL.3 ([Iacobelli, 2019b, Thm. 1.4]). Assume po and fi are absolutely con-
tinuous and have bounded log-densities. For pg € P(K), let (ut)i>0 be a weak solution
of Eq. (I11.35) starting from ug in the sense of Definition 111.2. Then the log-density of
is bounded, uniformly over t > 0, and there exists a constant C = C(Q, i1, po) > 0 s.t. for
every t > 0 it holds:

172 = el L2y < Ce™ "

For completeness, we give here some of the key arguments of the proof of the above The-
orem IIL.3 in the case where r = 2. In this case, we have for every u € P(Q):

_ dji|? _ _
230 = 1oty [ 52| an = 1oty (Gl +1) (111.37)

where x? is the chi-square divergence. The following Lemma II1.4.3 establishes the de-
sired linear convergence rate for the proximal scheme defined in Eq. (I11.28) with the
loss £9. The result in continuous time then follows from the lower semicontinuity of the
x2-divergence as the curve (ji;);>0 is obtained by taking the limit of the discrete process
(1, ) k>0 when the discretization time 7 tends to zero.

From a technical perspective, the proof of Lemma II1.4.3 relies on a Poincaré inequality
satisfied by p. It is indeed well-known that such inequality controls the convergence rate
of Fokker-Planck equations towards their stationary distribution in x2-distance [Pavliotis,
2014, Thm. 4.4]. This can for example be used to prove the convergence of sampling
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algorithms such as Langevin Monte Carlo [Chewi, 2024; Chewi, 2020]. In our case, the
ultra-fast diffusion Eq. (II1.35) is to be interpreted as a Wasserstein gradient flow for £9,
which, by the above Eq. (II1.37), is the reverse x2-divergence between j; and ji and the
convergence rate is controlled by the Poincaré constant of u;. This rate may thus a priori
evolve and vanish during training but, crucially, [lacobelli, 2019b, Lem. 2.4] shows that
it is here a property of solutions to the ultra-fast diffusion equation that the log-density
ratio || log (%) | decreases with time. As a consequence, it is sufficient to assume that
the log-density is bounded at initialization to obtain a control over the Poincaré constant
of p, for t > 0, by a classical perturbation argument [Ané, 2000, Thm. 3.4.1].

Lemma II1.4.3. Assume ug and fi are absolutely continuous with bounded log-densities.
Let 7 > 0 and let (u])k>0 be the sequence defined by Eq. (IIL28) with X = 0, f(t) = |t/
(r = 2) and initialization pf = po € P(Y). Then there exists a constant C > 0 s.t.:

VE >0, x*(alpg) < (1+Cm) X3 (o) -

Proof. From [lacobelli, 2019b, Thm.2.1 and Lem.2.4] we know the sequence (uf)r>0 is
uniquely defined. Moreover p, is absolutely continuous w.r.t. Lebesgue measure and their
exists a constant C' = C(fi, o) > 0 s.t. the log-densities log(u],) satisfy:

k>0, [log(uf)ll < C-

Then, at step k¥ > 0, we get from the expression of £3 in Eq. (I11.37) and from the
optimality condition in Eq. (IT1.28) (see e.g. [Santambrogio, 2015, Prop.7.20]) that:

N2
—|7]|A ( TM ) +2= cte, almost everywhere on €,
k+1 T

where ¢ is the Kantorovitch potential from g, to uj. Also this potential is necessarily

Lipschitz, hence a.e. differentiable and so is ¥/}, ;. Then from the definition of uzil we
have:

T T 1 T T
LY(uf) — LY(hyr) = §W2(Mk+1,ﬂk)2

1 2
= o [ Vel dufy

_ _ 2
_ THV‘QFV/ \V4 H
- T

2 Q ]

where we used the definition of the potential ¢ and the optimality condition. Using that
{41 has log-density bounded by C' = C(ji, po) and that the domain (2 satisfies a Poincaré
inequality with constant Cp = Cp(2), it follows from a classical perturbation argument
that uj | satisfies a Poincaré inequality with constant e?¢Cp(Q) [Ané, 2000, Thm. 3.4.1].
As a consequence:

N
he )
Q M1

2

dﬂ2+1a

2 _ 2
T — lu’ T
dpgyq > 4e 40/ \Y ( p ) dpig 4y
Q Hit1

N2
> 405 e8¢ (/Q (u}? 1) dpgyq — 1)
+

= 403 e NPl (£30ik) — 17]3v) .
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where ||7||%y = inf £3. Combining this with the previous inequality finally gives:
(1+2rCp1e™0) (L8(1hsr) — inf £5) < L3(uf) — inf £5,
and inductively:
0,7\ _ e 0 —1_-6C\"* (0 C e 0
Wk >0, L3(uf) —inf £§ < (1427Cpe ) T (L(no) — inf £3) .
By the definition of £3 in Eq. (II1.37), this is the desired result. O

Remark IT1.4.2 (Dependence of the convergence rate w.r.t. the dimension). It follows
from the proof that the convergence rate C' in Lemma III.4.3 scales linearly with Cp(2)~!
where C'p(2) is the Poincaré constant of the domain 2. For bounded, Lipschitz and convex
domains of R™ or for the flat torus T", this constant is in particular independent of
the dimension n [Payne, 1960]. Therefore, the correspondence between the training of
neural networks in the two-timescale regime and solutions to ultra-fast diffusions points
towards the fact that gradient methods, with suitable hyperparameter scaling, are amenable
to efficient feature learning in the training of neural networks, without suffering from
the curse of dimensionality [Donoho, 2000]. Note however that the convergence rate C
in Lemma II1.4.3 is exponentially bad in the log-density ratio || log(fi/1o)|leo- In particular
the convergence rate does not hold in case the teacher feature distribution is supported on
a finite number of atoms.

III.5 Convergence of gradient flow

The main purpose of this chapter is to study in what extent the gradient flow dynamics
defined Definitions III.1 and I11.2 allow recovering the teacher feature distribution i asso-
ciated to the observed signal Y in Assumption I1I.1. Whereas Theorem II1.3 shows con-
vergence of the gradient flow of [,?, that is solutions to the ultra-fast diffusion Eq. (I111.35),
such dynamics are hardly numerically tractable in practice due to the absence of the regu-
larization parameter A. For this reason we are interested here in the asymptotic behavior
of the gradient flow of E} in the case where A > 0. A difficulty is that, in the case A =0,
the proof of Theorem II1.3 relies on the implicit behavior of Eq. (II1.35) which preserves
the density of solutions. Such a behavior is a priori not expected to hold when A > 0. Asa
consequence, the results in this section hold under supplementary regularity assumptions
on the solutions to Eq. (II1.31).

I11.5.1 Algebraic convergence rate

At fixed A > 0, we are able to obtain convergence towards the minimizer ﬂ} of E? under
mild regularity assumptions on solutions to the gradient flow Eq. (II1.31). Specifically, for
a probability measure u € P(Q2) and a function h € C' we define the weighted Sobolev

seminorm of h as:
) 1/2
Il = ([ I901%0)

Then, for a measure v € M(Q) s.t. [odv = 0, the negative weighted Sobolev seminorm
[v] f-1(,) is defined by duality with H(u):

V| fr=1(p) =  sup /th.
7 bl <1 S0
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The following Theorem I11.4 states convergence of E? towards 0 with an algebraic conver-
gence rate provided || — Z || f-1() Stays bounded along the gradient flow. As discussed
below, since the domain 2 is compact, this assumption is satisfied for example when both
distribution have bounded log-densities. The arguments are similar to the one presented
in [Glaser, 2021], where the authors consider an infimal convolution between a kernel dis-
crepancy and the KL-divergence. Importantly, the obtained convergence rate depends on
the bound on ||p; — %HH—l(ut) but is independent of A > 0.

Theorem 111.4. Let Assumption II1.1 hold. Consider A > 0 and some initialization pg €
P(2). Let (pt)e>0 be the gradient flow of E? starting from po in the sense of Eq. (111.31).
Assume that:

o U is a positive measure and f is s.t. min f = f(m) = 0 where m == v(2) > 0.
o the gradient flow (p¢)e>o0 s s.t. ||% - ,utHH_l(M) is bounded, uniformly overt > 0.

Then there exists a constant C > 0 s.t. for any t > 0:

_ -1
L) < (L} o)™+ Ct)
In particular, py converges to i = v/m when t tends to +oo.

Proof. Note that it follows from the assumptions on f and v that inf L? = 0 and that
this infimum is attained only for 1 = v/m. Thus, the last statement on the convergence
of p follows from the convergence of E? (11¢) to 0 and from the lower semicontinuity of [,}
(see Section III.3).

To obtain the convergence rate, consider p € P(2) and note that by Eq. (II1.19) we
have E}(u) = max, K(a, it), where for every a € L?(p):

_ . A
Klawp) = [ @Ta)di = [ (@7 — ol

where f* is the Legendre transform of f. Let us denote by o = a}[u} the maximizer of
K(a, ). Then, using the convexity of f*, we have for every w €

F0) + 17 (0)(@ oM (w) < [ (@' aY)(w)).

Also by assumption Jf(m)

= 0 and hence by properties of the Legendre transform
9f*(0) = m. Also f*(0) = —f(m)

= 0 and after integrating w.r.t. v :

/(@To/\)dﬂg/ f*(qﬂoﬂ)g.
Q Q m

Then, replacing a by o in K and using the previous inequality:

v

Ay A wraT MY _
L =K@ < [ @ aMd(Z ~ ) <| i I = ll i1 -

f* (‘I)TO/\) H
Also, by the gradient flow equation Eq. (II1.31), the dissipation of E} along the gradient
flow curve (ut)¢>0 is given for every ¢t > 0 by:

2

H(pt)

Led = [ v @ e[ an=—|

Fr@Ta)|

)
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II1.5. Convergence of gradient flow

where ap' = a} [p¢] maximizes K(c, p¢). Thus using the previous inequality on E}(,ut) and

that H% - “t||H*1(ut) is bounded, uniformly over ¢ > 0, we get for every ¢ > 0:

d _
&E?(Mt) <-C 1/3}(/%)2,
for some constant C' > 0. The desired convergence rate follows from this inequality by
applying a Gronwall lemma. O

Let us comment on the assumptions of Theorem II1.4. The second assumption specif-
ically, is automatically satisfied in case v has bounded density and u; has bounded log-
density, uniformly over ¢ > 0. Indeed, for u € P(£2) having a lower-bounded log-density,
we have that the weighted Sobolev seminorm |||z, is lower-bounded by the classical
Sobolev seminorm |[.[| 1), Where we recall that 7 is the (normalized) Lebesgue measure

over €. Precisely, if 7 < p and dr/du < C; then for every f € C':

11l i1y < Cullf gy -

In this case, the weighted negative Sobolev seminorm ||. || A1) 18 upper-bounded by the
seminorm ||.|| -1, and for every v € M(€2) with [, dv = 0 we have:

1l g1 < Cllvll g1y -

Moreover, this last quantity can be estimated by the Wasserstein distance. Indeed, for
probability measures having bounded log-densities, the Wasserstein distance W is equiva-
lent to the negative Sobolev seminorm ||.[| -1y If 1, v € P(Q2) are such that %, g—fr < Cqy
for some constant Cy > 0 we have [Santambrogio, 2015, Lem. 5.33 and Thm. 5.34]:

i = vl 1y < Co/ Wil v).

Finally, the Wasserstein distance Wa(u, v) is always bounded by diam(2) which is finite,
hence ensuring the second assumption of Theorem II1.4 is satisfied.

II1.5.2 Convergence to ultra-fast diffusion.

The algebraic convergence rate stated in the above Theorem II1.4 in the case A > 0 stands
in contrast with the faster linear convergence stated in Theorem II1.3 in the case A = 0. For
this reason, we are interested in comparing the gradient flow dynamics with and without
regularization.

Below we assume f(t) = |t|"/(r — 1) for some r > 1 and Theorem III.5 shows local
uniform in time convergence of gradient flows of £ to gradient flows of £7, i.e. solutions to
the ultra-fast diffusion equation Eq. (I11.34), when the regularization strength A\ vanishes.
To obtain such a result we assume regularity on the density ratio 5717?' Namely, we assume

that the Legendre-conjugate 0 f (cﬁ%\) stays bounded in the RKHS H, defined as the image
of the convolution operator ®' : L?(p) — C%(Q) (Eq. (I11.47)). Using classical results
from the theory of inverse problems, such a source condition ensures the dual variable
a € L?(p) stays uniformly bounded for A > 0 (Lemma II1.5.1). Therefore, provided H is
sufficiently regular, such a regularity assumption ensures compactness of the Wasserstein
gradient VL u] = Vf*(®"T}) in C! and allows passing to the limit in Eq. (I11.32) to
obtain Eq. (II1.36).
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Theorem III.5. Assume Assumption III.1 hold with U a positive measure with bounded
log-density, f(t) = [t|"/(r — 1) for some r > 1 and the assumptions of Theorem III.1
and Theorem II1.2 are satisfied. Consider some initialization pg € P() s.t. po has
bounded log-density. For X\ >0, let (u\)¢>0 be the gradient flow of L}, starting from o in
the sense of Definition I11.1 (when A > 0) and Definition II1.2 (when A = 0). Moreover,
for H defined by Eq. (11L47), assume H is compactly embedded in C1 () and 6f(d A)

bounded in H, locally uniformly overt > 0 and uniformly over A > 0. Then for any T Z 0:

lim sup W2(ﬂt>,ut) 0.

A=0% ¢e0,7)
Proof. For A > 0, the curves (u;)* are gradient flows for the functionals £} and classical
computations show that for every ¢, s > O:

Wa (i, 1) < [t = s| |L} (1) — L} (1)

where we used that the functionals Ei‘ converge pointwise from below to 59. Thus, for
T > 0, the sequence (Mf‘)te[o,T] is uniformly equicontinuous with value in the compact
space P(Q) and Arzela-Ascoli’s theorem ensures the existence of a subsequence \,, — 0T
S.t.:

< [t = s|L7 (o)

(Mt)te[o 1) = (11t)sefo,1] € ([0, T], P(R)) .

To prove the result one needs to identify j; with 9 and the supplementary regularity
assumptions on ui‘ are sufficient for this purpose. Let us fix some t € [0, 7] and denote by
up = u?[uf‘] the minimizer in Eq. (IT1.13), v} € M() the minimizer in Eq. (IT1.18) s.t

j% =) and o} € L?(p) the maximizer in Eq. (I11.19).

Then for every A > 0, since pug has bounded log-density we have by the flow-map
representation in Proposition I11.4.1 that 3 has bounded log-density. Also, since v is
positive with bounded log-density and ®x is injective, we have that u; = dCZ’ is the unique
solution to Eq. (II1.14). But then, by the characterization of the RKHS H in Theorem I11.6,

we have that ® : L?(p) — H is a partial isometry and the assumption that O f ( ) eH

is equivalent to a source condition of the form Eq. (II1.38). Hence by Lemma III.5.1, the
dual variable o7 is bounded in L?(p), uniformly over A > 0, which implies that, up to
extraction of a subsequence, ®' a;' converges to some h; in C!(£2).

Also for every A > 0, by the duality relations in Eq. (II1.20), we have % =0f* (")
t
and hence — recalling that f(¢t) = |t["/(r — 1) for some r > 1 — % — 0f*(hy) in CO().
t

Since £} (1) < L£9(po) is bounded we have by Eq. (IT1.18) that v — ¥ narrowly and then
for every ¢ € C°(9):

dv)
/cpdV?z/sO%duA A0, /sodV—/ @O f*(he)duy .
Q Q dug

This shows that v is absolutely continuous w.r.t. y; and that d” = 0f*(ht). By duality,

this is equivalent to hy = 0f (3 v ~), which shows that o ap converges to hy in CH(Q).
Finally, using the gradient ﬂow equation in Eq. (I11.32), the previously described con-
vergence of ®'a; is sufficient to have for every test function ¢ € C°((0,T) x Q):

T |
/ / (atgot Ve V(@ Ta )) At = 0
0 JO 2

+ T 1 d7
/\_>—0>/ / (&%—V(pt.vf*(af(y))) dpedt = 0.
0 /9 2 dpg
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II1.5. Convergence of gradient flow

Since f(t) = |t|"/(r — 1) for some r > 1 the above equation is equivalent to Eq. (II1.36)
which shows pu; is the weak solution starting from ug of the ultra-fast diffusion equa-
tion Eq. (I11.34) according to Definition I11.2, that is p; = p. O

The proof of the above Theorem II1.5 relies on the following result on solutions to in-
verse problems with nonlinear regularization [Benning, 2018]. The following Lemma I11.5.1
is similar to [Iglesias, 2018, Prop. 3].

Lemma IIL.5.1. Assume f satisfies Assumption I11.2 and Assumption III.1 holds. For
p € P(Q), let ut € LY(u) be a solution of Bq. (I11.14). We say u' satisfies a source
condition if there exists o € L?(p) s.t.

dTaedf(u) in L'(y). (I11.38)

Then in this case, noting o' € L?(p) the o of minimal norm satisfying the above source
condition, we have for every \ > 0:

A

A0t
e}l 2 < llafllr2  and aflp] “——

al,
where a?[p] is the solution to Eq. (I11.19).

Proof. Let u' € L'(u) and of € L2(p) be as in the statement. By the source condi-
tion Eq. (I11.38) we have in L!(ju):

—fH(@Tal) + (@ ahul > f(uh)

and integrating w.r.t. 4 and using that [o(®"af)ufdy = <aT, Y>L2( ) we obtain:

p
—/Qf*(@TaT)du—i—<aT,Y>L2(p)Z/Qf(uT)du: inf /Qf(u)d,u.

@, u=Y

Thus, af achieves the supremum in Eq. (IT1.19) with A = 0 and we have for any o € L?(p):
- [ £r@Tahdu+ (ol Y)
Q

Moreover, for A > 0, noting a’ := a} (1], we have by definition:

2 = /Q f(@Ta)du+ (@, Y) 12 -

N A
_/Qf ((I)Ta/\)du+<0/\7y> - §Ha)\H%2(p)

L2(p)

A
- §||04T!|%2(p)-

>— [ A(@"ah)d Ty
> /Qf( ol)du+ (oY) ,

Substracting the two previous inequalities and simplifying gives:
A
oM I p2p) < lafll 2, -

Thus a” is bounded, uniformly over A > 0. For the convergence part, note that since it
is bounded in L?(p) it converges weakly to some o' € L?(p). Also, taking the optimality
condition for o, we obtain for every o € L?(p):

N A
= [ @ N+ (A Y) = Slatliag,
A

> [ @7+ (@Y ) g = Sl
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and taking the limit when A — 0% leads to:

%/ 3T .0 0 (P
—/Qf ((I) o )du+<0& 7Y>L2(p) > _/Qf ((I) a)du+<a7Y>L2(p) ’

which shows a? is also a maximizer of the dual problem Eq. (II1.19) when A = 0 and, as

a consequence, also satisfies the source condition Eq. (I11.38). But, by minimality of the
norm of af and by weak lower semicontinuity of the norm we have:

t 0 ninf llo f
oM 220y <l z2¢p) < hAH_l}(l)&fHOé 220y < o'l z2(p) 5

which shows that in fact a* — af strongly in L2(p). O

II1.6 Numerics

We report in this section numerical results. First, to assess the validity of our theory,
we tested the VarPro algorithm on simple low-dimensional examples with synthetic data:
experiments with a 1-dimensional feature space are detailed in Section I11.6.1 and supple-
mentary experiments in 2-d are detailed in Section II1.B. Those experiments indicate that,
when the regularization is sufficiently low, the VarPro dynamic indeed enters an ultra-fast
diffusion regime where the student feature distribution converges to the teacher’s at a
linear rate. Moreover, if the stepsize is sufficiently small, the VarPro dynamic can also be
efficiently approximated by a two-timescale learning strategy.

Finally, to investigate the large-scale applicability and generalization capabilities of
the VarPro algorithm, we tested it on an image classification problem with the CIFAR10
dataset [Krizhevsky, 2009] and compare its performances with other standard stochastic
optimization methods. Those results are detailed in Section I11.6.2.

The code for reproducing the results is available at: https://github.com/rbarboni/
VarPro.

II1.6.1 Single-hidden-layer neural networks with 1-dimensional feature
space

We tested the VarPro algorithm for the training of a simple SHL with features on the
1-dimensional sphere S!. The feature space is here 0 = S!, the data dimension is d = 2,
and the feature map is given by ¢ : (w,z) € S x R? — ReLU(w'x) where ReLU is the
Rectified Linear Unit activation. Recalling Eq. (IT1.1), we thus consider a SHL of width
M defined for inner weights {w;}M, € (S))M and outer weights {u;},—=; € RM by:

1M
Flou)y i@ € R? Y Z w;ReLU(w; ) . (I11.39)
i=1

We consider a target signal Y that is given by a teacher network of width M:

1 M
Ve eR?, Y(z)=— ReLU(, z).
x (z) M; eLU(w; z)

The teacher feature distribution is hence p, = ﬁ Zf\zl 0y, with iid. features w; ~ piy

where, for v > 0, we consider p, = (%5@ + %6“,;) * 7y. The target feature modes are
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density jt,(w) (log-scale)

100 4

10—1 4

10724
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Figure III.1: Left: density of the teacher distributions p. for v € {10,100,1000}. Right:
corresponding teacher signal for v = 100.

here fixed to wi = 0 and wj = 0.47 and 7, € P(S!) is the distribution with density:

1

- VYweSs! I11.40
1 +Asin?(w/2) ’ ( )

(W)
where by abuse of notation we identify w € S' with the corresponding angle in R/2xz. In
particular, the parameter v > 0 controls the shape of the distribution p., and the concen-
tration around its modes: when v = 0, 4 is the uniform distribution and, when v — oo,
we have [, — floo = %6@ =+ %5%«. Plots of the density p, and of the corresponding teacher
signal are shown in Fig. III.1. Finally, we consider the input data = to be distributed ac-
cording to an empirical distribution p = % Zf\il 0z, with i.i.d. standard Gaussian samples
i ~ N (0, Id).

Recall that, for a regularization function f : R — R and a regularization strength
A > 0, the reduced risk defined by Eq. (II11.13) associated to the features {w;}}, € (SH)M
reads:

. 1 M
A M -
L5({witizy) = min, 2)\N E \ i)y () = Y (25) \ +—M§ flug) . (I11.41)

In this setting, the VarPro algorithm is the time discretization of the particle evolu-
tion Eq. (II1.10) and consists in performing gradient descent over the reduced risk L}\:

Vie{l,..,M}Vk >0, wi™ =uwi—MrV,L}{w} i<icm)- (I11.42)

where 7 > 0 is some stepsize parameter and {w?}, € (S1)M is some random initialization.
We consider here an uniform initialization with i.i.d. w? ~ U(S!).

Experimental setting We test the performance of the VarPro algorithm (Eq. (I11.42))
for the training of SHLs (Eq. (II1.39)) of varying width M € {32,128,512,1024}. We use
either the “biased” quadratic regularization f : ¢t — %tQ, for which the minimizer of the
reduced risk differs from ji,, or the “unbiased” quadratic regularization f, : t — %|t — 1%
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Ultra-fast diffusion Learned feature distribution

Figure II1.2: Left: Solution p,; to the ultra-fast diffusion Eq. (II1.35) equation with expo-
nent r = 2 and weights p, v = 100. Right: Evolution of the feature distribution learned
by gradient descent on a SHL of width M = 1024 for the minimization the reduced risk
ﬁ} with regularization function f, : t — 5¢2 and A = 10~* (c.f. Egs. (IIL41) and (I11.42)).
The density is obtained by convolving the empirical feature distribution ji with a gaussian
kernel of variance o2 = (0.03)? and the plots are averages over 6 independent runs.

for which the minimizer of the reduced risk is the teacher distribution i, (c.f. Section I11.3),
and we consider varying regularization strength A € {107%,1072,1073,107*}. We also
consider different teacher distributions ji, by changing the parameter v € {10,100, 1000}.
In order to stick with our theoretical results, we consider a number of data samples N =
4096 > M, such that the injectivity assumption in Assumption II1.1 is satisfied, and we
consider the teacher has a width M = 4096 > M, such that the approximation fly 2 [y
holds. Finally, to closely model the gradient flow equation Eq. (II1.26) we consider a
stepsize T = 2-10,

Qualitative comparison with ultra-fast diffusion on S! Conveniently, the choice
of the 1-dimensional domain S enables the use of standard numerical schemes to solve the
weighted ultra-fast diffusion equation Eq. (II1.35). This setting thus allows for comparison
of the solutions to ultra-fast diffusion computed with high accuracy on a fine grid — we use
here the “LSODA” integration method [Hindmarsh, 1983] — and the training dynamics
computed with our VarPro method with particles Eq. (I11.42). The two dynamics can be
compared in Fig. [I1.2. Qualitatively, one can observe a close resemblance between the two
dynamics, especially around the modes of the target distribution j, where the densities
progressively concentrates. While the learned feature distribution seems to concentrate less
than the exact solution, this is likely due to the convolution with a gaussian kernel which
is used to plot the density. However, the dynamics seems to differ more on the sides of the
plots. These are indeed regions where the density u; becomes very low and thus where

2
approximation of the velocity field V (Z—Z) likely suffers from numerical instabilities.

Neural networks of varying width We investigate the behavior of the gradient de-
scent dynamic for the minimization of the reduced risk (Eq. (I11.42)) when varying the
width M of the neural network. For this purpose we consider the teacher distribution
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Reduced risk Unbiased reduced risk
—_— M=32
— M=128
100 - M=512 - 1072
] —_— M=1024
6 x 107 \ L 106
100 101 102 103 104 0 10000 20000 30000

Number of iterations Number of iterations

Figure III.3: Evolution of the reduced risk EA} (Eq. (III.42)) along iterations of gradient
descent for a SHL of width M € {32,128,512,1024}. The regularization strength is
A = 1073 and the regularization function is either fy : ¢t — 3¢ (left) or f, : t — S|t — 1|2
(right). Plots are averages over 6 independent runs.

fly = iy with v = 100, fix the regularization strength to A = 103 and consider SHLs of
varying width M € {32,128,512,1024} with regularization either f; or f,.

In this setting, Fig. II1.3 reports evolution of the reduced risk ﬁ} along iterations of
gradient descent. In the case of the biased regularization f;, the reduced risk monotoni-
cally decreases to the same (strictly positive) value for every width. This is normal since
one should expect the feature distribution to converge to a minimizer ﬂfy‘ # [, for which
the reduced risk is strictly positive. On the contrary, in the case of the unbiased regular-
ization f,, the reduced risk monotonically decreases to different values depending on the
width M. Indeed, in this case the gradient descent is expected to converge to the true
teacher distribution ji, ~ u, and these different values corresponds to different levels of
discretization of ji,. Also, in this case, the convergence speed seems to increase with the
width.

In Fig. I11.4, we report the evolution of a MMD distance between the learned feature
distribution and two references which are the teacher distribution f, ~ p., and the ex-
act ultra-fast diffusion dynamic. We used the MMD distance Eq. (I11.49) associated to
the energy-distance kernel k(w,w’) = —||w — &’||. In coherence with what was observed
before, in the case of the unbiased regularization f,, the distance to the teacher distri-
bution decreases monotonically to some value which is lower when the width increases.
Illustrating our Theorem II1.4, this shows gradient descent converges to a feature distri-
bution discretizing the teacher distribution. On the contrary, when considering the biased
regularization fp, the positive regularization strength introduces a bias. In turn, plots of
the distance to the diffusion dynamic show this distance decreases with the width, which
is normal since a higher number of features corresponds to a better discretization. These
plots also show that gradient descent stays close from the diffusion limit, as predicted
by Theorem IIL.3.

Role of the regularization strength A We now investigate the role played in the
gradient descent dynamic by the regularization strength A > 0. For this purpose, we
consider a neural network of fixed width M = 1024 and train it with gradient descent for
the minimization of the reduced risk EA} for varying values A € {1071,1072,1073,107*} of
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Distance to teacher distribution Distance to diffusion dynamic

— M=32
— M=128

— M=1024

0 10000 20000 30000 102 103 10%
Number of iterations Number of iterations

Figure I11.4: Evolution of the MMD distance to the teacher distribution and to the diffu-
sion dynamic along iterations of gradient descent over the reduced risk ﬁ} (Eq. (111.42))
for a SHL of width M € {32,128,512,1024}. Left: distance to the teacher distribu-
tion fi, ~ p, (v = 100). Right: distance to the diffusion dynamic. The regularization
strength is A = 1073 and the regularization function is either f; : ¢t %tz (dashed) or
fu it 3|t — 1% (plain). Plots are averages over 6 independent runs.

the regularization strength.

Evolution of the MMD distance between the learned feature distribution and respec-
tively the teacher feature distribution and the diffusion dynamic are shown in Fig. IIL.5.
On the plots of distance to the teacher distribution, one can first observe that the bias
introduced in the case of the regularization f; decreases with the regularization strength
A. This illustrates well our Proposition II1.3.1, showing convergence of minimizers of
the reduced risk towards the true teacher distribution when the regularization strength
vanishes. In the case of the unbiased regularization f,, one can observe a difference of
behavior between low regularization regimes A € {1072,1073,107*} and large regulariza-
tion A = 107!, While in the former case convergence seems to operate at a linear rate,
which is the convergence rate of the diffusion limit (Theorem III.3), in the latter the con-
vergence rate is significantly slower which could indicate an algebraic rate as predicted
by Theorem IIL.4. Indeed, A = 107! is the order of magnitude of the most significant
eigenvalues of the tangent kernel K, (numerically, the spectrum of K, is, in descending
order, Sp(K ) ~ (0.2,0.1,0.1,0.02, ...)). Recalling that the risk can be expressed in terms
of (K, + A)~! (Eq. (II1.24)), an explanation is thus that, the unregularized reduced risk
is well approximated only when A < K. In contrast, in the high regularization regime
(A 2 K,,), the reduced risk receive more influence from the MMD distance term than from
the f-divergence term in Eq. (II1.18) and gradient flows of MMD distances are known to
be associated with slower convergence rates.

Finally, plots of the distance between the gradient flow and ultra-fast diffusion dynam-
ics show this distance is lower and stays also lower for longer time when the regularization
strength decreases. This supports the “local uniform in time convergence” behavior pre-
dicted by Theorem IIL.5. Note however that this result says nothing about the long time
behavior of the dynamic, which is why the number of iterations is displayed in log-scale.

Role of the shape of the teacher distribution We investigate the role played by
the shape of the distribution p., controlled by the parameter 7. We consider teacher
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Figure II1.5: Evolution of the MMD distance to the teacher distribution and to the diffu-
sion dynamic along iterations of gradient descent over the reduced risk EA} (Eq. (111.42))
for a SHL of width M = 1024 with regularization A € {1071,1072,1073,107%}. Left:
distance to the teacher distribution ji, ~ u, (v = 100). Right: distance to the diffusion
dynamic. The regularization function is either f, : ¢ — 3t* (dashed) or f, : t = [t — 1|2
(plain). Plots are averages over 6 independent runs.

distributions ji, ~ p, for v € {10,100,1000} and train a neural network of fixed width
M = 1024 with gradient descent over the reduced risk (Eq. (II1.42)) with the unbiased
regularization f, and A = 107%. Plot of the log-densities i are shown in Fig. IIL.1. In
particular the distribution s, approximates the atomic distribution pi = %5@ + %6@ in
the limit v — oc.

Plots of the evolution of the reduced risk, of the distance to the teacher distribution and
of the distance to the ultra-fast diffusion dynamic are shown in Fig. II1.6. One can clearly
observe that the convergence speed of gradient descent is affected by the parameter v. In
particular, looking at the distance to the teacher distribution, every curve exhibits a linear
convergence rate but this convergence rate deteriorates when ~ increases. This supports
the conclusions of Theorem III.3 in which the convergence rate of ultra-fast diffusion
towards the target distribution is exponentially bad in the log-density ratio log(u /1)
(see also Remark I11.4.2). Finally, on can observe in the last plot that gradient descent
deviates more quickly from the diffusion dynamic when ~ increases. When 7 is large, there
are indeed regions where the density u; will become very low, hence leading to numerical

2
instabilities when estimating the velocity field V (’;—Z) .

Comparison with two-timescale gradient descent Since performing exact projec-
tion of the outer layer at every gradient step might have a prohibitive algorithmic cost,
it is interesting to compare the VarPro algorithm with the two-timescale gradient de-
scent which consist in affecting a different learning rate to the inner and outer weights
of the neural network. For a regularization function f : R — R and a regularization
strength A > 0 we recall that the risk defined by Eq. (II1.12) associated to the parameters
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Figure II1.6: Gradient descent over the reduced risk (Eq. (I11.42)) for a SHL of width M =
1024 with unbiased regularization f, : t — [t — 1>, A = 107* and teacher distribution
fiy = py for v € {10,100,1000}. Left: Evolution of the reduced risk. Middle: Evolution of
the MMD distance to the teacher distribution i, ~ p.. Right: Distance to the ultra-fast
diffusion dynamic. Plots are averages over 6 independent runs.

{(wi,ui) M, € (St x R)M reads:

R} ({(wi, ua) HL)) MZ\ (o (@)~ Y (@) +—z Flu).  (I143)

> =

Then, for a timescale parameter n > 0, we implement the two-timescale gradient descent
algorithm defined by :

witt = W = IV, RY{(WF, uf) h<icn) (111.44)
! :
Z

Vie {1,.., M}, Vk >0,
{ u — IV R (WF uf) h<icn) -

As for the VarPro algorithm (Eq. (I11.42)), we take the stepsize parameter 7 = 2710
and {w?M, € (SHM is some random initialization with i.i.d. w{ ~ U(S'). For a fair
comparison with VarPro, we first perform one projection step before training such that
the outer weights initialization verifies:

u’ € argmin R/\({ (W, ui) Yr<icnr) -
ueRM

Concerning the timescale parameter 7, we find it empirically efficient to set it to
n = AM. Lower values of n leads to slower training and higher values to numerical

instabilities. An explanation for this is that, in the case of a quadratic regularization,
by Eq. (I11.43) the risk as a function of the outer weights v € R™ reads:

2 M

1.y R
XRf({(wuuz)}1<z<M —Nz_: ‘I’ u)j — Y ()

where ® € RV*M i some feature matrix depending on the features {w; }1<ij<p. Numeri-
cally, one observes ﬁ)\max(QT(I)) ~ 1, such that n~! = ﬁ ~ )\max()\ﬂViUR}) indeed
corresponds to the smoothness constant of the ridge regression problem w.r.t. u.
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Remark IT1.6.1. Note that, as explain above, for numerical stability, one can not consider
an arbitrarily large time-scale parameter n and we fix here n = AM . In this setting, the
ratio between the lerning rates of inner and outer weights is given by 41— = % Therefore,
we can only expect to be in the two-timescale regime, i.e. when the two-timescale gradient
descent is a good approximation of VarPro, if the stepsize T is chosen s.t. 7 < .

We stress that, for low-reqularization regimes, this can be numerically prohibitive and
VarPro, i.e. exact optimization of the outer weights at each step, can provide an efficient
alternative to gradient descent. Interestingly, we in fact observe in our case that, as
soon as T > X\ and thus n > Mt (which for exzamples happens here for X = 107%), the
VarPro algorithm (Eq. (111.42) ) efficiently learns the teacher feature distribution (see e.g.
Fig. 111.5), whereas two-timescale gradient descent (Eq. (111.44)) does not converge.

In this setting we train SHLs of varying width using either the VarPro algorithm
(Eq. (II1.42)) or the two-timescale gradient descent algorithm (Eq. (II11.44)) and report
results in Fig. I11.7. As predicted, one can observe the two dynamics are very close in the
case case of a sufficiently high regularization, here A\ > 1072, for which we have 1 > Mr.
This supports the fact that, in this regime, the VarPro dynamic can be obtained as the
two-timescale limit of gradient descent. On the other hand, the two dynamics significantly
differ in the low regularization regime A = 1073 for which we have n = AM ~ M. In
this case, independently of the width M, the VarPro algorithm converges at a linear rate,
while two-timescale gradient descent is slower and even seems to introduce a bias in the
learned feature distribution. An explanation is that, in this regime, the two-timescale
gradient descent quickly deviates from the ultra-fast diffusion dynamic, which one can
observe in the last column of Fig. I11.7. Overall, the most favorable setting seems to be
when A = 1072, Indeed, in this case n = AM > 7M s.t. two-timescale gradient descent
efficiently emulates the VarPro dynamic, while A\ < ||K,|lop =~ 0.5, the spectral norm of
tangent kernel, s.t. both dynamics benefit from the linear convergence rate of ultra-fast
diffusion (see also Fig. IIL.5).

II1.6.2 VarPro for image classification on CIFAR10

We conclude this section by performing experiments on an image classification task with
the CIFAR10 dataset [Krizhevsky, 2009]. We thereby aim at testing the large scale appli-
cability of the VarPro algorithm. Note that applications of variable projection strategies
to the training of deep neural network architectures were also studied in [Newman, 2021].
However, such setting goes outside of the scope of the theory developed in this chapter as
the neural network can no longer be represented as a linear operator acting on measures.

We consider a residual neural network (ResNet) architecture with 20 layers and 0.27M
parameters, whose precise description can be found in [He, 2016a, Sec. 4.2]. This model
has a Euclidean parameter space €2 and for parameters w € Q and images x € R3*32x32
it produces features which we denote by ResNet(w,z) € RM with M = 64. We consider
the last fully connected layer separately as a weight matrix U € R*M with here ¢ = 10
the number of classes. Overall, for parameters (w,U) € Q x R®*M and an input image
x € R3*¥32X32 the output of the model is given by:

1
Fou(x) = MU - ResNet(w, z) € R°.
To apply the VarPro algorithm we need to have an efficient way of computing the exact

projection of the linear parameters U. For this purpose and instead of a cross-entropy
loss, we consider here simply the square error between the outputs of our model and the
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Figure III.7: VarPro (Eq. (II1.42), plain lines) and two-timescale gradient descent
(Eq. (I11.44), dashed lines) over the risk for SHLs of varying width M € {32,128,512,1024}
with unbiased regularization function f, : t — %]t — 12 and regularization strength
A = 107! (top), A = 1072 (middle) or A = 1073 (bottom). The teacher distribution
is fiy >~ py with v = 100. Left: Evolution of the risk. Middle: Evolution of the MMD
distance to the teacher distribution. Right: Distance to the ultra-fast diffusion dynamic.
Plots are averages over 6 independent runs.
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true labels converted to one-hot vectors y € {0,1}¢. In this manner, the training risk for
a batch of data D and parameters (w,U) € Q x R*M reads:

. 1 A
Rp(w,U) = 24D Z | F,ony () — yll* + WHUHQ : (I11.45)
(z,y)€D

We then consider training our model with an adaptation of the SGD algorithm with
momentum described in Eqs. (45) and (46). For an initialization (w®, U°) € Q x R*M 4
timestep 7 > 0 and a momentum parameter m > 0 the training dynamic reads:

U = mU* 4 (1 - m)0*,

vk >0, .
B whtl = Wk — %Vuﬂ?%k (wh, Uk,

(I11.46)

where D}, is the mini-batch at step k and Uy, is the corresponding projection of the outer
weights i.e. UF € arg mingcgexm 7@%‘% (wk, U). The introduction of the momentum param-
eter m > 0 is here to compensate the variability of the projection Uj w.r.t. the sampling
of mini-batches at each step. Indeed, intuitively, for evaluation on test-data, rather than
having a classifier computed only on the last mini-batch, it is preferable to have an average
of the last computed classifiers.

Experimental setting In practice, we find it effective to consider a regularization
strength A\ = 1073, a momentum m = 0.9 and a stepsize 7 = 103. We consider dif-
ferent values of the batch size #D € {64, 128,256,512,1024}. We train our model by
performing 110 passes over the training set, evaluating the model accuracy on the test set
in-between each pass. The stepsize is divided by 2 for the last 10 passes on the training
set. Note that this setting allows for a fair comparison of performances with the results
presented in [He, 2016a, Sec. 4.2] for the training of ResNets on the CIFAR10 dataset.
We also follow the same data-augmentation procedure.

Comparison with other stochastic optimization methods We compare the above
described VarPro algorithm (Eq. (I11.46)) with other stochastic optimization methods for
the minimization of the training risk in Eq. (II1.45). We compare with standard Stochastic
Gradient Descent (SGD) on the full parameterization (w,U) € Q x R*M with momentum
m = 0.9 and stepsize 7 = 1073. We also compare with the Shampoo algorithm [Gupta,
2018] which is a preconditioned gradient method!' and set the learning rate to 7 = 1072,
Fig. II1.8 reports the evolution of the training risk (Eq. (II1.45)) along training. One
can observe that, in terms of minimization of the training risk, performances of VarPro
at convergence are similar to the one of SGD and better than Shampoo. Compared with
these last two methods, the convergence speed of VarPro however seems to be slower
during the first stages of training. Behavior of the methods w.r.t. the batch size is also
different. While the batch size has no or little influence on the convergence speed of SGD or
Shampoo, one can observe that the VarPro algorithm tends to converge more slowly when
the batch size increases. Since this method is based on the exact resolution of a quadratic
minimization problem on each mini-batch at each step, an explanation is thus that this
subproblem becomes less well-conditioned when the size of the mini-batches increases.
Fig. II1.8 reports the evolution of the top-1 accuracy of the model on the test set. All
optimization methods seems to achieve the same generalization performances on the test
set, that is more than 90% accuracy, which is in par with the 91.25% reported for the

!We used the implementation from https://github.com/moskomule/shampoo.pytorch
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Figure II1.8: Evolution of the training risk %R% (Eq. (II1.45)) along training for different
batch sizes and different optimization methods. Plots are averages of the risk associated
to each mini-batch encountered during one pass. VarPro corresponds to Eq. (111.46).

VarPro Shampoo

= batch size=64

——— batch size=128 7
batch size=256

——— batch size=512

—— batch size=1024

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
# pass on the dataset # pass on the dataset # pass on the dataset

Figure II1.9: Evolution of the top-1 accuracy along training for different batch sizes and
different optimization methods. VarPro corresponds to Eq. (I11.46).

same model in [He, 2016a]. As before, one can observe the Varpro algorithm (Eq. (I11.46))
seems to take more time to achieve the same accuracy. Also, whereas SGD and Shampoo
generalize better when the batch size is smaller, the converse happens for VarPro and
one can see the generalization performance of our ResNet model trained with the VarPro
algorithm deteriorates for smaller batch sizes.
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I11.7 Conclusion

In this chapter we have investigated the convergence of gradient based methods for the
training of mean-field models of shallow neural networks. To this end, we have adopted a
Variable Projection (VarPro) strategy, which eliminates the linear parameters and reduces
the training problem to the learning of the nonlinear features. Using tools from the theory
of Wasserstein gradient flows, we have shown theoretically that, when the regularization
strength A vanishes, the training dynamic converges, under regularity assumptions, to
solutions of weighted ultra-fast diffusion PDEs (Theorem II1.5). In such a low regulariza-
tion regime, this allows establishing convergence of the learned feature distribution to the
teacher’s at a linear rate (Theorem II1.3). Moreover, in presence of regularization, we also
obtain a quantitative convergence result but with a slower algebraic rate (Theorem III1.4).

Our theoretical predictions are supported by numerical results on simple experiments
with synthetic data. One can observe that, when the regularization strength A is negligible
compared to the tangent kernel, the VarPro and ultra-fast diffusion dynamics are similar
and converge to the teacher feature distribution at a linear rate (Fig. II1.5). Moreover,
if the time step is sufficiently small, this dynamic is also recovered with a simple two-
timescale gradient descent algorithm (Fig. III.7). Finally, experiments with a ResNet
architecture on the CIFAR10 dataset show that a VarPro strategy can be easily adapted
to the training of complex architectures on large datasets.

We conclude by mentioning possible future research directions:

e On a theoretical perspective, our convergence results in Section III.5 hold under
regularity assumptions on the training dynamic. It would be interesting to see if one
can relax or ensure these assumptions, possibly by strengthening Assumption III.1.

e We have considered here simple 2-layer neural network architectures but, as pointed
out in Chapter II, the learning of good nonlinear representations of the data also
plays an important role in the training of deep architectures such as ResNets or
Transformers [Gao, 2024]. It might thus be interesting to see in what extent the
mathematical framework developed in Chapter I could be extended to model two-
timescale approaches for the training of deeper architectures. Ultimately, an objec-
tive could to relax the convergence conditions obtained in Section IL.5 by ensuring
the learning of good feature representations during training. A difficulty is that, in
deep architectures, separability of the regression problem w.r.t. linear and nonlinear
variables of each layer is lost due to composition.
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Appendices
ITII.A Positive definite kernels and RKHS

We recall in this section basic properties on the theory of Reproducing Kernel Hilbert
Spaces and refer to classical textbooks for a complete presentation of the topic [Steinwart,
2008; Scholkopf, 2002]. In this chapter we consider a mapping ¢ : 2 x R? — R as well as a
probability measure p € P(R?). This choice of ¢ and p determines a symmetric, positive
definite kernel [Steinwart, 2008, Def. 4.15] k : Q x Q@ — R defined by:

Vw,w' € Q, kKw,w) = /X d(w, z)p(w', z)dp(z) = (P(w,.), P, .)>L2(p) .

Thus, associated to k is a (uniquely defined) structure of Reproducing Kernel Hilbert
Space (RKHS) H with scalar product (.,.),,, that is a Hilbert space of functions on € such
that [Steinwart, 2008, Def. 4.18]: (i) x(w,.) € H for every w € Q and (ii) the following
reproducing property holds:

VheH, weQ, hw)= (h,r(w,.))y -

Following the definition of s, L?(p) is a feature space for H and ¢ a feature map [Steinwart,
2008, Def. 4.1]. Also, H can be isometrically identified as a subspace of L%(p) and the
convolution with ¢ is a partial isometry [Steinwart, 2008, Thm. 4.21]. Precisely, we have

H= {h Q=R : Jaec L?(p)st. h= /d <Z>(.,x)a(x)dp(x)}
R
and the RKHS norm on H satisfies:
VheH, |hlly= inf{HaHLz(p) b= /Rd ¢(.,x)a(x)dp(x)} . (IT1.47)

In this chapter, we always work with the following minimal assumption on the feature
map ¢:

Assumption II1.3 (Assumption on ¢).
The feature map ¢ is in L?(p,CY). In particular, it implies the kernel k is continuous.

Kernel embeddings and kernel discrepancy between measures The above as-
sumption is sufficient to ensure H is included in C(2) and guarantees the existence of ker-
nel embeddings for finite Borel measures [Muandet, 2017; Gretton, 2012]. For a measure
v e M(Q) its kernel embedding M, (v) is defined as the unique element of H satisfying:

Vh e, /Q hdv = (h, M(v)),, (IT1.48)

Equivalently, the kernel embedding is given by the Bochner integral M, (v) = [, k(.,w)dv(w) €
H. This embedding defines a discrepancy between measures by seeing them as element

of the Hilbert space H. For two measures v, € M(Q) the Mazimum Mean Discrepancy
(MMD) between v and v/ is defined as [Muandet, 2017; Gretton, 2012]:

MMDy (v, V") = || M (v) — My (V)| -
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Alternatively, Assumption I11.3 is sufficient to ensure the convolution ®x : M(Q) — L?(p)
defined in Eq. (II1.4) is a bounded operator and by construction we have:

1/2
MMD, () = ( [ nlen )l =)l = )@) ) = 85 (7= ) g -
(I11.49)

The discrepancy MMDy, is in particular a distance between measures whenever the kernel
k is universal, that is when the associated RKHS H is dense in the space of continuous
functions on Q [Micchelli, 2006; Sriperumbudur, 2011]. One can show this condition is
equivalent to an injectivity assumption on ®«.

Lemma IIT.A.1 (see also [Micchelli, 2006, Prop. 1]). Let ¢ satisfy Assumption III.5.
Then ®x : M(Q) — L%(p) is injective if and only if H is dense in the space CO() of
continuous functions over . In this case, MMD,, is a distance on M(S).

Proof. The fact the MMD is a distance on M () when ®x is injective directly follows
from Eq. (I11.49). For the direct implication, assume ®x is injective and consider some
measure v € H' ie. such that for every h € H we have [hdy = 0. Then by the
characterisation in Eq. (I11.47) we have for every a € L?(p):

0= /Q ( » qb(w,x)oz(:n)dp(a:)) dv(w) = {a, 2% V)2, -

Hence ® x v = 0, implying ¥ = 0 and thus that H+ = {0} i.e. H is dense in C°(Q) by
Hahn-Banach theorem. For the converse implication, assume that 7 is dense in C°(Q2) and
consider some v € M(Q) s.t. ® xv = 0. Then for a € L?(p) we have (@, @ % V)20, =0

and by similar calculations this implies v € H' i.e. v = 0. O

Kernel and integral operator In this chapter we have used properties of the RKHS
H seen as a subspace of the Hilbert space L?(j) for probability measures pu € P(£2). For
such a probability measure p € P(2), it indeed follows from Assumption II1.3 that #H is
compactly embedded in L?(u) [Steinwart, 2012, Lem. 2.3]. Also, the kernel defines an
integral operator J,, : L*(u) — L?(u) given by:

Vi e L3 (u), Ju-f:/gk(.,w)f(w)du(w).

Then J,, is a compact, self-adjoint and positive operator and, by the spectral theorem, it
can be diagonalized in an orthonormal basis (e;);>o of L?(u) with associated eigenvalues
(Ai)i>0 s.t. A1t > Ao > ... > 0. In particular, J, = @Z@M with @, : L?(u) — L?(p) the
feature operator defined in Eq. (II1.7), thus (v/A;)i>0 are the (right) singular values of @,
(which is a compact operator) and, if ®« is injective, then \; > 0 for every ¢ > 0. Mercer’s
theorem gives a representation of the kernel k£ and of the associated RKHS H in terms of
this eigenvalue decomposition [Steinwart, 2008, Thm. 4.51].

Theorem III.6 (Mercer representation of RKHSs). Assume ®* is injective and let p €
P(Q2) be a probability measure with full support on Q. Consider (A\;)i>0 and (e;)i>o the
eigenvalue decomposition of the operator J,,. Then we have:

Vw,w' € AxQ, kw,w)= Z)\iei(w)ei(w'),
i>0
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where the convergence is absolute and uniform over Q x . Moreover

H= {Zai\/)\»iei :(a3)i>0 € 52(N)}

120

is the RKHS associated to the kernel x and the scalar product (.,.),, is given for every

f= Zizo aiv/Ai and g = Zizo biv/Ai by (f, 9>H = Zizo a;b;.

ITI1.B Radial basis function neural network on the 2-dimensional
torus

We performed numerical experiments to test the performance of the VarPro algorithm
for the training of Radial Basis Function (RBF) neural networks. Notably, due to the
particular structure of the architecture, the learning problem corresponds to performing
a deconvolution, which has important applications in signal processing [De Castro, 2012;
Duval, 2015].

The feature space is here the 2-dimensional torus Q = R?/4z2 C R? and the data
dimension is d = 2. The RBF neural network architecture performs the convolution with
a kernel k : R? — R and corresponds to considering the feature map ¢ : (w, z) = k(w — ).
We will use here the Laplace kernel k : z € R? — 8exp(—3||[z]]), where [2] represents the
projection of x in ) = R*/4z2. For features {w;}, € ()M and outer weights {u;};—1 € RM
the RBF neural network model reads:

1 M
Fiwiu) 1€ ER? i ; wik(w; — x) = (k%) (x), (I11.50)

where 0 = ﬁ S M uid,, € M(Q) and x is the convolution operator. We consider a teacher

feature distribution ji, = = S°M, §5, for features {Witicicar € OM and the target signal

M
Y is thus:
1 M
Vr € R?, Y(r)= ﬁZk(wi —x) = (k*jiy).
=1

The teacher features are i.i.d. with w; ~ p, = (%5@ + %%;) * T, where wj = (—1,0),
ws = (1,1) are two target modes and =, is the product measure with density:
1 1

v € R?/472 X .
(21, 22) 12, (e, 2) X 1+ vysin?(z1m/4) © 1+ ysin?(z27/4)

The parameter v controls the shape of the distribution g, such that in the large v limit
ONe TeCOVETS [y ™ [log = %6@ + %6“,;. A scatter plot of the teacher measure pi, and of
the resulting teacher signal for v = 100 are shown in Fig. II1.10. Finally, we consider the
input data z to be distributed according to an empirical distribution p = % Z?;l 0z, with
i.i.d. standard Gaussian samples x; ~ N(0,1d). In this setting we consider training the
model by performing a VarPro algorithm i.e. gradient descent over the reduced risk, as
in Eq. (I111.42).

Experimental setting We test the performances of the VarPro algorithm (Eq. (I11.42))
for the training of a RBF neural network (Eq. (II1.50)) of varying width M € {32,128,512,1024}.

We use either the “biased” quadratic regularization f, : ¢t — %tQ or the “unbiased”
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Figure II1.10: Left: scatter plot the empirical teacher distribution fi, for v = 100. Right:
corresponding target signal.

quadratic regularization fy : t — %|t —1|? and we consider varying regularization strength
A€ {1071,1072,1073}. We consider different teacher distributions fiy by changing the
parameter v € {100, +o00}. As in Section II1.6.1, we consider a number of data samples
N = 4096 > M, a teacher of width M = 4096 > M — s.t. the approximation fly 2 [y
holds — and a stepsize 7 = 2710,

Student of varying width As before, we first investigate the role played by the width
M of the student in the training dynamic. For this purpose, we fix the regularization
strength to A = 1073 and consider training RBF neural networks (Eq. (II1.50)) of varying
width M € {32,128,512,1024} with the teacher distribution fi,, v = 100.

Fig. II1.11 reports evolution of the biased and unbiased reduce risk during training
and Fig. II1.12 reports evolution of the distance to the teacher distribution fi,. As for
our 1-dimensional experiments, one can observe that the VarPro algorithm converges to
lower values of the unbiased reduced risk when the width of the student increases. In
turn, at convergence, this corresponds to learned feature distributions that approximate
the teacher distribution with different levels of discretization. On the contrary, using the
biased regularization f : t — %tQ introduces a bias in the learned distribution.

Role of the regularization strength A\ We now investigate the role of the regular-
ization strength A > 0. We thus consider training RBF neural networks (Eq. (II1.50))
of fixed width M = 1024 with the teacher distribution jiy, v = 100, and we per-
form gradient descent over the reduced risk (Eq. (II1.42)) with varying regularization
A€ {1071,1072,1073}. Note that here, compared to our 1-dimensional, the case of reg-
ularization lower than A = 1072 is numerically impracticable, at least with our choice of
stepsize 7 = 2710,

Evolution of the distance to the teacher distribution fi, along training is reported
in Fig. [I[.13. As in our 1-dimensional experiments, one can observe that the convergence
speed gets slower when the regularization strength increases. There is also a significant
change of behavior between A = 107! and A € {1072,107%}. In the former case the con-
vergence seems to exhibit an algebraic rate, supporting the conclusions of Theorem II1.4,
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Figure III.11: Evolution of the reduced risk along iterations of gradient descent for a
RBF neural network (Eq. (II1.50)) of width M € {32,128,512,1024}. The regularization
strength is A = 1072 and the regularization function is either f, : t %tz (left) or

fu:tr 3t — 1% (right). Plots are averages over 6 independent runs.
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Figure I11.12: Evolution of the MMD distance to the teacher distribution ., along gra-
dient descent over the reduced risk for a RBF neural network (Eq. (II1.50)) of width
M € {32,128,512,1024}. The regularization strength is A = 1072 and the regularization
function is either f, : ¢ — $t? (dashed) or f, : t + %[t — 1|* (plain). Plots are averages
over 6 independent runs.
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Figure II1.13: Evolution of the MMD distance to the teacher distribution fi, along gradient
descent over the reduced risk (Eq. (I11.42)) for a RBF neural network (Eq. (I11.50)) of width
M = 1024 with regularization A € {1071,1072,1073,107%}. The regularization function
is either f, : t — $t? (dashed) or f, : t — [t — 1|? (plain). Plots are averages over 6
independent runs.

while in the latter the convergence rate is linear, indicating a behavior closer to the ultra-
fast diffusion limit (Theorem II1.3). As for the 1-dimensional case, this can be explained
by the fact that A = 10! is the order of magnitude of the most significant eigenvalues of
the tangent kernel K, in Eq. (II1.24). Thus, for higher values of A, one enters in a high reg-
ularization regime where the reduced risk receive more influence from the MMD distance
term than from the f-divergence term in Eq. (II1.18). One also observes that the bias
introduced in the case of the regularization f; : ¢t — %tg vanishes with the regularization
strength A, supporting the conclusions of our Proposition II1.3.1.

Role of the shape of the teacher distribution Finally, we investigate the impact
of the shape of the teacher distribution on the VarPro dynamic. We are particularly
interested in the limit v = +o00 in which the teacher distribution is p, = %5“’1‘ + %(L;.
While such setting is not covered by our theory (in particular the ultra-fast diffusion
equation is not necessarily well-posed), it is of interest to see if the VarPro algorithm is
able to recover sparse feature representations.

In this context, we consider teacher distributions ji, for v € {100,+o00} and train
RBF neural networks (Eq. (II1.50)) of fixed width M = 1024 with gradient descent over
the reduced risk (Eq. (I11.42)) with the unbiased regularization f, : t — 3|t — 1/* and
A = 1073, Plots of the evolution of the reduced risk and of the MMD distance to the
teacher distribution are reported in Fig. [11.14. As in our 1-dimensional experiments, one
can see that the convergence speed of VarPro deteriorates when v increases, both in terms
of convergence of the risk and in terms of convergence of the learned feature distribution
to the teacher’s. In case of a sparse teacher distribution (y = +00), convergence towards
the teacher seems to not necessarily be governed by a linear rate. Indeed, as the teacher
distribution is not absolutely continuous, one could expect the comparison with ultra-fast
diffusion dynamics to no longer hold.
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Chapter III. Feature learning in shallow architectures
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Figure II1.14: Gradient descent over the reduced risk (Eq. (II1.42)) for a RBF neural
network (Eq. (IIL50)) of width M = 1024 with unbiased regularization f, : ¢t — [t — 1|2,
A = 1072 and teacher distributions fi, for v € {100, +o0}. Left: Evolution of the unbiased
reduced risk. Right: Evolution of the MMD distance to the teacher distribution . Plots
are averages over 6 independent runs.
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Conclusion

From a theoretical standpoint, the recent successes of learning algorithms have challenged
our current understanding and highlighted the need for developing new theoretical frame-
works. This line of research is driven by two objectives. First, although these models are
often treated as black-boxes, gaining a deeper understanding of how learning algorithms
work is essential for improving the interpretability of their predictions. Second, it can
guide the design of more efficient architectures and training methods, ultimately leading
to improved performance or reduced computational cost.

In this manuscript, we focused specifically on the case of overparameterized architec-
tures, where the number of model parameters is large relative to the amount of training
data. Residual architectures form an important class of such models — encompassing
popular designs like ResNets and Transformers — thanks to the presence of skip connec-
tions, which enable the effective training of very deep networks. In this overparameterized
regime, we saw that the choice of a scaling scheme to normalize parameters as the size
of the model grows plays a critical role in the success of the learning process. Our study
concentrated in particular on the mean-field limit with respect to network width and on
the Neural ODE limit with respect to network depth in residual architectures.

These scaling choices are motivated not only by practical considerations, but also
by theoretical ones. From a practical perspective, mean-field neural networks tend to
exhibit stronger abilities to extract nonlinear representations from data, often resulting in
better generalization. Neural ODEs, on the other hand, allow for more efficient training
procedures. From a theoretical standpoint, Neural ODEs implement a smooth deformation
of the input space, which contributes to a simpler optimization landscape and helps avoid
spurious critical points. Also, for both shallow and deep architectures under the mean-
field scaling, relaxation of the training objective in a space of measure yields favorable
optimization properties. The training dynamics then correspond to interacting particle
systems, which are “metric” gradient flows that can be analyzed through the lens of partial
differential equations.

Mean-field limits of NODEs In Chapter I, we investigated the training dynamics
of mean-field models of Neural ODEs (NODEs), which correspond to residual networks
of infinite depth and arbitrarily large width. To analyze the training process in this
dynamic, we developed a mathematical framework in which the model is parameterized by
probability measures over a product space of layers and parameters, subject to a uniform
marginal constraint on the space of layers. This parameter space is endowed with a
Conditional Optimal Transport (COT) metric, designed to reflect the Euclidean geometry
of the ResNet parameter space.

In Section 1.3, we showed that the gradient flow dynamics of deep ResNets can be
interpreted as a metric gradient flow with respect to the COT metric. As in the case
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of shallow architectures, this dynamic is governed by an advection partial differential
equation, whose well-posedness we established in Section 1.3.4.

Convergence of training dynamics for NODEs In Chapter II, building on the
framework developed in Chapter I, we studied the convergence properties of the gradi-
ent flow dynamics arising in the training of deep ResNets. A key finding is that, for
these models, the training risk satisfies a local Polyak—F.ojasiewicz (P-L.) inequality. This
structure allows us to establish linear convergence of the gradient flow toward an optimal
parameterization, under the assumption that the learning problem is sufficiently “easy”
to solve. In Theorems I1.6 and I1.7, we quantified this assumption in terms of the number
of training samples. We also verified our theoretical results with numerical experiments
on large-scale image classification tasks.

This analysis underscores the pivotal role played by the structure of residual blocks
during training. Specifically, a lower bound on the P-F. constant is governed by the
conditioning of the tangent kernel associated with the residuals. We focused in particular
on the case of linearly parameterized residuals, such as random feature models, as well as on
the case of single-hidden-layer perceptrons. In both settings, we identified the importance
of having a well-chosen distribution of features to ensure favorable convergence properties
for gradient flow.

Feature learning in shallow architectures Finally, in Chapter I1I, we investigated
feature learning behavior in the training of shallow neural network architectures. To this
end, we considered the Variable Projection (VarPro) algorithm, which can be interpreted
as a two-timescale version of gradient descent—where the linear parameters are updated
“faster” than the nonlinear ones. In a teacher—student setting, we showed that this training
dynamic yields linear convergence in approximating the teacher distribution. In contrast,
existing convergence results for mean-field training of shallow neural networks typically
only describe qualitative convergence, without providing explicit rates.

Once again, our results highlight the power of relaxing the learning problem to the
space of parameter distributions, in which the training dynamics take the form of partial
differential equations. More precisely, we showed that, in a regime of small regularization,
the VarPro dynamics converge to the solution of a weighted ultra-fast diffusion equation
— a nonlinear PDE whose long-time behavior was established in the literature.

We also validated our theory through numerical experiments. On simple learning
tasks that satisfy our assumptions, we observed convergence towards ultra-fast diffusion.
Moreover, the VarPro algorithm can be adapted to achieve state-of-the-art performance
when training ResNets for image classification tasks.

Future research direction

Transformer architectures Transformer architectures now represent the prevailing
approach for solving image classification and language modeling tasks. Architecturally,
Transformers are also residual networks and can, like ResNets, be modeled by continuous-
time dynamics. However, the key difference lies in the nature of their residual blocks, which
are based on the attention mechanism described in Eq. (35). Unlike standard feedforward
neural networks, attention-based models define sequence-to-sequence mappings that are
inherently permutation-equivariant. From a mathematical standpoint, this corresponds to
replacing the forward ODE in Eq. (42) with an interacting particle system governed by a
nonlocal advection PDE [Sander, 2022a; Geshkovski, 2025].
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Adapting our convergence results from Chapter II to the training of Transformer mod-
els thus represents an appealing research direction. Since our analysis relies on ensuring
the expressivity of the residual maps at each layer, this would require a deeper under-
standing of the approximation capabilities of attention mechanisms within the space of
permutation-equivariant sequence-to-sequence functions. Several recent works have begun
to explore this direction [Geshkovski, 2024; Furuya, 2024].

Neural SDE scaling The Neural ODE scaling — in which residual branches are scaled
by 1/D, with D denoting the network depth — in association with smooth initialization
of the weights can lead to more memory-efficient training of ResNets. However, it is
observed in practice that a scaling of 1/ VD combined with random initialization of the
weights is more effective for feature learning and generalization [Yang, 2023]. Under
this alternative scaling and initialization, the infinite-depth limit of ResNets is no longer
described by a deterministic ODE, as in Eq. (42), but rather by a stochastic differential
equation (SDE) [Marion, 2025].

Adapting our theoretical framework from Chapters I and II to the training of Neu-
ral SDE models thus presents a compelling research direction. A key challenge would
be dealing with the inherently stochastic nature of the training dynamics. Some recent
approaches have begun to address this issue using the formalism of rough paths [Gassiat,
2024].

Feature learning in deeper architectures As in the case of shallow architectures, we
showed in Chapter II that learning meaningful feature representations from data is crucial
to the success of the training process. However, in contrast with Chapter 111, we were not
able to quantify the extent to which such feature learning occurs during the training of
deep ResNets. A natural extension of our work would therefore be to design and analyze
algorithms that explicitly promote feature learning in deep neural networks.

In Chapter III, we studied the VarPro algorithm, which leverages the closed-form
solution of the regression problem with respect to the linear parameters to eliminate them
via partial optimization. A challenge in extending this strategy to deep architectures is
that such closed-form elimination is no longer possible due to the compositional structure
of multiple layers. However, we also interpreted VarPro as a two-timescale limit of gradient
descent. This suggests a promising direction: studying two-timescale variants of gradient
descent for the training of deep networks, and analyzing the limiting training dynamics as
the timescale separation parameter tends to infinity.

Stochastic optimization In this manuscript, we have primarily focused on the analysis
of deterministic training strategies, whereas in practice, stochastic optimization algorithms
are the workhorse of modern deep learning. These methods enable the training of large-
scale models on massive datasets and often improve generalization performance on unseen
data. A natural and exciting extension of our work would be to adapt the convergence
analyses from Chapters II and III to stochastic training frameworks.

From a mathematical perspective, the introduction of noise fundamentally alters the
training dynamics and raise important questions about the modeling of the noise pro-
cess. Several works have studied the training of shallow and deep networks under the
assumption of isotropic noise [Mei, 2018; Jabir, 2019; Chizat, 2022; Nitanda, 2022], lead-
ing in the mean-field limit to Langevin dynamics where a linear diffusion term is added
in Eq. (II1.31). Although this assumption may be overly simplistic, Langevin dynamics
reveal a compelling connection with the theory of sampling algorithms and lead to strong
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convergence guarantees [Chewi, 2024]. A possible direction would be to try and extend
those results to more realistic noise models.

On the numerical side, our experiments in Section II1.6 showed that adapting the
VarPro algorithm to a stochastic optimization setting requires specific modifications, such
as the introduction of a momentum term. It would be interesting to investigate under
what modeling assumptions such stochastic variants of VarPro lead to consistent mean-
field dynamics, and whether one can still establish convergence rates for the learning of
the feature distribution.
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RESUME

Les progres récents des modeles d’apprentissage profond dans de nombreuses applications ont mis en lumiére la né-
cessité d’'une meilleure compréhension de leurs dynamiques d’entrainement. Dans cette these, nous contribuons a
I'étude théorique des algorithmes de descente de gradient pour I'entrainement de réseaux de neurones surparamétrés.
Des travaux récents ont en effet montré que, pour des architectures peu profondes, il est possible d’obtenir de bonnes
garanties de convergence en relaxant le probléeme d’optimisation dans I'espace des distributions de parametres.

Nous prolongeons cette approche au cas des architectures profondes en étudiant des limites de champ-moyen de
réseaux de neurones résiduels (ResNets). Ces modeéles sont paramétrés par des distributions sur le produit de I'espace
des couches et d’un espace de parametres, avec la contrainte d’'une marginale uniforme sur I'espace des couches. Dans
ce cadre, nous proposons de modéliser I'apprentissage comme un flot de gradient pour une distance de Transport Opti-
mal Conditionnel (TOC), une variante du transport optimal classique incorporant cette contrainte de marginale. En nous
appuyant sur la théorie des flots de gradient dans les espaces métriques, nous démontrons I'existence et la cohérence
de ce flot avec I'entrainement des ResNets de largeur finie. Ce travail est également I'occasion d’explorer plus en détail
les propriétés du TOC et de sa formulation dynamique.

Nous étudions ensuite le comportement asymptotique des flots de gradient en nous appuyant sur des inégalités de type
Polyak-tojasiewicz locales. Nous montrons que ces inégalités sont génériquement satisfaites par les ResNets profonds,
et établissons des résultats de convergence pour certains exemples d’architectures et d'initialisations : si le nombre de
neurones est fini mais suffisamment grand, et si le risque est suffisamment faible a linitialisation, alors le flot de gradient
converge vers un minimiseur global.

Enfin, afin d’étudier '’émergence de représentations non-linéaires durant I'apprentissage, nous considérons le cas de
réseaux a une seule couche cachée avec une fonction de perte quadratique. Pour ce probléeme d’optimisation non
convexe et de grande dimension, les résultats existants sont souvent qualitatifs, ou fondés sur une analyse par le neural
tangent kernel, dans laquelle les représentations des données restent figées. Exploitant le fait qu'il s’agit d’'un probleme
quadratique non-linéaire séparable, nous analysons un algorithme de Variable Projection (VarPro) ou d’apprentissage
a deux vitesses qui permet d’éliminer les variables linéaires et de réduire le probléeme d’apprentissage a I'entrainement
des parametres non-linéaires. Dans un cadre “enseignant-éléve”, nous montrons que, dans la limite d’'une régularisation
nulle, la dynamique de la distribution des représentations est décrite par une équation de weighted ultra-fast diffusion,
permettant ainsi d’établir un taux de convergence linéaire pour I'’échantillonnage de la distribution enseignante.

Le code pour reproduire les résultats numériques présentés est en open source.

MOTS CLES

Théorie de I'apprentissage, Apprentissage profond, Optimisation, EDOs neuronales, Flots de gradient
Wasserstein

ABSTRACT

The recent successes of deep learning models across a wide range of applications have underscored the need for a
deeper understanding of their training dynamics. This research is ultimately motivated by the design of more efficient
architectures and learning algorithms.

In this PhD work, we contribute to the theoretical understanding of the dynamics of gradient-based methods for the training
of neural networks by studying the case of overparameterized models. Indeed, a recent line of work has proven that, for
shallow architectures, good convergence guarantees can be obtained by relaxing the training problem in the space of
parameter distributions.

We extend this analysis to the case of deep architectures by studying mean-field models of deep Residual Neural Net-
works (ResNets). These are parameterized by distributions over a product set of layers and parameter space, with a
uniform marginal condition on the set of layers. We then propose to model training with a gradient flow w.r.t. the Condi-
tional Optimal Transport distance: a restriction of the classical Optimal Transport distance which enforces the marginal
condition. Relying on the theory of gradient flows in metric spaces, we show the well-posedness of the gradient flow
equation and its consistency with the training of ResNets at finite width. In addition, this is an opportunity to study in more
detail the Conditional Optimal Transport distance, particularly its dynamic formulation.

We then study the asymptotic behavior of gradient flow curves by relying on local Polyak-tojasiewicz inequalities. We
show such inequalities are generically satisfied by deep ResNets and prove convergence for well-chosen examples of
architectures and initializations: if the number of neurons is finite but sufficiently large and the risk is sufficiently small at
initialization, then gradient flow converges to a global minimizer of the training risk at a linear rate.

Finally, to study the learning of nonlinear features during training with gradient descent we consider the case of shallow
single-hidden-layer neural networks with square loss. For this high-dimensional and non-convex optimization problem,
most known convergence results are either qualitative or rely on a neural tangent kernel analysis where hidden represen-
tations of the data are fixed. Using that this problem belongs to the class of separable nonlinear least squares problems,
we consider a Variable Projection (VarPro) or two-timescale learning algorithm, thereby eliminating the linear variables
and reducing the learning problem to the training of nonlinear features. In a “teacher-student” scenario, we show that,
in the limit where the regularization strength vanishes, the training dynamic on the feature distribution corresponds to a
weighted ultra-fast diffusion equation. This provides a linear convergence rate for the sampling of the teacher distribution.
The code for reproducing the numerical results presented in this thesis is open-sourced.
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Machine learning theory, Deep learning, Optimization, Neural ODEs, Wasserstein gradient flows
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